1. Combined knockdown of CD151 and MMP9 may inhibit the malignant biological behaviours of triple-negative breast cancer through the GSK-3β/β-catenin-related pathway
- Author
-
Fan Li, Liucheng Chen, Qing Xia, Zhenzhong Feng, and Nan Li
- Subjects
Medicine ,Science - Abstract
Abstract Triple-negative breast cancer (TNBC) represents a significant health concern for women worldwide, and the overproduction of MMP9 and CD151 is associated with various cancers, influencing tumour growth and progression. This study aimed to investigate how CD151 and MMP9 affect TNBC cell migration, apoptosis, proliferation, and invasion. Immunohistochemical experiments revealed that CD151 and MMP9 were positively expressed in triple-negative breast cancer, and lymph node metastasis, the histological grade, and CD151 and MMP9 expression were found to be independent prognostic factors for the survival of patients with triple-negative breast cancer. Cytological experiments indicated that the knockdown of CD151 or MMP9 slowed triple-negative breast cancer cell growth, migration, and invasion and increased the apoptosis rate. Compared with CD151 knockdown, double MMP9 and CD151 knockdown further promoted cell death and inhibited TNBC cell proliferation, migration, and invasion. Moreover, β-catenin and p-GSK-3β were significantly downregulated. In summary, simultaneously silencing CD151 and MMP9 further suppressed the proliferation, migration and invasion of TNBC cells and promoted their apoptosis. One possible strategy for inducing this effect is to block the GSK-3β/β-catenin pathway.
- Published
- 2024
- Full Text
- View/download PDF