1. Normalized difference vegetation index prediction using reservoir computing and pretrained language models
- Author
-
John Olamofe, Ram Ray, Xishuang Dong, and Lijun Qian
- Subjects
Temporal prediction ,NDVI ,Deep learning (DL) ,Reservoir computing (RC) ,Large language model (LLM) ,GPT2 ,Agriculture - Abstract
In this study, we examined plant health prediction through the Normalized Difference Vegetation Index (NDVI) calculated from satellite image derived reflectance values in the near-infrared and red spectra. The problem is formulated as a temporal data prediction problem. Using MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V061 dataset, we designed and implemented Reservoir Computing (RC) models and transformer-based models including pretrained language model, and compared the prediction performance of these models to traditional machine learning and deep learning methods such as Nonlinear Regression, Decision Tree, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) network, and DLinear. It is observed that the DLinear/LSTM model showed exceptional predictive accuracy, while the pretrained RC model significantly enhanced traditional RC model forecasts. Additionally, Frozen Pretrained Transformer (FPT), a pretrained language model, showed superior performance in predicting specific NDVI values (most often peak or lowest NDVI), suggesting its effectiveness in precise temporal predictions. Furthermore, transformer-based models, specifically PatchTST and FPT, demonstrated substantial mean squared error reductions, particularly in limited data scenarios (1 %, 5 %, 15 % and 50 % sample sizes), indicating their robustness in precise NDVI temporal predictions when data is limited. The findings in this study demonstrated the effectiveness of emerging machine learning techniques such as reservoir computing and pretrained language model for remote sensing and their contributions in precision agriculture.
- Published
- 2025
- Full Text
- View/download PDF