1. A multi-channel in situ light scattering instrument utilized for monitoring protein aggregation and liquid dense cluster formation
- Author
-
Sven Falke, Hévila Brognaro, Arayik Martirosyan, Karsten Dierks, and Christian Betzel
- Subjects
Biochemistry ,Biophysics ,Nanotechnology ,Liquid dense clusters ,Multi-channel dynamic light scattering ,Protein oligomerization ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
Liquid-liquid phase separation (LLPS) phenomena have been observed in vitro as well as in vivo and came in focus of interdisciplinary research activities particularly aiming at understanding the physico-chemical pathways of LLPS and its functionality in recent years. Dynamic light scattering (DLS) has been proven to be a most efficient method to analyze macromolecular clustering in solutions and suspensions with diverse applications in life sciences, material science and biotechnology. For spatially and time-resolved investigations of LLPS, i.e. formation of liquid dense protein clusters (LDCs) and aggregation, a novel eight-channel in situ DLS instrument was designed, constructed and applied. The real time formation of LDCs of glucose isomerase (GI) and bovine pancreatic trypsin inhibitor (BPTI) under different physico-chemical conditions was investigated in situ. Complex shifts in the particle size distributions indicated growth of LDCs up to the μm size regime. Additionally, near-UV circular dichroism spectroscopy was performed to monitor the folding state of the proteins in the process of LDC formation.
- Published
- 2019
- Full Text
- View/download PDF