1. A Hybrid CNN-Transformer Model for Predicting N Staging and Survival in Non-Small Cell Lung Cancer Patients Based on CT-Scan
- Author
-
Lingfei Wang, Chenghao Zhang, and Jin Li
- Subjects
non-small cell lung cancer ,N-staging prediction ,survival analysis ,CNN-transformer hybrid model ,Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
Accurate assessment of N staging in patients with non-small cell lung cancer (NSCLC) is critical for the development of effective treatment plans, the optimization of therapeutic strategies, and the enhancement of patient survival rates. This study proposes a hybrid model based on 3D convolutional neural networks (CNNs) and transformers for predicting the N-staging and survival rates of NSCLC patients within the NSCLC radiogenomics and Nsclc-radiomics datasets. The model achieved accuracies of 0.805, 0.828, and 0.819 for the training, validation, and testing sets, respectively. By leveraging the strengths of CNNs in local feature extraction and the superior performance of transformers in global information modeling, the model significantly enhances predictive accuracy and efficacy. A comparative analysis with traditional CNN and transformer architectures demonstrates that the CNN-transformer hybrid model outperforms N-staging predictions. Furthermore, this study extracts the one-year survival rate as a feature and employs the Lasso–Cox model for survival predictions at various time intervals (1, 3, 5, and 7 years), with all survival prediction p-values being less than 0.05, illustrating the time-dependent nature of survival analysis. The application of time-dependent ROC curves further validates the model’s accuracy and reliability for survival predictions. Overall, this research provides innovative methodologies and new insights for the early diagnosis and prognostic evaluation of NSCLC.
- Published
- 2024
- Full Text
- View/download PDF