39 results on '"López-Sandoval, Daffne"'
Search Results
2. Distribution of transparent exopolymer particles (TEP) in distinct regions of the Southern Ocean
- Author
-
Zamanillo, Marina, Ortega-Retuerta, Eva, Nunes, Sdena, Estrada, Marta, Sala, María Montserrat, Royer, Sarah-Jeanne, López-Sandoval, Daffne C., Emelianov, Mikhail, Vaqué, Dolors, Marrasé, Cèlia, and Simó, Rafel
- Published
- 2019
- Full Text
- View/download PDF
3. Bacterioplankton dark CO2 fixation in oligotrophic waters
- Author
-
Alothman, Afrah, primary, López-Sandoval, Daffne, additional, Duarte, Carlos M., additional, and Agustí, Susana, additional
- Published
- 2023
- Full Text
- View/download PDF
4. Large carbon export, but short residence times, of transparent exopolymer particles in the global ocean
- Author
-
Reche, Isabel, Peralta-Maraver, Ignacio, Ortega-Retuerta, E., Mazuecos, Ignacio P., Catalá, Teresa S., Forn, Irene, Picazo, Félix, Marañón, Emilio, Cermeño, Pedro, González, Natalia, Sobrino, Cristina, Fernández, Ana, Huete-Ortega, María, López-Sandoval, Daffne, Vidal, Montserrat, Morán, Xosé Anxelu G., Álvarez-Salgado, Xosé Antón, Agustí, Susana, Duarte, Carlos M., Gasol, Josep M., Arístegui, Javier, Reche, Isabel, Peralta-Maraver, Ignacio, Ortega-Retuerta, E., Mazuecos, Ignacio P., Catalá, Teresa S., Forn, Irene, Picazo, Félix, Marañón, Emilio, Cermeño, Pedro, González, Natalia, Sobrino, Cristina, Fernández, Ana, Huete-Ortega, María, López-Sandoval, Daffne, Vidal, Montserrat, Morán, Xosé Anxelu G., Álvarez-Salgado, Xosé Antón, Agustí, Susana, Duarte, Carlos M., Gasol, Josep M., and Arístegui, Javier
- Abstract
Acidic polysaccharides released by phytoplankton and prokaryotic heterotrophs promote the formation of gel-like transparent exopolymer particles (TEPs). TEPs can have a relevant contribution to the biological carbon pump due to their carbon-rich composition and their ability to coagulate and sink towards the deep ocean. However, little is known about TEPs distribution, carbon export, and residence times below the export (200 m) and sequestration (1000 m) depths. We provide the first comprehensive inventory of TEP from the ocean surface to a depth of 4000 meters in the tropical and subtropical Atlantic, Indian, and Pacific Oceans, evaluating its contribution to carbon export and sequestration into the deep ocean. Results indicate that TEP concentration is primarily determined by primary production, with higher concentrations located above the deep chlorophyll maxima. In the deep ocean, TEP concentrations are lower yet mirror the concentrations in the surface, demonstrating the significance of TEP sinking below both the export compartment (2.8 Pg C yr-1; 27% of total POC flux at 200 m) and the sequestration compartment (0.8 Pg C yr-1; 36% of total POC flux at 1000 m). In situ incubation experiments conducted across ocean basins indicate short TEP residence times, averaging 27 and 333 days in the export and sequestration compartments, respectively. These findings reveal that the export and subsequent sequestration of carbon by TEP sinking into the deep ocean diverts it from the long times observed for the dissolved carbon fraction (i.e. centuries) in the global carbon cycle
- Published
- 2023
5. Coccolithophore calcification is independent of carbonate chemistry in the tropical ocean
- Author
-
Marañón, Emilio, Balch, William M., Cermeño, Pedro, González, Natalia, Sobrino, Cristina, Fernández, Ana, Huete-Ortega, María, López-Sandoval, Daffne C., Delgado, Maximino, Estrada, Marta, Álvarez, Marta, Fernández-Guallart, Elisa, and Pelejero, Carles
- Published
- 2016
6. Photosynthesis and respiration in marine phytoplankton: Relationship with cell size, taxonomic affiliation, and growth phase
- Author
-
López-Sandoval, Daffne C., Rodríguez-Ramos, Tamara, Cermeño, Pedro, Sobrino, Cristina, and Marañón, Emilio
- Published
- 2014
- Full Text
- View/download PDF
7. Exudation of organic carbon by marine phytoplankton : dependence on taxon and cell size
- Author
-
López-Sandoval, Daffne C., Rodríguez-Ramos, Tamara, Cermeño, Pedro, and Marañón, Emilio
- Published
- 2013
8. Export and turnover of transparent exopolymer particles into the deep ocean
- Author
-
Reche, Isabel, Peralta-Maraver, Ignacio, Mazuecos, Ignacio P., Picazo, Félix, Ortega-Retuerta, E., Marañón, Emilio, Cermeño, Pedro, González, Natalia, Sobrino, Cristina, Fernández, Ana, Huete-Ortega, María, López-Sandoval, Daffne, Vidal, Montserrat, Morán, Xosé Anxelu G., Álvarez-Salgado, Xosé Antón, Agustí, Susana, Duarte, Carlos M., Gasol, Josep M., Arístegui, Javier, Reche, Isabel, Peralta-Maraver, Ignacio, Mazuecos, Ignacio P., Picazo, Félix, Ortega-Retuerta, E., Marañón, Emilio, Cermeño, Pedro, González, Natalia, Sobrino, Cristina, Fernández, Ana, Huete-Ortega, María, López-Sandoval, Daffne, Vidal, Montserrat, Morán, Xosé Anxelu G., Álvarez-Salgado, Xosé Antón, Agustí, Susana, Duarte, Carlos M., Gasol, Josep M., and Arístegui, Javier
- Abstract
Acidic polysaccharides released by phytoplankton and prokaryotic heterotrophs promote the formation of gel-like transparent exopolymer particles (TEPs). TEPs play a key role in the biological carbon pump due to their carbon-rich composition and their ability to coagulate and sink towards the deep ocean. Yet, very little is known about TEP distribution, export, and turnover at a global scale, particularly at deep ocean depths. We provide the first inventory of TEP from the surface up to 4000 m depth in the Atlantic, Indian, and Pacific Oceans and have assessed their contribution to carbon export into the deep ocean. Primary production determines TEP concentration above the deep chlorophyll maximum, and prokaryotic biomass also contributes in deeper waters. In the deep ocean waters, TEP concentrations are lower and mirror the concentrations in the surface, evidencing the importance of TEP sinking both at the export depth (200 m) with a global value of 2.9 Pg C year-1 and at the sequestration depth (1000 m) of 0.9 Pg C year-1 of particulate carbon. However, incubation experiments across ocean basins depicted rapid TEP turnover rates of 71 and 333 days (on average) within the export and sequestration depths, respectively. These findings reveal that the export of carbon by TEP sinking towards deep oceans escapes from long-term paths of the global carbon cycle
- Published
- 2022
9. Bacterioplankton dark CO2 fixation in oligotrophic waters.
- Author
-
Alothman, Afrah, López-Sandoval, Daffne, Duarte, Carlos M., and Agustí, Susana
- Subjects
CAVITY-ringdown spectroscopy ,AUTOTROPHIC bacteria ,EUPHOTIC zone ,CARBON fixation ,RADIOLABELING ,ATMOSPHERIC carbon dioxide ,CARBON dioxide ,BACTERIOPLANKTON - Abstract
Dark CO2 fixation by bacteria is believed to be particularly important in oligotrophic ecosystems. However, only a few studies have characterized the role of bacterial dissolved inorganic carbon (DIC) fixation in global carbon dynamics. Therefore, this study quantified the primary production (PP), total bacteria dark CO
2 fixation (TBDIC fixation), and heterotrophic bacterial production (HBP) in the warm and oligotrophic Red Sea using stable isotope labeling and cavity ring-down spectroscopy (13 C-CRDS). Additionally, we assessed the contribution of bacterial DIC fixation (TBDIC %) relative to the total DIC fixation (TotalDIC fixation). Our study demonstrated that TBDIC fixation increased the TotalDIC fixation from 2.03 to 60.45 µg C L-1 d-1 within the photic zone, contributing 13.18 % to 71.68 % with an average value of 33.95 ± 0.02 % of the photic layer TotalDIC fixation. The highest TBDIC fixation values were measured at the surface and deep (400 m) water with an average value of 5.23 ± 0.45 µg C L-1 d-1 , and 4.95 ± 1.33 µg C L-1 d-1 , respectively. These findings suggest that the non-photosynthetic processes such as anaplerotic DIC reactions and chemo-autotrophic CO2 fixation extended to the entire oxygenated water column. On the other hand, the % of TBDIC contribution to TotalDIC fixation increased as primary production decreased (R² = 0.45, p <0.0001), suggesting the relevance of increased dark DIC fixation when photosynthetic production was low or absent, as observed in other systems. Therefore, when estimating the total carbon dioxide production in the ocean, dark DIC fixation must also be accounted as a crucial component of the carbon dioxide flux in addition to photosynthesis. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
10. Particulate and dissolved primary production by contrasting phytoplankton assemblages during mesocosm experiments in the Ría de Vigo (NW Spain)
- Author
-
López-Sandoval, Daffne C., Marañón, Emilio, Fernández, Ana, González, Jose, Gasol, Josep M., Lekunberri, Itziar, Varela, Manuel, Calvo-Díaz, Alejandra, Morán, Xosé Anxelu, Álvarez-Salgado, Xosé Antón, and Figueiras, Francisco G.
- Published
- 2010
- Full Text
- View/download PDF
11. Exploring ocean-atmosphere exchanges in the Southern Ocean: the PEGASO and ACE projects
- Author
-
Simó, Rafel, Cortes, Pau, Zamanillo Campos, Marina, Rodríguez-Ros, P., Royer, S.-J., Nunes, Sdena, López-Sandoval, Daffne, Emelianov, Mikhail, Estrada, Marta, Sala, M. Montserrat, Fitzsimons, M., Airs, Ruth, Dall'Osto, Manuel, Decesari, S., Ovadnevaite, Jurgita, Ceburnis, Darius, Pérez, Gonzalo L., Cisternas-Novoa, Carolina, Engel, Anja, Antoine, D., and Vaqué, Dolors
- Subjects
fungi - Abstract
POLAR 2018 - XXXV SCAR Meetings and SCAR/IASC Open Science Conference, 19-23 June 2018, Davos, Switzerland, Climate warming affects the development and distribution of sea ice south of the Polar Front around Antarctica and its associated ecosystems, but at present the evidence of feedbacks on climate through ecosystem-derived changes in the atmosphere is sparse. The PEGASO cruise visited the Antarctic region of the South Orkney Islands at the northern edge of the Weddell Sea, and the Subantarctic region of the South Georgia Island, in summer 2015. Each region was studied intensively in lagrangian mode over a few days and diel cycles. Oceanic measurements of plankton abundance, diversity, activity and physiology, plus organic matter characteristics, organic volatile compounds (dimethylsulfide, isoprene, halomethanes) and nutrient concentrations, were compared with simultaneous atmospheric measurements of aerosol numbers, size and composition. Samples of surface seawater and melted sea ice were bubbled in an aerosol-generation tank and the characteristics of the sprayed aerosol were monitored. This integrated study allowed to link phytoplankton bloom stages and the emission of aerosol-forming particulate and gaseous substances. For instance, we observed that the microbiota of sea ice and sea ice-influenced ocean are a previously unknown significant source of atmospheric organic nitrogen, including low molecular weight alkyl-amines. Given the keystone role of nitrogen, sulfur, carbon and iodine compounds in aerosol formation, growth and neutralization, our findings call for greater chemical and source diversity in the modeling efforts linking the marine ecosystem to aerosol-mediated climate effects in the Southern Ocean
- Published
- 2018
12. Measuring ribosome decay and production to determine taxon-specific microbial mortality rates
- Author
-
Zong, X., Ziegler, M., López-Sandoval, Daffne, Castillo, Yaiza, Martinez-Zayala, J., Ashy, R., Brewer, J., Vaqué, Dolors, Agustí, Susana, Voolstra, Christian R., Chan, A., and Suttle, Curtis A.
- Abstract
Association for the Sciences of Limnology and Oceanography (ASLO) Summer meeting, Water connects!, 10-15 June 2018, Victoria, Canada, Microbes comprise >90% of the biomass in the world's oceans, drive biogeochemical cycles, and have turnover rates ranging from hours to days. Despite the central role of microbes in marine systems, there is no robust way to evaluate taxon-specific mortality. Previously, we reported that there are millions of free-ribosomes per mL of seawater that are released by cell lysis, and that these can be used to estimate taxon-specific cell lysis. Here, ribosome decay and production rates were used to estimate taxon-specific microbial mortality in surface waters of the Red Sea. Free-ribosome production, indicative of cell lysis, was detected in 953 out of 1308 prokaryotic taxa after incubations with or without mitomycin C. In 261 taxa (~27%), ribosome production only occurred with mitomycin C addition, suggesting that lysis was caused by prophage induction. Overall, 60 different dynamic patterns of free-ribosomes and cells were detected across five time points in the experiment. Using the rate of ribosome production, and ribosome copy number per cell, the mortality rate of prokaryotes was estimated to average 1.3±0.64 d-1 in the controls and 2.47±0.89 d-1 in Mitomycin C treatments, and varied among taxa and treatments. Some taxa had high rates of mortality, including the genera Acinetobacter, AEGEAN-169 marine group, Phyllobacterium, Microbacterium, Halomonas and Thalassospira. Our results show high-mortality-rates are coupled to high growth rates and high relative-abundances, suggesting that r-selected have higher lysis rates. The ability to estimate taxon-specific mortality rate as the result of cell lysis adds an important tool in our quest to explain the distribution, abundance and roles of specific microbial taxa in nature
- Published
- 2018
13. Rates and drivers of Red Sea plankton community metabolism
- Author
-
López-Sandoval, Daffne C., primary, Rowe, Katherine, additional, Carillo-de-Albonoz, Paloma, additional, Duarte, Carlos M., additional, and Agustí, Susana, additional
- Published
- 2019
- Full Text
- View/download PDF
14. Multi-model remote sensing assessment of primary production in the subtropical gyres
- Author
-
Ministerio de Economía y Competitividad (España), Regaudie de Gioux, Aurore, Huete-Ortega, María, Sobrino, Cristina, López-Sandoval, Daffne, González, Natalia, Fernández Carrera, A., Vidal, Montserrat, Marañón, Emilio, Cermeño, Pedro, Latasa, Mikel, Agustí, Susana, Duarte, Carlos M., Ministerio de Economía y Competitividad (España), Regaudie de Gioux, Aurore, Huete-Ortega, María, Sobrino, Cristina, López-Sandoval, Daffne, González, Natalia, Fernández Carrera, A., Vidal, Montserrat, Marañón, Emilio, Cermeño, Pedro, Latasa, Mikel, Agustí, Susana, and Duarte, Carlos M.
- Abstract
The subtropical gyres occupy about 70% of the ocean surface. While primary production (PP) within these oligotrophic regions is relatively low, their extension makes their total contribution to ocean productivity significant. Monitoring marine pelagic primary production across broad spatial scales, particularly across the subtropical gyre regions, is challenging but essential to evaluate the oceanic carbon budget. PP in the ocean can be derived from remote sensing however in situ depth-integrated PP (IPPis) measurements required for validation are scarce from the subtropical gyres. In this study, we collected >120 IPPis measurements from both northern and southern subtropical gyres that we compared to commonly used primary productivity models (the Vertically Generalized Production Model, VGPM and six variants; the Eppley-Square-Root model, ESQRT; the Howard–Yoder–Ryan model, HYR; the model of MARRA, MARRA; and the Carbon-based Production Model, CbPM) to predict remote PP (PPr) in the subtropical regions and explored possibilities for improving PP prediction. Our results showed that satellite-derived PP (IPPsat) estimates obtained from the VGPM1, MARRA and ESQRT provided closer values to the IPPis (i.e., the difference between the mean of the IPPsat and IPPis was closer to 0; |Bias| ~ 0.09). Model performance varied due to differences in satellite predictions of in situ parameters such as chlorophyll a (chl-a) concentration or the optimal assimilation efficiency of the productivity profile (PBopt) in the subtropical region. In general, model performance was better for areas showing higher IPPis, highlighting the challenge of PP prediction in the most oligotrophic areas (i.e. PP < 300 mg C m−2 d−1). The use of in situ chl-a data, and PBopt as a function of sea surface temperature (SST) and the mixed layer depth (MLD) from gliders and floats in PPr models would improve their IPP predictions considerably in oligotrophic oceanic regions such as the subtropical gyres wher
- Published
- 2019
15. Oceanic Emissions of Aerosol-forming Substances in Antarctica and Subantarctic
- Author
-
Simó, Rafel, Dall'Osto, Manuel, Cortes, Pau, Zamanillo Campos, Marina, Cree, C., Rodríguez-Ros, P., Nunes, Sdena, López-Sandoval, Daffne, Pérez, Gonzalo L., Ortega-Retuerta, E., Emelianov, Mikhail, Vaqué, Dolors, Marrasé, Cèlia, Estrada, Marta, Sala, M. Montserrat, Fitzsimons, M., Beale, Rachel, Airs, Ruth, Ovadnevaite, Jurgita, Paglione, Marco, Beddows, D.C.S., Ceburnis, Darius, Rinaldi, Matteo, Decesari, S., Facchini, Cristina, Harrison, Roy M., and O'Dowd, Colin D.
- Subjects
fungi - Abstract
POLAR 2018 - XXXV SCAR Meetings and SCAR/IASC Open Science Conference, 19-23 June 2018, Davos, Switzerland.-- 1 page, Climate warming affects the development and distribution of sea ice around Antarctica and its associated ecosystems, but at present the evidence of feedbacks on climate through ecosystem-derived changes in the atmosphere is sparse. The PEGASO cruise visited the Antarctic region of the South Orkney Islands at the northern edge of the Weddell Sea, and the Subantarctic region of the South Georgia Island, in summer 2015. Each region was studied intensively in lagrangian mode over a few days and diel cycles. Oceanic measurements of plankton abundance, diversity, activity and physiology, plus organic matter characteristics, aerosol-forming organic volatile compounds (dimethylsulfide, methylamines, isoprene, halomethanes) and nutrient concentrations, were compared with simultaneous atmospheric measurements of aerosol numbers, size and composition. Samples of surface seawater and melted sea ice were bubbled in an aerosol-generation tank and the characteristics of the sprayed aerosol were monitored. This integrated study allowed to link phytoplankton bloom stages and the emission of aerosol-forming particulate and gaseous substances. Our findings call for greater chemical and source diversity in the modeling efforts linking the marine ecosystem to aerosol-mediated climate effects in the Southern Ocean
- Published
- 2018
16. Use of cavity ring‐down spectrometry to quantify 13C‐primary productivity in oligotrophic waters
- Author
-
López‐Sandoval, Daffne C., primary, Delgado‐Huertas, Antonio, additional, Carrillo‐de‐Albornoz, Paloma, additional, Duarte, Carlos M., additional, and Agustí, Susana, additional
- Published
- 2019
- Full Text
- View/download PDF
17. Rates and drivers of Red Sea plankton community metabolism
- Author
-
López-Sandoval, Daffne C., primary, Rowe, Katherine, additional, Carillo-de-Albonoz, Paloma, additional, Duarte, Carlos M., additional, and Agusti, Susana, additional
- Published
- 2018
- Full Text
- View/download PDF
18. A global compilation of coccolithophore calcification rates
- Author
-
Daniels, Chris J., primary, Poulton, Alex J., additional, Balch, William M., additional, Marañón, Emilio, additional, Adey, Tim, additional, Bowler, Bruce C., additional, Cermeño, Pedro, additional, Charalampopoulou, Anastasia, additional, Crawford, David W., additional, Drapeau, Dave, additional, Feng, Yuanyuan, additional, Fernández, Ana, additional, Fernández, Emilio, additional, Fragoso, Glaucia M., additional, González, Natalia, additional, Graziano, Lisa M., additional, Heslop, Rachel, additional, Holligan, Patrick M., additional, Hopkins, Jason, additional, Huete-Ortega, María, additional, Hutchins, David A., additional, Lam, Phoebe J., additional, Lipsen, Michael S., additional, López-Sandoval, Daffne C., additional, Loucaides, Socratis, additional, Marchetti, Adrian, additional, Mayers, Kyle M. J., additional, Rees, Andrew P., additional, Sobrino, Cristina, additional, Tynan, Eithne, additional, and Tyrrell, Toby, additional
- Published
- 2018
- Full Text
- View/download PDF
19. Stable Isotope (δ13C, δ15N, δ18O, δD) Composition and Nutrient Concentration of Red Sea Primary Producers
- Author
-
Duarte, Carlos M., primary, Delgado-Huertas, Antonio, additional, Anton, Andrea, additional, Carrillo-de-Albornoz, Paloma, additional, López-Sandoval, Daffne C., additional, Agustí, Susana, additional, Almahasheer, Hanan, additional, Marbá, Núria, additional, Hendriks, Iris E., additional, Krause-Jensen, Dorte, additional, and Garcias-Bonet, Neus, additional
- Published
- 2018
- Full Text
- View/download PDF
20. The 13C method as a robust alternative to 14C-based measurements of primary productivity in the Mediterranean Sea
- Author
-
López-Sandoval, Daffne C, primary, Delgado-Huertas, Antonio, additional, and Agustí, Susana, additional
- Published
- 2018
- Full Text
- View/download PDF
21. A global compilation of coccolithophore calcification rates
- Author
-
Daniels, Chris J., Poulton, Alex J., Balch, William M., Marañón, Emilio, Adey, Tim, Bowler, Bruce C., Cermeño, Pedro, Charalampopoulou, Anastasia, Crawford, David W., Drapeau, Dave, Feng, Yuanyuan, Fernández, Ana, Fernández, Emilio, Fragoso, Glaucia M., González, Natalia, Graziano, Lisa M., Heslop, Rachel, Holligan, Patrick M., Hopkins, Jason, Huete-Ortega, María, Hutchins, David A., Lam, Phoebe J., Lipsen, Michael S., López-Sandoval, Daffne C., Loucaides, Socratis, Marchetti, Adrian, Mayers, Kyle M. J., Rees, Andrew P., Sobrino, Cristina, Tynan, Eithne, Tyrrell, Toby, Daniels, Chris J., Poulton, Alex J., Balch, William M., Marañón, Emilio, Adey, Tim, Bowler, Bruce C., Cermeño, Pedro, Charalampopoulou, Anastasia, Crawford, David W., Drapeau, Dave, Feng, Yuanyuan, Fernández, Ana, Fernández, Emilio, Fragoso, Glaucia M., González, Natalia, Graziano, Lisa M., Heslop, Rachel, Holligan, Patrick M., Hopkins, Jason, Huete-Ortega, María, Hutchins, David A., Lam, Phoebe J., Lipsen, Michael S., López-Sandoval, Daffne C., Loucaides, Socratis, Marchetti, Adrian, Mayers, Kyle M. J., Rees, Andrew P., Sobrino, Cristina, Tynan, Eithne, and Tyrrell, Toby
- Abstract
The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765CP measurements, the majority of which were measured using 12 to 24h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20m) ranged from 0.01 to 8398µmolCm−3d−1 (with a geometric mean of 16.1µmolCm−3d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1% surface irradiance) ranged from < 0.1 to 6mmolCm−2d−1 (geometric mean 1.19mmolCm−2d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182.
- Published
- 2018
22. The 13 C method as a robust alternative to 14 C-based measurements of primary productivity in the Mediterranean Sea
- Author
-
Ministerio de Economía, Industria y Competitividad (España), King Abdullah University of Science and Technology, López-Sandoval, Daffne, Delgado Huertas, Antonio, Agustí, Susana, Ministerio de Economía, Industria y Competitividad (España), King Abdullah University of Science and Technology, López-Sandoval, Daffne, Delgado Huertas, Antonio, and Agustí, Susana
- Abstract
Due to the increasing constraints on using the radioactive isotope 14 C to measure primary productivity (14 C-PP), we determined the surface carbon fixation rates in the Mediterranean Sea, using the alternative stable isotope 13 C method (13 C-PP). Rates obtained (13 C-POCp) were compared with simultaneous 14 C-POCp measurements in samples of different volumes (72 mL and 1.2 L). We also tested the variation of the percentage of dissolved primary production (PER), to the total productivity using organic and inorganic filters (14 C method). 13 C-POCp rates ranged from 0.4, in the Ionian basin, to 1.5 mgC m -3 h -1 in the Ligurian region. These results agreed with those found with the 14 C-PP in 1.2-L samples (two sample t-test, t = 1.035, df = 22, P = 0.31). However, we found that 14 C-POCp rates derived from 72-mL incubations were 46% lower than those measured with 13 C-PP. The discrepancy between large and small volume incubations was likely due to differences in the number of large phytoplankton cells within the community. PER values measured with silver membrane filters yielded similar results than those obtained using polycarbonate filters. Our findings showed that when the sample size is carefully chosen, the 13 C-PP provide comparable results to 14 C-PP even in waters of low productivity in the Mediterranean Sea.
- Published
- 2018
23. Exogenous organic sulfur supplements growth and sets interactions of the oceans smallest eukaryotic phytoplankton
- Author
-
Simó, Rafel, Salo, Violeta, Ruiz-González, Clara, López-Sandoval, Daffne, Sarmento, Hugo, Kiene, Ronald P., and González, José M.
- Subjects
Hardware_MEMORYSTRUCTURES ,ComputingMilieux_COMPUTERSANDEDUCATION - Abstract
Message in a Bottle: Workshop on Chemical Communication in the Sea , March 2017, Israel
- Published
- 2017
24. Temperature, growth metrics, and the unimodal size scaling of phytoplankton growth
- Author
-
Fernández, C., López-Sandoval, Daffne, Marañón, E., Rodríguez-Ramos, Tamara, Fernández, C., López-Sandoval, Daffne, Marañón, E., and Rodríguez-Ramos, Tamara
- Abstract
Previous studies have shown that phytoplankton growth rates peak at intermediate cell sizes, contrary to predictions by the metabolic theory of ecology. It has been suggested that the unimodal relationship between phytoplankton cell size and growth rate may arise because the smallest species are adapted to warm temperatures. A related issue is the possibility of this size scaling pattern being sensitive to the specific metric used to determine growth rate. To test whether temperature affects the unimodal size scaling pattern, we used a double approach: 1) growing batch cultures of several species at two different temperatures (18ºC and 25ºC) to measure their growth rate, and 2) using thermal response models available in the literature to estimate the growth of each species at different temperatures. To assess the sensitivity of growth rate estimates to the metric used, we calculated growth rates based on experimental data of abundance, fluorescence, and chlorophyll, carbon and nitrogen content. Our results show that phytoplankton growth rates peak at intermediate sizes at both 18ºC and 25ºC. The unimodal pattern prevails irrespective of the growth metric employed. However, growth rates estimates based on fluorescence and chlorophyll tend to exceed those based on carbon and nitrogen, which reflects consistent patterns in the variability of cellular composition.
- Published
- 2017
25. How bacterioplankton is affected by the shifts in biogenic carbon flow from particulate primary production to dissolved forms
- Author
-
González, Natalia, Blasco, Dolors, Cermeño, Pedro, Fernández Carrera, A., Gasol, Josep M., Huete-Ortega, María, López-Sandoval, Daffne, Marañón, Emilio, Morán, Xosé Anxelu G., and Sobrino, Cristina
- Abstract
Aquatic Sciences Meeting, Aquatic Sciences: Global And Regional Perspectives - North Meets South, 22-27 February 2015, Granada, Spain, Photosynthesis by phytoplankton in sunlit surface waters transforms inorganic carbon and nutrients into particulate and dissolved organic matter (POC and DOC). POC can be efficiently transported downwards by the biological carbon pump whereas DOC is mostly recycled by bacteria back into dissolved inorganic forms and is the trophic link between photoautotrophs and bacteria heterotrophs. DOC production is an important part of the global primary production. There are, scarce studies that quantify its contribution in a large scale and probably does not include data from different oceans using a consistent methodology. Malaspina 2010 offers an excellent opportunity to cover the lack of knowledge regarding DOC primary production large scale variability and the degree of coupling with bacterioplankton. Simultaneously measuring DOC-14, POC14 and H-3 leucine bacterial production (within, the euphotic layer of the low-latitude Atlantic, Indian and Pacific Ocean) gave consistent results on planktonic community functioning. POC and DOC production rates tended to follow a similar vertical pattern with percent extracellular release (PER) values (42 % ± 2) not significantly different between depths. DOC and POC production rates were positively and significantly correlated with a slope significantly different than 1. On average, most of the bacterial production was sustained by DOC primary production within the euphotic layer all over the oceans. The vertical variability of DOC primary production and its degree of coupling with bacterioplankton metabolism in these largely unexplored systems will help us better understand the global oceanic carbon cycle
- Published
- 2015
26. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity
- Author
-
Pinedo-González, Paulina, Tovar-Sánchez, Antonio, Duarte, Carlos M., Cermeño, Pedro, López-Sandoval, Daffne, Blasco, Dolors, Estrada, Marta, Sañudo-Wilhelmy, Sergio A., National Science Foundation (US), Ministerio de Economía y Competitividad (España), and University of Southern California
- Abstract
Pinedo-González, Paulina ... et. al.-- 19 pages, 10 figures, 2 tables, supporting information http://dx.doi.org/10.1002/2015GB005149, The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions, This research was partially supported by U.S. National Science Foundation (OCE 1435666), the USC Graduate School Dissertation Completion Fellowship, the Spanish Ministry of Economy and Competitiveness through the Malaspina 2010 expedition project (Consolider-Ingenio 2010, CSD2008-00077) and the project CTM2014-59244-C3-3-R
- Published
- 2015
27. Use of cavity ring‐down spectrometry to quantify 13C‐primary productivity in oligotrophic waters.
- Author
-
López‐Sandoval, Daffne C., Delgado‐Huertas, Antonio, Carrillo‐de‐Albornoz, Paloma, Duarte, Carlos M., and Agustí, Susana
- Subjects
CAVITY-ringdown spectroscopy ,PRIMARY productivity (Biology) ,WATER analysis ,PHYTOPLANKTON ,CARBON fixation ,MASS spectrometry - Abstract
Cavity ring‐down spectroscopy (CRDS) is a highly sensitive laser technique that allows the analysis of isotopic signals and absolute concentration of individual molecular species in small‐volume samples. Here, we describe a protocol to quantify photosynthetic 13C‐uptake rates of marine phytoplankton by using the CRDS technique (13C‐CRDS‐PP). We validated our method by comparing the 13C‐PP rates measured between CRDS and isotope ratio mass spectrometry (IRMS) in samples with different carbon content (30–160 μgC). The comparison revealed that 13C‐CRDS‐PP rates were highly correlated with those obtained by IRMS (Spearman correlation coefficient, ρ = 0.95, p < 0.0001, n = 15), with a mean difference between the two estimates of ± 0.08 mgC m−3 h−1. Moreover, the slope of the relationship between CRDS and IRMS results was not significantly different from 1 (F = 0.03, p = 0.86), and the intercept did not differ from 0 (F = 1.4, p = 0.24), indicating that there was no bias in the CRDS relative to the IRMS‐based measurements. A separate analysis also showed that despite the difference in volume and carbon content between samples (40 ± 10 μgC and 160 ± 40 μgC, respectively), the 13C‐CRDS‐PP technique provides similar results (Mann–Whitney test, U = 30.5, p = 0.90, n = 8). In addition, 13C‐CRDS‐PP rates measured along the Red Sea (∼ 176 mgC m−2 d−1) agreed with 14C‐based PP rates previously reported for similar locations. Thus, this study evidenced that the 13C‐CRDS‐PP method is sensitive enough to quantify carbon fixation rates in oligotrophic regions. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
28. Rates and drivers of Red Sea plankton community metabolism.
- Author
-
López-Sandoval, Daffne C., Rowe, Katherine, Carillo-de-Albonoz, Paloma, Duarte, Carlos M., and Agusti, Susana
- Subjects
ECOLOGY of plankton ,MARINE ecology ,METABOLISM ,NUTRITIONAL status ,OCEANOGRAPHIC research - Abstract
Resolving the environmental drivers shaping planktonic communities is fundamental to understanding their variability, present and future, across the ocean. More specifically, resolving the temperature-dependence of planktonic communities in low productive waters is essential to predict the response of marine ecosystems to warming scenarios, as ocean warming leads to oligotrophication of the subtropical ocean. Here we quantified plankton metabolic rates along the Red Sea, a unique oligotrophic and warm environment, and analysed the drivers that regulate gross primary production (GPP), community respiration (CR) and the net community production (NCP). The study was conducted on six oceanographic surveys following a north-south transect along Saudi Arabian coasts. Our findings revealed that Chl-a specific GPP and CR rates increased with increasing temperature (R² = 0.41 and 0.19, respectively, P < 0.001 in both cases), with a higher activation energy (AE) for GPP (1.2 ± 0.17 eV) than for CR (0.73 ± 0.17 eV). The higher AE for GPP than for CR resulted in a positive relationship between NCP and temperature. This unusual relationship is likely driven by (1) the relatively higher nutrient availability found towards the warmer region (the South of the Red Sea), and which favours GPP rates above the threshold that separates autotrophic from heterotrophic communities (1.7 mmol O
2 m-3 d-1 ). (2) Due to the arid nature, the basin lacks riverine and terrestrial inputs of organic carbon to subsidise a higher metabolic response of heterotrophic communities, thus constraining CR rates. Our study demonstrates that GPP increases steeply with increasing temperature in the warm ocean when relatively high nutrient inputs are present. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
29. Fijación de carbono, exudación y respiración en fitoplancton marino : relación con el tamaño celular y la afiliación taxonómica
- Author
-
López Sandoval, Daffne Celeste and Marañón Sainz, Emilio
- Subjects
2510.01 Oceanografía Biológica - Abstract
Utilizando datos obtenidos en el campo durante una campaña oceanográfica y en experimentos con mesocosmos, además de medidas realizadas en cultivos de laboratorio, el trabajo realizado durante la presente Tesis representa una contribución para avanzar en el conocimiento de la relación entre el tamaño celular, la composición taxonómica y la actividad metabólica del fitoplancton. Se ha prestado una atención especial a la liberación extracelular de carbono orgánico recién fotosintetizado, pues este proceso ha sido tradicionalmente menos estudiado que la producción primaria particulada. Se aportan asimismo medidas de exudación y respiración obtenidas, siguiendo el mismo protocolo experimental y en cultivos experimentando condiciones de crecimiento idénticas, en un rango amplio de afiliación taxonómica y tamaño celular. Los resultados obtenidos permitirán mejorar la parametrización de procesos fisiológicos clave en los modelos ecológicos y biogeoquímicos al uso, que habitualmente consideran diferentes grupos funcionales y/o clases de tamaño en fitoplancton. Además, estos resultados ayudan a resolver algunas cuestiones importantes que han venido planteándose en los últimos años en el campo de la ecología del fitoplancton, y que son relevantes para entender el funcionamiento de los ecosistemas pelágicos. 6.1 La importancia de la liberación extracelular de carbono orgánico disuelto. Gran parte de la información disponible sobre las tasas metabólicas en el fitoplancton marino se ha centrado principalmente en los procesos de fijación de carbono y respiración. Comparativamente, se sabe poco sobre el proceso de exudación o liberación extracelular de carbono recién fotosintetizado y especialmente cómo varía entre ecosistemas. En parte ello es debido a que tradicionalmente se ha considerado que la exudación representa una fracción pequeña de la fijación total de carbono (Thomas 1971, Fogg 1983, Baines & Pace 1991) y frecuentemente no se incluye de manera rutinaria en los estudios de producción primaria marina. Sin embargo, los datos del porcentaje de liberación extracelular mostrados en este trabajo (capítulos 2 y 3) indican que la exudación puede ser una parte importante en la producción primaria total, variando entre un 20% en un ecosistema muy productivo como la Ría de Vigo (López-Sandoval et al. 2010) hasta más de 30% en una región oligotrófica como el Mar Mediterráneo (López-Sandoval et al. 2011). La pendiente de las relaciones entre la fijación de carbono y la exudación obtenidas tanto en la Ría de Vigo como en el Mar Mediterráneo no fueron significativamente diferentes a 1, lo cual sugiere que el porcentaje de liberación extracelular (PER) es relativamente constante a lo largo del rango de producción medido. Es decir, se trataría de un proceso relativamente constante en el tiempo (entre los diferentes periodos estudiados) y en el espacio (a lo largo del gradiente longitudinal analizado). Este resultado se vio confirmado al no encontrase diferencias significativas en el promedio de PER ni entre épocas en la Ría de Vigo ni entre estaciones en el transecto longitudinal estudiado en el Mar Mediterráneo. Existen razones biofísicas para esperar que la importancia relativa de la exudación del fitoplancton guarde una relación con la estructura de tamaños, ya que las células pequeñas poseen una relación superficie/volumen mayor que las células grandes y esta característica podría favorecer la difusión pasiva de compuestos de bajo peso molecular a través de la membrana celular (Bjørnsen 1988, Kiørboe 1993). De hecho, se han encontrado altos valores de PER en regiones oligotróficas del océano (Karl et al. 1998), donde las comunidades fitoplanctónicas suelen estar dominadas por picofitoplancton. Asimismo, se han encontrado correlaciones positivas entre la importancia relativa de las células pequeñas y el porcentaje de liberación extracelular (Teira et al. 2001, Morán et al. 2002). Sin embargo, la correlación entre la estructura de tamaños y el porcentaje de liberación extracelular no siempre se encuentra (Marañón et al. 2004). Hasta el momento, los trabajos donde se analiza la relación entre la exudación y el tamaño celular en el fitoplancton se han llevado a cabo con poblaciones naturales, lo que imposibilita aislar el efecto que tienen en las tasas de exudación variables como el tamaño celular, el estrés ocasionado por las fluctuaciones en la disponibilidad de nutrientes o luz, la presión de los herbívoros, diferencias en el estado fisiológico de las distintas especies presentes en la comunidad muestreada, etc. La única manera de aislar el efecto del tamaño celular es bajo condiciones controladas en cultivos de fitoplancton en el laboratorio. Sin embargo, los trabajos disponibles incluyen pocas especies, trabajan con un solo taxón, o bien consideran un rango de tamaños celulares pequeño (Berman & Holm-Hansen 1974, Malinsky-Rushansky & Legrand 1996, Finkel 1998). En la presente tesis, se han obtenido medidas de exudación, durante tres fases de crecimiento, en un total de 22 especies de fitoplancton que cubrían un rango de tamaño de más de 6 órdenes de magnitud 0.1 μm3 hasta >106 μm3 volumen) y que incluían diatomeas, dinoflagelados, cocolitofóridos, clorofíceas y cianobacterias (capitulo 4). Los resultados obtenidos demuestran que el porcentaje de exudación del fitoplancton no guarda ningún tipo de relación con el tamaño celular y permanece constante entre fases de crecimiento. Trabajos previos con cultivos sugieren que a medida que las tasas de crecimiento disminuyen (en la fase estacionaria, cuando los nutrientes son limitantes), la exudación de compuestos orgánicos aumenta (Myklestad 1977, 1989, Obernosterer & Herndl 1995). Sin embargo, dicho aumento no fue observado en nuestro estudio. Es posible que, a pesar de que la concentración de nitrógeno inorgánico en el medio externo fuese baja, la capacidad de las células de almacenar nitrógeno intracelularmente impidiera que estuvieran fuertemente limitadas. Los valores de PER encontrados en nuestros cultivos fueron sensiblemente menores (2% en promedio para el conjunto de todas las especies y fases de crecimiento) a los medidos en poblaciones naturales. Ello sugiere que la fuerte variabilidad en las condiciones ambientales (intensidad y longitud de onda de la irradiancia, disponibilidad de nutrientes, temperatura, etc.) experimentadas por las poblaciones naturales aumenta las pérdidas de carbono orgánico disuelto. Un factor adicional que también puede estar implicado es la actividad del zooplancton, que en condiciones naturales también puede contribuir a que aumenten las pérdidas de carbono orgánico en forma disuelta. Sin embargo, el hecho de que los experimentos de series de tiempo muestren que la producción de carbono orgánico disuelto cesa en el momento en que comienza la fase oscura del fotoperiodo (Marañón et al. 2004, Marañón et al. 2005) sugiere que la depredación no es el principal mecanismo conducente a la liberación extracelular de los productos recientes de la fotosíntesis. 6.2. Tamaño celular y metabolismo del fitoplancton Uno de los patrones macroecológicos más establecidos, que ha llegado a considerarse una ley universal en biología (Whitfield 2001), es que la tasa metabólica depende del tamaño corporal de forma alométrica, según una función potencial cuyo exponente oscila entre exponente oscila entre ⅔ y ¾. A partir de que Kleiber (1932) mostrara que la tasa metabólica de aves y mamíferos era proporcional a la masa corporal elevada a la potencia de ¾ (la así llamada ley de Kleiber), la validez de este exponente se ha visto confirmada en una amplia diversidad de organismos, incluyendo protistas unicelulares, metazoos y plantas (West et al. 1997, 1999, Niklas & Enquist 2001, Price et al. 2010). Sin embargo, aún existe una gran controversia respecto a este tema, no solamente respecto al valor que toma el exponente, sino también respecto a la posibilidad de que un único exponente pueda no ser adecuado para todos los organismos (Glazier 2006, DeLong et al. 2010). En el caso del fitoplancton, el tamaño celular tiene un efecto directo sobre distintos procesos fisiológicos y ecológicos como la captación de nutrientes, la absorción de la luz, la velocidad de sedimentación (Kiørboe 1993) y distintas tasas metabólicas como la fijación de carbono (Blasco & Conway 1982) o la respiración (Banse 1976, Tang & Peters 1995). Diversos estudios han señalado que es posible aplicar la ley de Kleiber para predecir el metabolismo del fitoplancton (Laws 1975, Blasco & Conway 1982, López-Urrutia 2008); sin embargo, trabajos recientes con poblaciones naturales han destacado que la relación que existe entre el tamaño celular y la tasa metabólica en estos organismos es en realidad isométrica (Marañón et al. 2007, Marañón 2008, Huete-Ortega et al. 2011), lo que implica que las células grandes tienen tasas metabólicas mayores de lo que se esperaría para su tamaño, y ofrece una explicación alternativa al hecho de que dominen en sistemas productivos (Huete-Ortega et al. 2011). Muchos de los estudios que abordan la relación entre tamaño celular y tasa metabólica en fitoplancton tienen importantes limitaciones metodológicas. Una gran mayoría se basa en el análisis de datos recopilados de la literatura (Laws 1975, Banse 1976, Marañón 2008). La principal fuente de incertidumbre es en este caso la disparidad en los métodos experimentales utilizados y en las condiciones de crecimiento de las poblaciones. En el caso de los pocos estudios en los que se han hecho medidas directas con cultivos, o bien consideran pocas especies (Falkowski & Owens 1978) o incluyen un único grupo taxonómico (Blasco et al. 1982, Finkel 1998). Además, los estudios de laboratorio realizados hasta ahora cubren un rango de tamaños incompleto, pues no incluyen especies por debajo de 50-100 um3 (el nanofitoplancton pequeño y el picofitoplancton). Por su parte, en los estudios con poblaciones naturales distintos factores pueden condicionar la medida de la actividad metabólica de las especies de distintos tamaños. Finalmente, el uso del volumen o del carbono celular como expresión del tamaño celular ha contribuido también a la disparidad en el valor obtenido del exponente de la relación entre tamaño y tasa metabólica, ya que el contenido de carbono por unidad de volumen tiende a disminuir a medida que aumenta el tamaño del fitoplancton, en parte debido a la presencia de vacuolas en células grandes como las diatomeas (Banse 1976, Johnson et al. 2009). Los resultados obtenidos (capítulo 5) demuestran inequívocamente que el metabolismo del fitoplancton no cumple la ley de Kleiber, ya que la pendiente en la relación log-log entre tasa metabólica y volumen celular fue significativamente mayor de ¿ tanto para fotosíntesis y exudación como para la respiración. El valor de la pendiente se hace aún mayor si el tamaño celular es expresado en términos de contenido de carbono. Estos resultados coinciden con las observaciones de DeLong et al. (2010), quienes encontraron que en protistas unicelulares la tasa metabólica era relativamente independiente del tamaño. La isometría o quasi isometría del metabolismo en fitoplancton significa que organismos de tamaños enormemente dispares sostienen tasas metabólicas por unidad de biomasa semejantes. En términos teóricos, se suele aceptar que la mejor estrategia evolutiva para el fitoplancton debería consistir en minimizar el tamaño celular para maximizar la relación que hay entre la superficie y el volumen, así como reducir las pérdidas por sedimentación (Raven 1998). Si se considera que un aumento de tamaño en estos organismos implica que aumenta el efecto de empaquetamiento (lo que puede conducir a una disminución del metabolismo debido a la limitación por luz) (Finkel 2001, Finkel et al. 2004) y que la difusión se hace cada vez más ineficiente para mantener una concentración de solutos constante en el citoplasma (Beardall et al. 2009), resulta llamativo que células grandes y pequeñas presenten tasas de fotosíntesis específica (tasas de renovación) relativamente similares. La supuesta limitación de una menor relación superficie/volumen esperada en células grandes parece ser compensada por diferentes estrategias, como cambios en la forma celular, la presencia de la vacuola, que aumenta la superficie de intercambio para la captación de los nutrientes, la disminución en los requerimientos específicos de nutrientes (Thingstad et al. 2005), y la capacidad para mantener la misma tasa de captación de nutrientes por unidad de volumen que las células más pequeñas (Marañón et al. 2012). 6.3. Curvatura en la relación entre tamaño y tasa metabólica Los modelos lineales utilizados para representar la relación entre los logaritmos del tamaño celular y la tasa metabólica explican una parte importante de la variabilidad de los datos; sin embargo, dicha representación puede enmascarar patrones no lineales, que se manifiestan al representar la tasa metabólica específica (por unidad de biomasa). En nuestros experimentos, la relación de la fotosíntesis por unidad de biomasa (h-1) con el tamaño presentaba un marcado patrón unimodal, en donde las tasas de fijación más altas correspondían a las células de tamaño intermedio (capítulo 5). Lo anterior sugiere que una sola ecuación potencial no puede describir la relación que existe entre el tamaño celular y el metabolismo, ya que en el caso de la fotosíntesis por unidad de biomasa, la pendiente de la relación entre el tamaño y la tasa es positiva cuando el rango de tamaños es a partir de células pequeñas hasta células de tamaño medio, y negativa cuando el rango es a partir de las tallas intermedias hasta las grandes. Durante los experimentos de laboratorio aquí descritos se realizaron medidas de variables adicionales como la tasa de captación máxima de nitrógeno y las cuotas intracelulares de nitrógeno mínimas y máximas. Estas medidas sugieren que la unimodalidad en la relación entre tamaño y producción de biomasa en fitoplancton es el resultado de cambios a lo largo del espectro de tamaños en la interacción entre el requerimiento, la captación y el uso de los nutrientes (Marañón et al. 2012). En el rango de las especies de tamaño pequeño a intermedio (por debajo de 50-100 um3), la tasa metabólica específica aumenta con el tamaño gracias a que las células van teniendo un menor requerimiento de nitrógeno y a que progresivamente tienen más espacio celular disponible para los enzimas implicados en la síntesis de nueva biomasa. En el rango de tamaños intermedios a grandes (por encima de 100 um3), la tasa metabólica específica disminuye con el tamaño probablemente a consecuencia del aumento en las distancias intracelulares para el transporte de los recursos. 6.4. ¿Varía la respiración a lo largo del espectro de tamaños? En la mayoría de los organismos la relación que existe entre el tamaño y la respiración es descrita mediante una relación alométrica cuyo exponente suele ser 0.75. Esto quiere decir que, en comparación con los organismos pequeños, las demandas energéticas de los organismos grandes son menores. En el caso del fitoplancton, la relación que existe entre el tamaño y la respiración ha sido objeto de largo debate. Los primeros estudios en los que se aborda directamente este tema muestran pendientes que varían entre 0.69 (Laws 1975) y 0.93 (Banse 1976, Blasco et al. 1982, Tang & Peters 1995). Estos estudios se basaban bien en datos tomados de la literatura, o en medidas realizadas con pocas especies y cubriendo un rango pequeño de tamaños. Los resultados presentados en esta tesis demuestran que la relación que existe entre el tamaño (medido como biomasa de carbono) y la respiración tiene una pendiente que no es significativamente distinta a 1. Esto confirma, en un rango de tamaños y taxonómico mucho más amplio, los resultados de Lewis (1989) y de Falkowski & Owens (1978), y permite concluir que la respiración en el fitoplancton es independiente del tamaño celular. Por tanto, se puede rechazar la hipótesis de que cambios con respecto al tamaño en las pérdidas por respiración desempeñen un papel en el control de la estructura de tamaños del fitoplancton (Laws 1975). Dado que, como se ha discutido anteriormente, tampoco la exudación muestra una dependencia del tamaño, podemos concluir que son los procesos anabólicos de producción de biomasa y no los procesos de pérdida los que controlan la relación entre crecimiento y tamaño en fitoplancton, y por tanto el potencial de las especies en distintas clases de tamaño para dominar durante situaciones de elevada disponibilidad de recursos. 6.5. Afiliación taxonómica y metabolismo Al considerar la variabilidad de diferentes procesos metabólicos en fitoplancton, se deben tener en cuenta también las diferencias en estructura y composición celular que existen entre grupos taxonómicos o especies, ya que éstas implican diferentes requerimientos energéticos que a su vez pueden influir en las tasas metabólicas (Raven & Beardall 1981). Por ejemplo, nuestros resultados muestran que las pérdidas por respiración son mayores en los dinoflagelados, como ya se había observado en varias revisiones de datos de la literatura (Geider & Osborne 1989). Las altas tasas de respiración en dinoflagelados pueden estar relacionadas con el hecho de que poseen una gran cantidad de ADN en su núcleo (Rizzo 2003). Para sostener las tasas de renovación del material genético, así como para mantener otras actividades celulares como la regulación osmótica del flagelo y la motilidad (Raven & Beardall 1981), estos organismos deberán invertir una mayor cantidad de energía (ATP) proveniente de la respiración. Otra muestra de la importancia de la afiliación taxonómica se encuentra al comparar la tasa de producción por unidad de biomasa (PC) en la fase exponencial de crecimiento y en la fase estacionaria (capítulo 5). En la mayor parte de las especies, PC disminuyó en la fase estacionaria con respecto a la fase exponencial, presumiblemente como resultado de la limitación por nitrógeno. Sin embargo, en el caso de las diatomeas se encontró que muchas especies fueron capaces de mantener valores de PC durante la fase estacionaria semejantes a los sostenidos durante la fase exponencial. Ello implica que las diatomeas son capaces de mantener la fijación de carbono en situaciones de falta de nitrógeno, aumentando con ello la relación C:N de su biomasa. Ello permite a las diatomeas desacoplar parcialmente el metabolismo del carbono y del nitrógeno, y puede contribuir a explicar su éxito en situaciones oceanográficas caracterizadas por un suministro discontinuo de nutrientes (Litchman 2006).
- Published
- 2013
30. Environmental control on phytoplankton size-fractionated primary production in the tropical and subtropical Atlantic, Indian and Pacific oceans
- Author
-
Huete-Ortega, María, Cermeño, Pedro, Fernández-Camacho, A., Fernández-Castro, B., González, Natalia, López-Sandoval, Daffne, Mouriño-Carballido, Beatriz, and Marañón, Emilio
- Abstract
The 45th International Liège Colloquium: Primary production in the ocean: from the synoptic to the global scale, 13-17 May 2013, Liège, Belgium, Phytoplankton primary production and its distribution amongst different size classes play a critical role in the functioning of pelagic marine ecosystems both from an ecological and biogeochemical point of view. Around a quarter of global marine primary production occurs in tropical and subtropical latitudes of the world’s oceans. Current knowledge about the variability of size-fractionated primary production in the open ocean is constrained because the limited number of cruises covering large temporal and spatial scales and using the same methodological approaches. Here we report estimates of pico-, nano- and microphytoplankton primary production obtained during the 2010 Malaspina circumnavigation Expedition. Size-fractionated carbon fixation rates were estimated with the 14C-uptake technique at 5 depths in 147 stations sampled along the tropical and subtropical Atlantic, Pacific and Indian oceans. The estimates carried out in the Indian and South Pacific oceans highlight because, as far as we know, not many direct observations of the size structure and metabolism of phytoplankton communities have been done before in these oceanic regions. The patterns obtained in phytoplankton size-fractionated primary production were related to changes in environmental forcings, including the input of nutrients into the euphotic zone through vertical diffusion. These results provide new insights about how nutrient supply dynamics to the upper ocean controls marine primary production and therefore influences global biogeochemical cycles
- Published
- 2013
31. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity
- Author
-
National Science Foundation (US), Ministerio de Economía y Competitividad (España), University of Southern California, Pinedo-González, Paulina, Tovar-Sánchez, Antonio, Duarte, Carlos M., Cermeño, Pedro, López-Sandoval, Daffne, Blasco, Dolors, Estrada, Marta, Sañudo-Wilhelmy, Sergio A., National Science Foundation (US), Ministerio de Economía y Competitividad (España), University of Southern California, Pinedo-González, Paulina, Tovar-Sánchez, Antonio, Duarte, Carlos M., Cermeño, Pedro, López-Sandoval, Daffne, Blasco, Dolors, Estrada, Marta, and Sañudo-Wilhelmy, Sergio A.
- Abstract
The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions
- Published
- 2015
32. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity
- Author
-
Pinedo‐González, Paulina, primary, West, A. Joshua, additional, Tovar‐Sánchez, Antonio, additional, Duarte, Carlos M., additional, Marañón, Emilio, additional, Cermeño, Pedro, additional, González, Natalia, additional, Sobrino, Cristina, additional, Huete‐Ortega, María, additional, Fernández, Ana, additional, López‐Sandoval, Daffne C., additional, Vidal, Montserrat, additional, Blasco, Dolors, additional, Estrada, Marta, additional, and Sañudo‐Wilhelmy, Sergio A., additional
- Published
- 2015
- Full Text
- View/download PDF
33. Distinct patterns in the size-scaling of abundance and metabolism in coastal and open-ocean phytoplankton communities
- Author
-
Huete-Ortega, María, Rodríguez-Ramos, Tamara, López-Sandoval, Daffne, Cermeño, Pedro, Blanco, José María, Palomino, Roberto L., Rodríguez, Jaime, Marañón, Emilio, Huete-Ortega, María, Rodríguez-Ramos, Tamara, López-Sandoval, Daffne, Cermeño, Pedro, Blanco, José María, Palomino, Roberto L., Rodríguez, Jaime, and Marañón, Emilio
- Abstract
This study was aimed at identifying macroecological patterns in the relationship between phytoplankton cell size, abundance and metabolism in 2 marine ecosystems characterised by marked differences in resource availability and water-column stability. Several patterns emerged: (1) nearly isometric size-scaling of phytoplankton carbon fixation rate was described for both open-ocean and coastal ecosystems (mean slope: 1.17 and 0.90, respectively), supporting the idea that biomass-specific photosynthesis rates are largely independent of cell size; (2) less steep values for the size-scaling of abundance (mean slope: -0.73) were found in the coastal ecosystem compared to the open ocean (mean slope: -1.15); (3) large phytoplankton used more photosynthetic energy than smaller cells in the coastal ecosystem, but a constant flow of energy along the size spectrum was found in the open ocean; and (4) phytoplankton biomass turnover rates were 1 order of magnitude higher in the coastal ecosystem than in the open ocean, implying physiological limitation of phytoplankton growth in the oligotrophic ocean. Bottom-up and top-down mechanisms and their interaction with nutrient supply dynamics were suggested as major factors determining the contrasting phytoplankton size abundance distributions observed in coastal and open-ocean waters. © Inter-Research 2014
- Published
- 2014
34. Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth
- Author
-
Marañón, Emilio, Cermeño, Pedro, Huete-Ortega, María, López-Sandoval, Daffne, Mouriño-Carballido, Beatriz, Rodríguez-Ramos, Tamara, Marañón, Emilio, Cermeño, Pedro, Huete-Ortega, María, López-Sandoval, Daffne, Mouriño-Carballido, Beatriz, and Rodríguez-Ramos, Tamara
- Abstract
The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated. © 2014 Marañón et al.
- Published
- 2014
35. Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth
- Author
-
Marañón, Emilio, primary, Cermeño, Pedro, additional, Huete-Ortega, María, additional, López-Sandoval, Daffne C., additional, Mouriño-Carballido, Beatriz, additional, and Rodríguez-Ramos, Tamara, additional
- Published
- 2014
- Full Text
- View/download PDF
36. Exudation of organic carbon by marine phytoplankton: Dependence on taxon and cell size
- Author
-
López-Sandoval, Daffne, Rodríguez-Ramos, Tamara, Cermeño, Pedro, Marañón, Emilio, López-Sandoval, Daffne, Rodríguez-Ramos, Tamara, Cermeño, Pedro, and Marañón, Emilio
- Abstract
We determined the relationship between photosynthetic production of dissolved organic carbon (OC) and phytoplankton cell size and taxonomic composition in cultures of marine phytoplankton at 3 different growth stages. We measured OC exudation in 22 species belonging to 5 phyla and spanning >7 orders of magnitude in cell volume. The extracellular release of OC in our cultures represented on average ~2% of total carbon fixation, was not statistically different between growth stages, and was not correlated to cell size. The cell-specific OC exudation rate held an isometric relationship with cell size during the different growth phases (average slope: 0.95), which implies that general allometric models cannot be used to predict exudation in marine phytoplankton. Copyright © Inter-Research 2013
- Published
- 2013
37. Particulate and dissolved primary production by contrasting phytoplankton assemblages during mesocosm experiments in the Ría de Vigo (NW Spain)
- Author
-
López-Sandoval, Daffne, Gasol, Josep M., Lekunberri, Itziar, Álvarez-Salgado, Xosé Antón, Figueiras, F. G., López-Sandoval, Daffne, Gasol, Josep M., Lekunberri, Itziar, Álvarez-Salgado, Xosé Antón, and Figueiras, F. G.
- Abstract
We studied the importance of dissolved primary production in a coastal, productive ecosystem in relation to phytoplankton biomass, community structure and productivity. The photosynthetic production of dissolved organic carbon (DOCp) and particulate organic carbon was determined in mesocosm experiments during four contrasting oceanographic periods in the Ría de Vigo (NW Iberian Peninsula). We also determined the size-fractionated chlorophyll a concentration and primary production, phytoplankton taxonomic composition and bacterial production. Phytoplankton biomass was dominated by the >20 µm size fraction (mostly diatoms), except in winter, when the 2–20 and <2 µm size fractions (flagellates and picophytoplankton) increased in importance. The percentage of extracellular release (PER) had an average value of 19% and was independent of oceanographic period, phytoplankton biomass and production, taxonomic composition and size structure. During phytoplankton blooms, PER increased significantly from 14% in the exponential growth phase to 23% in the senescent phase. Bacterial carbon demand and DOCp were uncoupled, suggesting that other processes in addition to photosynthate exudation contribute most of the labile carbon to fuel bacterial metabolism. Dissolved primary production remains an important process in coastal phytoplankton assemblages throughout the year, irrespective of size-structure and community composition, but attaining higher significance during the decaying phase of blooms.
- Published
- 2010
38. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use
- Author
-
Marañón, Emilio, primary, Cermeño, Pedro, additional, López‐Sandoval, Daffne C., additional, Rodríguez‐Ramos, Tamara, additional, Sobrino, Cristina, additional, Huete‐Ortega, María, additional, Blanco, José María, additional, and Rodríguez, Jaime, additional
- Published
- 2012
- Full Text
- View/download PDF
39. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use.
- Author
-
Marañón, Emilio, Cermeño, Pedro, López-Sandoval, Daffne C., Rodríguez-Ramos, Tamara, Sobrino, Cristina, Huete-Ortega, María, Blanco, José María, Rodríguez, Jaime, and Fussmann, Gregor
- Subjects
PHYTOPLANKTON ,NUTRIENT uptake ,BIOGEOCHEMISTRY ,BIOTIC communities ,NITROGEN ,BIOMASS ,PHOTOSYNTHESIS ,STOICHIOMETRY - Abstract
Phytoplankton size structure is key for the ecology and biogeochemistry of pelagic ecosystems, but the relationship between cell size and maximum growth rate (μ
max ) is not yet well understood. We used cultures of 22 species of marine phytoplankton from five phyla, ranging from 0.1 to 106 μm3 in cell volume (Vcell ), to determine experimentally the size dependence of growth, metabolic rate, elemental stoichiometry and nutrient uptake. We show that both μmax and carbon-specific photosynthesis peak at intermediate cell sizes. Maximum nitrogen uptake rate ( VmaxN ) scales isometrically with Vcell , whereas nitrogen minimum quota scales as Vcell 0.84 . Large cells thus possess high ability to take up nitrogen, relative to their requirements, and large storage capacity, but their growth is limited by the conversion of nutrients into biomass. Small species show similar volume-specific VmaxN compared to their larger counterparts, but have higher nitrogen requirements. We suggest that the unimodal size scaling of phytoplankton growth arises from taxon-independent, size-related constraints in nutrient uptake, requirement and assimilation. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.