182 results on '"Lofi, J"'
Search Results
2. Comparison of stress orientation indicators in Chicxulub’s peak ring: Kinked biotites, basal PDFs, and feather features
- Author
-
Ebert*, M., primary, Poelchau, M.H., additional, Kenkmann, T., additional, Gulick, S.P.S., additional, Hall, B., additional, Lofi, J., additional, McCall, N., additional, and Rae, A.S.P., additional
- Published
- 2021
- Full Text
- View/download PDF
3. Data report: orientation correction of Chicxulub core recovered from IODP/ICDP Expedition 364
- Author
-
McCall, N., primary, Gulick, S., additional, Hall, B., additional, Lofi, J., additional, and Poelchau, M., additional
- Published
- 2020
- Full Text
- View/download PDF
4. A song of volumes, surfaces and fluxes: The case study of the Central Mallorca Depression (Balearic Promontory) during the Messinian Salinity Crisis
- Author
-
European Commission, Raad, Fadl, Ebner, R., Heida, Hanneke, Meijer, P., Lofi, J., Maillard, A., García-Castellanos, Daniel, European Commission, Raad, Fadl, Ebner, R., Heida, Hanneke, Meijer, P., Lofi, J., Maillard, A., and García-Castellanos, Daniel
- Abstract
The Central Mallorca Depression (CMD) located in the Balearic Promontory (Western Mediterranean) contains a well-preserved evaporitic sequence belonging to the Messinian Salinity Crisis (MSC) salt giant, densely covered by high- and low-resolution seismic reflection data. It has been proposed recently that the MSC evaporitic sequence in the CMD could be a non-deformed analogue of the key MSC area represented by the Caltanissetta Basin in Sicily. This presumed similarity makes the CMD an interesting system to better understand the MSC events. Physics-based box models of the water mixing between sub-basins, built on conservation of mass of water and salt, help constrain the hydrological conditions under which evaporites formed during the MSC. Those models have been widely used in the literature of the MSC in the past two decades. They have been mostly applied to the Mediterranean Sea as a whole focusing on the Mediterranean–Atlantic connection, or focusing on the influence of the Sicily Sill connecting the Western and Eastern Mediterranean Sea. In this study, we apply a downscaled version of such modelling technique to the CMD. First, we quantify the present-day volumes of the MSC units. We then use a reconstructed pre-MSC paleo-bathymetry to model salinity changes as a function of flux exchanges between the CMD and the Mediterranean. We show that a persistent connection between the CMD and the Mediterranean brine near gypsum saturation can explain volume of Primary Lower Gypsum under a sea level similar to the present. For the halite, on the contrary, we show that the observed halite volume cannot be deposited from a connected CMD-Mediterranean scenario, suggesting a drawdown of at least 850 m (sill depth) is necessary. Comparison between the deep basin halite volume and that of the CMD shows that it is possible to obtain the observed halite volume in both basins from a disconnected Mediterranean basin undergoing drawdown, although determining the average salinity of
- Published
- 2023
5. Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic implications from IODP expedition 339
- Author
-
Hernández-Molina, F.J., Sierro, F.J., Llave, E., Roque, C., Stow, D.A.V., Williams, T., Lofi, J., Van der Schee, M., Arnáiz, A., Ledesma, S., Rosales, C., Rodríguez-Tovar, F.J., Pardo-Igúzquiza, E., and Brackenridge, R.E.
- Published
- 2016
- Full Text
- View/download PDF
6. Origin of the large Pliocene and Pleistocene debris flows on the Algarve margin
- Author
-
Ducassou, E., Fournier, L., Sierro, F.J., Alvarez Zarikian, C.A., Lofi, J., Flores, J.A., and Roque, C.
- Published
- 2016
- Full Text
- View/download PDF
7. Depositional environment and age of some key Late Pliocene to Early Quaternary deposits on the underfilled Cedrino paleovalley (Orosei): Insight into the Neogene geodynamic evolution of Sardinia
- Author
-
Giresse, P., Bassetti, M.-A., Chanier, F., Gaullier, V., Maillard, A., Thinon, I., Lofi, J., Lymer, G., Reynaud, J.-Y., Negri, A., and Saavedra-Pellitero, Myriam
- Published
- 2015
- Full Text
- View/download PDF
8. Salt tectonics and crustal tectonics along the Eastern Sardinian margin, Western Tyrrhenian: New insights from the “METYSS 1” cruise
- Author
-
Gaullier, V., Chanier, F., Lymer, G., Vendeville, B.C., Maillard, A., Thinon, I., Lofi, J., Sage, F., and Loncke, L.
- Published
- 2014
- Full Text
- View/download PDF
9. Site M0077: Upper Peak Ring
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
10. Site M0077: Post-Impact Sedimentary Rocks
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
11. Expedition 364 summary
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
12. Site M0077: microbiology
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
13. Site M0077: Open Hole
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
14. Site M0077: Lower Peak Ring
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
15. Site M0077: introduction
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
16. Petrophysics of Chicxulub Impact Crater's Peak Ring
- Author
-
IODP-ICDP Expedition 364 Sci Party, Le Ber, E., Loggia, D., Denchik, N., Lofi, J., Kring, D. A., Sardini, P., Siitari-Kauppi, M., Pezard, P., Olivier, G., Department of Chemistry, Geological disposal of spent nuclear fuel, and Doctoral Programme in Chemistry and Molecular Sciences
- Subjects
ELASTIC-WAVE VELOCITIES ,VOLCANIC-ROCKS ,116 Chemical sciences ,POROSITY ,GRANITE ,PRESSURE ,impact crater ,petrophysics ,PMMA ,TRANSPORT-PROPERTIES ,Chicxulub ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,PORE-SPACE GEOMETRY ,shocked granite ,INDUCED HYDROTHERMAL ACTIVITY ,PERMEABILITY ,IMPREGNATION - Abstract
A new set of physical property measurements was undertaken on 29 peak-ring samples from the IODP-ICDP Expedition 364. Among the studied lithologies, the dominant one recovered in the peak ring consists of shocked granitoid rocks (19 samples). Porosity measurements with two independent methods (triple weight and C-14-PMMA porosity mapping) concur and bring new observations on the intensity and distribution of fracturing and porosity in these shocked target rocks. Characterization of the porous network is taken a step further with two other independent methods (electrical and permeability measurements). Electrical properties such as the cementation exponent (1.59 m < 1.87) and the formation factor (21 F < 103) do not compare with other granites from the published literature; they point at a type of porosity closer to clastic sedimentary rocks than to crystalline rocks. Permeabilities of the granitoid rocks range from 0.1 to 7.1 mD under an effective pressure of similar to 10 MPa. Unlike other fresh to deformed and altered granitoid rocks from the literature compared in this study, this permeability appears to be relatively insensitive to increasing stress (up to similar to 40 MPa), with implications for the nature of the porous network, again, behaving more like cemented clastic rocks than fractured crystalline rocks. Other analyzed lithologies include suevite and impact melt rocks. Relatively low permeability (10(-3) mD) measured in melt-rich facies suggest that, at the matrix scale, these lithologies cutting through more permeable peak-ring granitoid rocks may have been a barrier to fluid flow, with implications for hydrothermal systems.
- Published
- 2022
- Full Text
- View/download PDF
17. Multidisciplinary Study of Marine Archives: Reconstruction of Sea-Level, Sediment Yields, Sediment Sources, Paleoclimate, Paleoceanography and Vertical Movement on Margins: Examples from the Western Mediterranean Sea
- Author
-
Rabineau, M., Pellen, R., Pasquier, V., Bellucci, M., Badhani, S., Molliex, S., Garcia-Garcia, M., Leroux, E., Arab, M., Do Couto, D., Jouet, G., Bache, F., Gaudin, M., Lafosse, M., Miramontes, E., Lofi, J., dos Reis, T., Moulin, M., Schnurle, P., Poort, J., Dennielou, B., Afilhado, A., Popescu, S.-M., Bassetti, M.-A., Toucanne, S., Révillon, S., Cattaneo, A., Le Roy, P., d’Acremont, E., Granjeon, D., Gorini, C., Suc, J.-P., Cloetingh, S., Joseph, P., Guillocheau, F., Berné, S., Droz, L., Rubino, J.-L., Aslanian, D., Rabineau, M., Pellen, R., Pasquier, V., Bellucci, M., Badhani, S., Molliex, S., Garcia-Garcia, M., Leroux, E., Arab, M., Do Couto, D., Jouet, G., Bache, F., Gaudin, M., Lafosse, M., Miramontes, E., Lofi, J., dos Reis, T., Moulin, M., Schnurle, P., Poort, J., Dennielou, B., Afilhado, A., Popescu, S.-M., Bassetti, M.-A., Toucanne, S., Révillon, S., Cattaneo, A., Le Roy, P., d’Acremont, E., Granjeon, D., Gorini, C., Suc, J.-P., Cloetingh, S., Joseph, P., Guillocheau, F., Berné, S., Droz, L., Rubino, J.-L., and Aslanian, D.
- Abstract
The numerous processes (superficial and deep) occurring on margins, their origins, consequences, interactions and quantifications are only very partially described and understood. The identification of the relative role of factors is sometimes completely contradictory between authors. Here, we showed the results of a long-term multidecadal and multidisciplinary study (using geophysical, geological, stratigraphic, paleontological, geomorphologic, geochemical, microbiological and numerical models) in the Western Mediterranean Sea that acts as a natural laboratory at many different scales. We showed how sediments efficiently recorded at the same time: variations of glacio-eustatic sea-level changes, variations of sediments yield and sources, and also enabled quantifying vertical movements and geodynamic worldwide events but also detailed regional mass transport, turbidites and contourites deposits. They are also an archive of paleoclimatic, palaeoceanographic and diagenetic processes.
- Published
- 2022
18. Multidisciplinary Study of Marine Archives: Reconstruction of Sea-Level, Sediment Yields, Sediment Sources, Paleoclimate, Paleoceanography and Vertical Movement on Margins: Examples from the Western Mediterranean Sea
- Author
-
Tectonics, Rabineau, M., Pellen, R., Pasquier, V., Bellucci, M., Badhani, S., Molliex, S., Garcia-Garcia, M., Leroux, E., Arab, M., Do Couto, D., Jouet, G., Bache, F., Gaudin, M., Lafosse, M., Miramontes, E., Lofi, J., dos Reis, T., Moulin, M., Schnurle, P., Poort, J., Dennielou, B., Afilhado, A., Popescu, S.-M., Bassetti, M.-A., Toucanne, S., Révillon, S., Cattaneo, A., Le Roy, P., d’Acremont, E., Granjeon, D., Gorini, C., Suc, J.-P., Cloetingh, S., Joseph, P., Guillocheau, F., Berné, S., Droz, L., Rubino, J.-L., Aslanian, D., Çiner, Attila, Grab, Stefan, Jaillard, Etienne, Doronzo, Domenico, Michard, André, Rabineau, Marina, Chaminé, Helder I., Tectonics, Rabineau, M., Pellen, R., Pasquier, V., Bellucci, M., Badhani, S., Molliex, S., Garcia-Garcia, M., Leroux, E., Arab, M., Do Couto, D., Jouet, G., Bache, F., Gaudin, M., Lafosse, M., Miramontes, E., Lofi, J., dos Reis, T., Moulin, M., Schnurle, P., Poort, J., Dennielou, B., Afilhado, A., Popescu, S.-M., Bassetti, M.-A., Toucanne, S., Révillon, S., Cattaneo, A., Le Roy, P., d’Acremont, E., Granjeon, D., Gorini, C., Suc, J.-P., Cloetingh, S., Joseph, P., Guillocheau, F., Berné, S., Droz, L., Rubino, J.-L., Aslanian, D., Çiner, Attila, Grab, Stefan, Jaillard, Etienne, Doronzo, Domenico, Michard, André, Rabineau, Marina, and Chaminé, Helder I.
- Published
- 2022
19. Flexural-isostatic reconstruction of the Western Mediterranean during the Messinian Salinity Crisis: Implications for water level and basin connectivity
- Author
-
European Commission, Ministerio de Ciencia, Innovación y Universidades (España), García-Castellanos, Daniel [0000-0001-8454-8572], Heida, Hanneke [0000-0001-5456-896X], Jimenez-Munt, Ivone [0000-0003-4178-3585], Heida, Hanneke, Raad, Fadl, García-Castellanos, Daniel, Jimenez-Munt, Ivone, Maillard, Agnès, Lofi, J., European Commission, Ministerio de Ciencia, Innovación y Universidades (España), García-Castellanos, Daniel [0000-0001-8454-8572], Heida, Hanneke [0000-0001-5456-896X], Jimenez-Munt, Ivone [0000-0003-4178-3585], Heida, Hanneke, Raad, Fadl, García-Castellanos, Daniel, Jimenez-Munt, Ivone, Maillard, Agnès, and Lofi, J.
- Abstract
During the Messinian Salinity Crisis (MSC, 5.97–5.33 Ma), thick evaporites were deposited in the Mediterranean Sea associated with major margin erosion. This has been interpreted by most authors as resulting from water level drop by evaporation but its timing, amplitude and variations between subbasins are poorly constrained due to uncertainty in post-Messinian vertical motions and lack of a clear time-correlation between the marginal basin and offshore records. The Balearic Promontory and surrounding basins exemplify a range of responses to this event, from margin erosion to up to a kilometre thick Messinian units in the abyssal areas containing the majority of the MSC halite. The Balearic Promontory contains unique patches of halite with thickness up to 325 m at intermediate depths that provide valuable information on water level during the stage of halite deposition. We compile seismic markers potentially indicating ancient shorelines during the drawdown phase: the first is marked by the transition from the MES to UU based on seismic data. The second is the limit between the bottom erosion surface (BES) and abyssal halite deposits. We restore these shorelines to their original depth accounting for flexural isostasy and sediment compaction. The best-fitting scenario involves a water level drop of ca. 1,100 ± 100 m for the Upper unit level and 1,500 ± 100 m for the BES level. According to our results, halite deposition began in the Central Mallorca Depression at 1,300–1,500 m depth, perched hundreds of metres above the deep basins, which were at 1,500–1,800 m (Valencia Basin) and >2,900 m (Algerian Basin). The hypothesis that erosion surfaces were formed subaerially during the drawdown phase is consistent with a model of halite deposition before/during the water level drop of at least 1,000 m, followed by the deposition of the Upper unit until the MSC is terminated by the reinstatement of normal marine conditions.
- Published
- 2022
20. High-resolution microstructural and compositional analyses of shock deformed apatite from the peak ring of the Chicxulub impact crater
- Author
-
Cox, Morgan A., Erickson, Timmons M., Schmieder, Martin, Christoffersen, Roy, Ross, Daniel K., Cavosie, Aaron J., Bland, Phil A., Kring, David A., Gulick, Sean, Morgan, Joanna V., Carter, G., Chenot, E., Christeson, Gail, Claeys, Ph, Cockell, C., Coolen, M. J.L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Lofi, J., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, Jan, Tikoo, S., Tomioka, N., Whalen, M., Wittmann, A., Urrutia-Fucugauchi, J., Yamaguchi, K. E., Analytical, Environmental & Geo-Chemistry, Earth System Sciences, Chemistry, RC Academic Unit, Geology and Geochemistry, Imperial College London, Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,geophysics ,High resolution ,Mineralogy ,010502 geochemistry & geophysics ,Ring (chemistry) ,01 natural sciences ,Apatite ,Shock (mechanics) ,Impact crater ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,visual_art ,visual_art.visual_art_medium ,ComputingMilieux_MISCELLANEOUS ,Geology ,0105 earth and related environmental sciences - Abstract
The mineral apatite, Ca5(PO4)3(F,Cl,OH), is a ubiquitous accessory mineral, with its volatile content and isotopic compositions used to interpret the evolution of H2O on planetary bodies. During hypervelocity impact, extreme pressures shock target rocks resulting in deformation of minerals; however, relatively few microstructural studies of apatite have been undertaken. Given its widespread distribution in the solar system, it is important to understand how apatite responds to progressive shock metamorphism. Here, we present detailed microstructural analyses of shock deformation in ~560 apatite grains throughout ~550 m of shocked granitoid rock from the peak ring of the Chicxulub impact structure, Mexico. A combination of high-resolution backscattered electron (BSE) imaging, electron backscatter diffraction mapping, transmission Kikuchi diffraction mapping, and transmission electron microscopy is used to characterize deformation within apatite grains. Systematic, crystallographically controlled deformation bands are present within apatite, consistent with tilt boundaries that contain the 'c' (axis) and result from slip in ' (Formula presented.) ' (direction) on (Formula presented.) (plane) during shock deformation. Deformation bands contain complex subgrain domains, isolated dislocations, and low-angle boundaries of ~1° to 2°. Planar fractures within apatite form conjugate sets that are oriented within either { (Formula presented.), { (Formula presented.), { (Formula presented.), or (Formula presented.). Complementary electron microprobe analyses (EPMA) of a subset of recrystallized and partially recrystallized apatite grains show that there is an apparent change in MgO content in shock-recrystallized apatite compositions. This study shows that the response of apatite to shock deformation can be highly variable, and that application of a combined microstructural and chemical analysis workflow can reveal complex deformation histories in apatite grains, some of which result in changes to crystal structure and composition, which are important for understanding the genesis of apatite in both terrestrial and extraterrestrial environments.
- Published
- 2020
- Full Text
- View/download PDF
21. Borehole Seismic Observations from the Chicxulub Impact Drilling: Implications for Seismic Reflectivity and Impact Damage
- Author
-
Nixon, C. G., primary, Schmitt, D. R., additional, Kofman, R., additional, Lofi, J., additional, Gulick, S. P. S., additional, Saustrup, S., additional, Christeson, G. L., additional, and Kring, D. A., additional
- Published
- 2022
- Full Text
- View/download PDF
22. Early Paleocene Paleoceanography and Export Productivity in the Chicxulub Crater
- Author
-
Lowery C.M., Jones H.L., Bralower T.J., Cruz L.P., Gebhardt C., Whalen M.T., Chenot E., Smit J., Phillips M.P., Choumiline K., Arenillas I., Arz J.A., Garcia F., Ferrand M., Gulick S.P.S., Christeson G., Claeys P., Cockell C., Coolen M., Ferrière L., Goto K., Green S., Grice K., Kring D., Lofi J., Mellett C., Morgan J., Ocampo-Torres R., Pickersgill A., Poelchau M., Rae A., Rasmussen C., Rebolledo-Vieyra M., Riller U., Sato H., Schaefer B., Tikoo S., Tomioka N., Urrutia-Fucugauchi J., Wittmann A., Xiao L., Yamaguchi K., Zylberman W., Expedition 364 Science Party, Institute for Geophysics, University of Texas, University of Texas at Austin [Austin], Department of Geosciences [PennState], College of Earth and Mineral Sciences, Pennsylvania State University (Penn State), Penn State System-Penn State System-Pennsylvania State University (Penn State), Penn State System-Penn State System, Center for Marine Environmental Sciences [Bremen] (MARUM), Universität Bremen, Instituto de Geofisica [Mexico], Universidad Nacional Autónoma de México (UNAM), Alfred Wegener Institute for Polar and Marine Research (AWI), Department of Geosciences, University of Alaska [Fairbanks] (UAF), Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique LaSalle Beauvais, Faculty of Earth and Life Sciences [Amsterdam] (FALW), Vrije Universiteit Amsterdam [Amsterdam] (VU), Department of Earth Sciences [Riverside], University of California [Riverside] (UCR), University of California-University of California, Departamento de Ciencias de la Tierra, University of Zaragoza - Universidad de Zaragoza [Zaragoza], Instituto Universitario en investigación en Ciencias Ambientales de Aragón (IUCA), Biogéosciences [UMR 6282] [Dijon] (BGS), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Austin], Jackson School of Geosciences (JSG), University of Texas at Austin [Austin]-University of Texas at Austin [Austin], Center for Planetary Systems Habitability, University of Texas at Austin [Austin]-Jackson School of Geosciences, and Geology and Geochemistry
- Subjects
bepress|Physical Sciences and Mathematics|Earth Sciences|Paleontology ,bepress|Physical Sciences and Mathematics ,bepress|Physical Sciences and Mathematics|Earth Sciences|Sedimentology ,010506 paleontology ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,bepress|Physical Sciences and Mathematics|Earth Sciences ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences ,010502 geochemistry & geophysics ,Oceanography ,01 natural sciences ,Foraminifera ,Water column ,Impact crater ,Paleoceanography ,Phytoplankton ,Photic zone ,14. Life underwater ,SDG 14 - Life Below Water ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences|Sedimentology ,0105 earth and related environmental sciences ,biology ,Terrigenous sediment ,Paleontology ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences|Geochemistry ,15. Life on land ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences|Paleontology ,biology.organism_classification ,humanities ,EarthArXiv|Physical Sciences and Mathematics ,Productivity (ecology) ,13. Climate action ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Environmental science ,bepress|Physical Sciences and Mathematics|Earth Sciences|Geochemistry - Abstract
The Chicxulub impact caused a crash in productivity in the world''s oceans which contributed to the extinction of ~75% of marine species. In the immediate aftermath of the extinction, export productivity was locally highly variable, with some sites, including the Chicxulub crater, recording elevated export production. The long-term transition back to more stable export productivity regimes has been poorly documented. Here, we present elemental abundances, foraminifer and calcareous nannoplankton assemblage counts, total organic carbon, and bulk carbonate carbon isotope data from the Chicxulub crater to reconstruct changes in export productivity during the first 3 Myr of the Paleocene. We show that export production was elevated for the first 320 kyr of the Paleocene, declined from 320 kyr to 1.2 Myr, and then remained low thereafter. A key interval in this long decline occurred 900 kyr to 1.2 Myr post impact, as calcareous nannoplankton assemblages began to diversify. This interval is associated with fluctuations in water column stratification and terrigenous flux, but these variables are uncorrelated to export productivity. Instead, we postulate that the turnover in the phytoplankton community from a post-extinction assemblage dominated by picoplankton (which promoted nutrient recycling in the euphotic zone) to a Paleocene pelagic community dominated by relatively larger primary producers like calcareous nannoplankton (which more efficiently removed nutrients from surface waters, leading to oligotrophy) is responsible for the decline in export production in the southern Gulf of Mexico. © 2021. American Geophysical Union. All Rights Reserved.
- Published
- 2021
- Full Text
- View/download PDF
23. Site U1424
- Author
-
Tada, R., primary, Murray, R.W., additional, Alvarez Zarikian, C.A., additional, Anderson, W.T. Jr., additional, Bassetti, M.-A., additional, Brace, B.J., additional, Clemens, S.C., additional, da Costa Gurgel, M.H., additional, Dickens, G.R., additional, Dunlea, A.G., additional, Gallagher, S.J., additional, Giosan, L., additional, Henderson, A.C.G., additional, Holbourn, A.E., additional, Ikehara, K., additional, Irino, T., additional, Itaki, T., additional, Karasuda, A., additional, Kinsley, C.W., additional, Kubota, Y., additional, Lee, G.S., additional, Lee, K.E., additional, Lofi, J., additional, Lopes, C.I.C.D., additional, Peterson, L.C., additional, Saavedra-Pellitero, M., additional, Sagawa, T., additional, Singh, R.K., additional, Sugisaki, S., additional, Toucanne, S., additional, Wan, S., additional, Xuan, C., additional, Zheng, H., additional, and Ziegler, M., additional
- Published
- 2015
- Full Text
- View/download PDF
24. Sites U1428 and U1429
- Author
-
Tada, R., primary, Murray, R.W., additional, Alvarez Zarikian, C.A., additional, Anderson, W.T. Jr., additional, Bassetti, M.-A., additional, Brace, B.J., additional, Clemens, S.C., additional, da Costa Gurgel, M.H., additional, Dickens, G.R., additional, Dunlea, A.G., additional, Gallagher, S.J., additional, Giosan, L., additional, Henderson, A.C.G., additional, Holbourn, A.E., additional, Ikehara, K., additional, Irino, T., additional, Itaki, T., additional, Karasuda, A., additional, Kinsley, C.W., additional, Kubota, Y., additional, Lee, G.S., additional, Lee, K.E., additional, Lofi, J., additional, Lopes, C.I.C.D., additional, Peterson, L.C., additional, Saavedra-Pellitero, M., additional, Sagawa, T., additional, Singh, R.K., additional, Sugisaki, S., additional, Toucanne, S., additional, Wan, S., additional, Xuan, C., additional, Zheng, H., additional, and Ziegler, M., additional
- Published
- 2015
- Full Text
- View/download PDF
25. Methods
- Author
-
Tada, R., primary, Murray, R.W., additional, Alvarez Zarikian, C.A., additional, Anderson, W.T. Jr., additional, Bassetti, M.-A., additional, Brace, B.J., additional, Clemens, S.C., additional, da Costa Gurgel, M.H., additional, Dickens, G.R., additional, Dunlea, A.G., additional, Gallagher, S.J., additional, Giosan, L., additional, Henderson, A.C.G., additional, Holbourn, A.E., additional, Ikehara, K., additional, Irino, T., additional, Itaki, T., additional, Karasuda, A., additional, Kinsley, C.W., additional, Kubota, Y., additional, Lee, G.S., additional, Lee, K.E., additional, Lofi, J., additional, Lopes, C.I.C.D., additional, Peterson, L.C., additional, Saavedra-Pellitero, M., additional, Sagawa, T., additional, Singh, R.K., additional, Sugisaki, S., additional, Toucanne, S., additional, Wan, S., additional, Xuan, C., additional, Zheng, H., additional, and Ziegler, M., additional
- Published
- 2015
- Full Text
- View/download PDF
26. Expedition 346 summary
- Author
-
Tada, R., primary, Murray, R.W., additional, Alvarez Zarikian, C.A., additional, Anderson, W.T. Jr., additional, Bassetti, M.-A., additional, Brace, B.J., additional, Clemens, S.C., additional, da Costa Gurgel, M.H., additional, Dickens, G.R., additional, Dunlea, A.G., additional, Gallagher, S.J., additional, Giosan, L., additional, Henderson, A.C.G., additional, Holbourn, A.E., additional, Ikehara, K., additional, Irino, T., additional, Itaki, T., additional, Karasuda, A., additional, Kinsley, C.W., additional, Kubota, Y., additional, Lee, G.S., additional, Lee, K.E., additional, Lofi, J., additional, Lopes, C.I.C.D., additional, Peterson, L.C., additional, Saavedra-Pellitero, M., additional, Sagawa, T., additional, Singh, R.K., additional, Sugisaki, S., additional, Toucanne, S., additional, Wan, S., additional, Xuan, C., additional, Zheng, H., additional, and Ziegler, M., additional
- Published
- 2015
- Full Text
- View/download PDF
27. Shaping of the Present-Day Deep Biosphere at Chicxulub by the Impact Catastrophe That Ended the Cretaceous
- Author
-
Cockell, C.S., Schaefer, Bettina, Wuchter, Cornelia, Coolen, Marco, Grice, Kliti, Schnieders, L., Morgan, J.V., Gulick, S.P.S., Wittmann, A., Lofi, J., Christeson, G.L., Kring, D.A., Whalen, M.T., Bralower, T.J., Osinski, G.R., Claeys, P., Kaskes, P., de Graaff, S.J., Déhais, T., Goderis, S., Hernandez Becerra, N., Nixon, S., Cockell, C.S., Schaefer, Bettina, Wuchter, Cornelia, Coolen, Marco, Grice, Kliti, Schnieders, L., Morgan, J.V., Gulick, S.P.S., Wittmann, A., Lofi, J., Christeson, G.L., Kring, D.A., Whalen, M.T., Bralower, T.J., Osinski, G.R., Claeys, P., Kaskes, P., de Graaff, S.J., Déhais, T., Goderis, S., Hernandez Becerra, N., and Nixon, S.
- Abstract
We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.
- Published
- 2021
28. A steeply-inclined trajectory for the Chicxulub impact
- Author
-
Collins, G. S., Patel, N., Davison, T. M., Rae, A. S. P., Morgan, J. V., Gulick, S. P. S., Christeson, G. L., Chenot, E., Claeys, P., Cockell, C. S., Coolen, M. J. L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Lofi, J., Lowery, C. M., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A. E., Poelchau, M. H., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tikoo, S. M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M. T., Wittmann, A., Xiao, L., Yamaguchi, K. E., Artemieva, N., Bralower, T. J., Geology and Geochemistry, Department of Earth Science and Engineering [Imperial College London], Imperial College London, Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Science and Technology Facilities Council (STFC), and Natural Environment Research Council (NERC)
- Subjects
010504 meteorology & atmospheric sciences ,Science ,Impact angle ,General Physics and Astronomy ,010502 geochemistry & geophysics ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,Impact crater ,EMPLACEMENT ,DEFORMATION ,CRATER ,10. No inequality ,lcsh:Science ,0105 earth and related environmental sciences ,Multidisciplinary ,Science & Technology ,Plane (geometry) ,ORIGIN ,METEORITE ,General Chemistry ,ANGLE ,Multidisciplinary Sciences ,BOUNDARY ,SIZE ,Meteorite ,PEAK-RING FORMATION ,13. Climate action ,Asteroid ,[SDU]Sciences of the Universe [physics] ,ASYMMETRY ,Trajectory ,Science & Technology - Other Topics ,lcsh:Q ,Third-Party Scientists ,IODP-ICDP Expedition 364 Science Party ,Asteroids, comets and Kuiper belt ,Seismology ,Geology - Abstract
The environmental severity of large impacts on Earth is influenced by their impact trajectory. Impact direction and angle to the target plane affect the volume and depth of origin of vaporized target, as well as the trajectories of ejected material. The asteroid impact that formed the 66 Ma Chicxulub crater had a profound and catastrophic effect on Earth’s environment, but the impact trajectory is debated. Here we show that impact angle and direction can be diagnosed by asymmetries in the subsurface structure of the Chicxulub crater. Comparison of 3D numerical simulations of Chicxulub-scale impacts with geophysical observations suggests that the Chicxulub crater was formed by a steeply-inclined (45–60° to horizontal) impact from the northeast; several lines of evidence rule out a low angle (, The authors here present a 3D model that simulates the formation of the Chicxulub impact crater. Based on asymmetries in the subsurface structure of the Chicxulub crater, the authors diagnose impact angle and direction and suggest a steeply inclined (60° to horizontal) impact from the northeast.
- Published
- 2020
- Full Text
- View/download PDF
29. Offshore freshened groundwater in continental margins
- Author
-
Micallef, A., Person, M., Berndt, C., Bertoni, C., Cohen, D., Dugan, B., Evans, R., Haroon, A., Hensen, C., Jegen, M., Key, K., Kooi, H., Liebetrau, V., Lofi, J., Mailloux, B.J., Martin‐Nagle, R., Michael, H.A., Müller, Thomas, Schmidt, M., Schwalenberg, K., Trembath‐Reichert, E., Weymer, B., Zhang, Y., Thomas, A.T., Micallef, A., Person, M., Berndt, C., Bertoni, C., Cohen, D., Dugan, B., Evans, R., Haroon, A., Hensen, C., Jegen, M., Key, K., Kooi, H., Liebetrau, V., Lofi, J., Mailloux, B.J., Martin‐Nagle, R., Michael, H.A., Müller, Thomas, Schmidt, M., Schwalenberg, K., Trembath‐Reichert, E., Weymer, B., Zhang, Y., and Thomas, A.T.
- Abstract
First reported in the 1960s, offshore freshened groundwater (OFG) has now been documented in most continental margins around the world. In this review we compile a database documenting OFG occurrences and analyse it to establish the general characteristics and controlling factors. We also assess methods used to map and characterise OFG, identify major knowledge gaps and propose strategies to address them. OFG has a global volume of 1 million km3; it predominantly occurs within 55 km of the coast and down to a water depth of 100 m. OFG is mainly hosted within siliciclastic aquifers on passive margins and recharged by meteoric water during Pleistocene sea‐level lowstands. Key factors influencing OFG distribution are topography‐driven flow, salinisation via haline convection, permeability contrasts, and the continuity/connectivity of permeable and confining strata. Geochemical and stable isotope measurements of pore waters from boreholes have provided insights into OFG emplacement mechanisms, while recent advances in seismic reflection, electromagnetic surveys and mathematical models have improved our understanding of OFG geometry and controls. Key knowledge gaps, such as the extent and function of OFG, and the timing of their emplacement, can be addressed by the application of isotopic age tracers, joint inversion of electromagnetic and seismic reflection data, and development of three‐dimensional hydrological models. We show that such advances, combined with site‐specific modelling, are necessary to assess the potential use of OFG as an unconventional source of water and its role in sub‐seafloor geomicrobiology.
- Published
- 2020
30. Life and death in the Chicxulub impact crater: A record of the Paleocene-Eocene Thermal Maximum
- Author
-
Smith, V., Warny, S., Grice, Kliti, Schaefer, Bettina, Whalen, M.T., Vellekoop, J., Chenot, E., Gulick, S.P.S., Arenillas, I., Arz, J.A., Bauersachs, T., Bralower, T., Demory, F., Gattacceca, J., Jones, H., Lofi, J., Lowery, C.M., Morgan, J., Nuñez Otaño, N.B., O'Keefe, J.M.K., O'Malley, K., Rodríguez-Tovar, F.J., Schwark, Lorenz, Smith, V., Warny, S., Grice, Kliti, Schaefer, Bettina, Whalen, M.T., Vellekoop, J., Chenot, E., Gulick, S.P.S., Arenillas, I., Arz, J.A., Bauersachs, T., Bralower, T., Demory, F., Gattacceca, J., Jones, H., Lofi, J., Lowery, C.M., Morgan, J., Nuñez Otaño, N.B., O'Keefe, J.M.K., O'Malley, K., Rodríguez-Tovar, F.J., and Schwark, Lorenz
- Abstract
Thermal stress on the biosphere during the extreme warmth of the Paleocene-Eocene Thermal Maximum (PETM) was most severe at low latitudes, with sea surface temperatures at some localities exceeding the 35 C at which marine organisms experience heat stress. Relatively few equivalent terrestrial sections have been identified, and the response of land plants to this extreme heat is still poorly understood. Here, we present a new record of the PETM from the peak ring of the Chicxulub impact crater that has been identified based on nannofossil biostratigraphy, an acme of the dinoflagellate genus Apectodinium, and a negative carbon isotope excursion. Geochemical and microfossil proxies show that the PETM is marked by elevated TEXH 86-based sea surface temperatures (SSTs) averaging 37:8 C, an in- crease in terrestrial input and surface productivity, salinity stratification, and bottom water anoxia, with biomarkers for green and purple sulfur bacteria indicative of photic zone euxinia in the early part of the event. Pollen and plants spores in this core provide the first PETM floral assemblage described from Mexico, Central America, and the northern Caribbean. The source area was a diverse coastal shrubby tropical forest with a remarkably high abundance of fungal spores, indicating humid conditions. Thus, while seafloor anoxia devastated the benthic marine biota and dinoflagellate assemblages were heat-stressed, the terrestrial plant ecosystem thrived.
- Published
- 2020
31. Flexural-isostatic reconstruction of the Western Mediterranean vertical motions after the Messinian Salinity Crisis: implications for sea level and basin connectivity
- Author
-
Heida, Hanneke, García-Castellanos, Daniel, Jimenez-Munt, Ivone, Raad, Fadl, Maillard, Agnès, Lofi, J., Heida, Hanneke, García-Castellanos, Daniel, Jimenez-Munt, Ivone, Raad, Fadl, Maillard, Agnès, and Lofi, J.
- Abstract
The Messinian Salinity Crisis was a period of rapid and extreme environmental change in the Mediterranean occurring from 5.96 to 5.33 Ma, leading to deposition of a huge amount of evaporites in the deep basins and erosion on the margins. Erosional surfaces located deep below current sea level suggest a kilometric drop in sea level commonly associated with the deposition of massive halite deposits during the crisis. However, the timing and magnitude of this sea level drawdown are not well constrained in spite of its important implications for the conditions under which the different MSC sedimentary units were deposited and the connectivity of various subbasins during the crisis. A 2D (planform) flexural backstripping allows us to restore the Messinian topography in tectonically quiescent areas, constraining the isostatic subsidence due to the (post)Messinian sediment, and the potential effect of falling sea level during the crisis. In this way we restore the elevation of paleoshorelines and the original depth of erosional surfaces and other stratigraphic markers. We apply this method to the area spanning the Valencia Basin, Balearic Promontory and the Algero-Provençal Basin, to restore the Messinian Erosion Surfaces which formed subaerially during the drawdown to their original depth, constraining the minimum base level drop required to erode the margins at these locations. We reconstruct three key moments in the basin history: the pre-crisis basin, the end of halite deposition, and the end of the crisis. We consider multiple scenarios in terms of timing of sea level fall. Preliminary results indicate that over 1 km of sea level drop is required at the end of the Messinian, and over 2 km at the crisis acme to reproduce the observed location of the paleoshorelines, with only small sensitivity to crustal strength. This is in good agreement with estimates from previous backstripping investigations, and provides constraints on the progression of the MSC in the Western Me
- Published
- 2020
32. SCOPIX – digital processing of X-ray images for the enhancement of sedimentary structures in undisturbed core slabs
- Author
-
Lofi, J. and Weber, O.
- Published
- 2001
- Full Text
- View/download PDF
33. Petrophysics of Chicxulub Impact Crater's Peak Ring.
- Author
-
Le Ber, E., Loggia, D., Denchik, N., Lofi, J., Kring, D. A., Sardini, P., Siitari‐Kauppi, M., Pezard, P., and Olivier, G.
- Subjects
CRYSTALLINE rocks ,SEDIMENTARY rocks ,PETROPHYSICS ,PERMEABILITY measurement ,FLUID flow ,CLASTIC rocks ,METEORITES - Abstract
A new set of physical property measurements was undertaken on 29 peak‐ring samples from the IODP‐ICDP Expedition 364. Among the studied lithologies, the dominant one recovered in the peak ring consists of shocked granitoid rocks (19 samples). Porosity measurements with two independent methods (triple weight and 14C‐PMMA porosity mapping) concur and bring new observations on the intensity and distribution of fracturing and porosity in these shocked target rocks. Characterization of the porous network is taken a step further with two other independent methods (electrical and permeability measurements). Electrical properties such as the cementation exponent (1.59 < m < 1.87) and the formation factor (21 < F < 103) do not compare with other granites from the published literature; they point at a type of porosity closer to clastic sedimentary rocks than to crystalline rocks. Permeabilities of the granitoid rocks range from 0.1 to 7.1 mD under an effective pressure of ∼10 MPa. Unlike other fresh to deformed and altered granitoid rocks from the literature compared in this study, this permeability appears to be relatively insensitive to increasing stress (up to ∼40 MPa), with implications for the nature of the porous network, again, behaving more like cemented clastic rocks than fractured crystalline rocks. Other analyzed lithologies include suevite and impact melt rocks. Relatively low permeability (10−3 mD) measured in melt‐rich facies suggest that, at the matrix scale, these lithologies cutting through more permeable peak‐ring granitoid rocks may have been a barrier to fluid flow, with implications for hydrothermal systems. Plain Language Summary: Sixty‐six million years ago, a 10–15 km sized meteorite ended its trajectory on Earth. The resulting crater, Chicxulub, is still preserved to this day in Mexico. The impact had dramatic consequences on Earth's organisms. Drilled core samples from its peak ring help to better understand what are the physical mechanisms involved in such large impact events, on Earth and other planets. This study looks at how the rocks shocked during the impact have been affected, they consist principally of granites. Intact granites are crystalline rocks known to have low porosity (<2%), typically resulting from microscopic cracks. Granites recovered from the crater have higher porosities (∼10%) and are so densely cracked that they behave more like a sandstone than cracked crystalline rocks. This observation results from physical measurements, presented in this paper, that also suggested that fluid can flow relatively easily in these granites, with implications for hydrothermal systems and life in the aftermath of the impact. Key Points: Independant petrophysical measurements are used to caracterize the nature of the porosity in Chicxulub impact crater's peak ringShocked granites behave more like a cemented clastic rock than a fractured crystalline rockMatrix permeabilities of peak‐ring lithologies bring new insight on fluid flow in postimpact hydrothermal systems [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
34. CORE AND DOWNHOLE PETROPHYSICAL PROPERTIES OF THE ROCHECHOUART IMPACT ROCKS
- Author
-
Rochette, P., Demory, F, Cherait, O, Hervieu, L, Celerier, B, Lofi, J, Pezard, P, Lambert, P, Rochette, Rocks, Quesnel, Yoann, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
35. New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico
- Author
-
Timms, NE, Pearce, MA, Erickson, TM, Cavosie, AJ, Rae, ASP, Wheeler, J, Wittmann, A, Ferriere, L, Poelchau, MH, Tomioka, N, Collins, GS, Gulick, SPS, Rasmussen, C, Morgan, JV, Chenot, E, Christeson, GL, Claeys, P, Cockell, CS, Coolen, MJL, Gebhardt, C, Goto, K, Green, S, Jones, H, Kring, DA, Lofi, J, Lowery, CM, Ocampo-Torres, R, Perez-Cruz, L, Pickersgill, AE, Rebolledo-Vieyra, M, Riller, U, Sato, H, Smit, J, Tikoo, SM, Urrutia-Fucugauchi, J, Whalen, MT, Xiao, L, Yamaguchi, KE, Curtin University [Perth], Planning and Transport Research Centre (PATREC), Australian Resources Research Centre, Kensington, NASA Johnson Space Center (JSC), NASA, Department of Earth Science and Technology [Imperial College London], Imperial College London, University of Liverpool, Arizona State University [Tempe] (ASU), Natural History Museum [Vienna] (NHM), Albert-Ludwigs-Universität Freiburg, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Department of Earth Science and Engineering [Imperial College London], University of Texas at Austin [Austin], Géosciences Montpellier, Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Université de Montpellier (UM)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Earth and Ocean Sciences, LeRoy Eyring Center for Solid State Science, Department of Geology, University of Freiburg [Freiburg], DGS, Jackson School of Geosciences, Institute of Geophysics [Austin] (IG), Analytical, Environmental & Geo-Chemistry, Earth System Sciences, Chemistry, and Natural Environment Research Council (NERC)
- Subjects
Geochemistry & Geophysics ,PLASTIC-DEFORMATION ,010504 meteorology & atmospheric sciences ,EBSD ,Shock metamorphism ,Metamorphism ,Titanite ,U-PB ,Titanite, Shock metamorphism, Mechanical twinning, Dislocation slip system, Meteorite impact, EBSD ,Mechanical twinning ,Slip (materials science) ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Geochemistry and Petrology ,ELECTRON-BACKSCATTER DIFFRACTION ,HIGH-PRESSURE ,Meteorite impact ,Planar deformation features ,0402 Geochemistry ,[CHIM]Chemical Sciences ,Petrology ,ZIRCON ,0105 earth and related environmental sciences ,Science & Technology ,Energy ,Mineralogy ,Dislocation slip system ,Baddeleyite ,MONAZITE ,Geophysics ,0403 Geology ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Physical Sciences ,[SDE]Environmental Sciences ,PHASE-TRANSITION ,REIDITE ,engineering ,VREDEFORT ,Deformation bands ,ORIENTATION ,Geology ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy ,Zircon - Abstract
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Accessory mineral geochronometers such as apatite, baddeleyite, monazite, xenotime and zircon are increasingly being recognized for their ability to preserve diagnostic microstructural evidence of hypervelocity-impact processes. To date, little is known about the response of titanite to shock metamorphism, even though it is a widespread accessory phase and a U–Pb geochronometer. Here we report two new mechanical twin modes in titanite within shocked granitoid from the Chicxulub impact structure, Mexico. Titanite grains in the newly acquired core from the International Ocean Discovery Program Hole M0077A preserve multiple sets of polysynthetic twins, most commonly with composition planes (K 1 ) = ~ { 1 ¯ 11 } , and shear direction (η 1 ) = < 110 > , and less commonly with the mode K 1 = {130}, η 1 = ~ . In some grains, {130} deformation bands have formed concurrently with the deformation twins, indicating dislocation slip with Burgers vector b = < 341 > can be active during impact metamorphism. Titanite twins in the modes described here have not been reported from endogenically deformed rocks; we, therefore, propose this newly identified twin form as a result of shock deformation. Formation conditions of the twins have not been experimentally calibrated, and are here empirically constrained by the presence of planar deformation features in quartz (12 ± 5 and ~ 17 ± 5 GPa) and the absence of shock twins in zircon (< 20 GPa). While the lower threshold of titanite twin formation remains poorly constrained, identification of these twins highlight the utility of titanite as a shock indicator over the pressure range between 12 and 17 GPa. Given the challenges to find diagnostic indicators of shock metamorphism to identify both ancient and recent impact evidence on Earth, microstructural analysis of titanite is here demonstrated to provide a new tool for recognizing impact deformation in rocks where other impact evidence may be erased, altered, or did not manifest due to generally low (< 20 GPa) shock pressure.
- Published
- 2019
- Full Text
- View/download PDF
36. The Rochechouart 2017-Cores Rescaled: Major Features
- Author
-
Lambert, P., Alwmark, C., Baratoux, D., Bouley, S., Brack, A., Bruneton, P., Buchner, E., Dence, M. R., Courtin Nomade, A., Duhamel Achin, I., Floch, J. P., French, B. M., Fudge, C., Gattacceca, J., Gibson, R. L., Goderis, S., Grieve, R. A. F., Hauser, N., Hodges, K. V., Hörz, F., Humayun, M., Jourdan, F., Kelley, S. P., Kenkmann, T., Kring, D. A., Langenhorst, F., Lebreton, J. P., Lee, M. R., Lindgren, P., Lofi, J., Lorand, J. P., Luais, B., Masaitis, V., Meunier, A., Moore, C. B., Ormö, J., Osinski, G. R., Petit, S., Pezard, P. R., Pölchau, M., Pohl, J., Quesnel, Y., Jamboz, C., Reeves, H., Reimold, U. W., Rochette, P., Sapers, H. M., Schmieder, M., Schultz, P. H., Susanne Petra Schwenzer, Sharp, T., Schoemaker, C. S., Simpson, S. L., Stöffler, D., Sturkell, E., Trumel, H., Walton, E., Westall, F., Wittmann, A., Wünnemann, K., Ecosystèmes aquatiques et changements globaux (UR EABX), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Centre International de Recherches et de Restitution sur les Impacts et sur Rochechouart (CIRIR), Department of Geology [Lund], Lund University [Lund], Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Département Géosciences (AREVA-BU Mines), Groupe AREVA, Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel (VUB), Geological Survey of Canada [Ottawa] (GSC Central & Northern Canada), Geological Survey of Canada - Office (GSC), Natural Resources Canada (NRCan)-Natural Resources Canada (NRCan), Université de Limoges (UNILIM), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Smithsonian Institution, Arizona State University [Tempe] (ASU), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of the Witwatersrand [Johannesburg] (WITS), University of Western Ontario (UWO), University of Brasilia [Brazil] (UnB), NASA Johnson Space Center (JSC), NASA, Florida State University [Tallahassee] (FSU), School of Earth and Planetary Sciences [Perth], Curtin University [Perth], Planning and Transport Research Centre (PATREC)-Planning and Transport Research Centre (PATREC), The Open University [Milton Keynes] (OU), Department of Geosciences - Earth Sciences [Fribourg], University of Fribourg, Lunar and Planetary Institute [Houston] (LPI), Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), School of Geographical and Earth Sciences [Univ Glasgow], University of Glasgow, Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), A. P. Karpinsky Russian Geological Research Institute (VSEGEI), Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Center for Meteorite Studies [Tempe], Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Ludwig-Maximilians-Universität München (LMU), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Métallogénie - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Laboratoire Pierre Süe (LPS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Brown University, Arizona Geological Survey, CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Museum für Naturkunde [Berlin], Department of Earth Sciences [Gothenburg], University of Gothenburg (GU), CEA Le Ripault (CEA Le Ripault), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), University of Alberta, LUAIS, Béatrice, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Vrije Universiteit [Brussels] (VUB), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa, Friedrich Schiller University Jena [Jena, Germany], Laboratoire de physique et chimie de l'environnement et de l'Espace (LPC2E), UMR 7328 CNRS/Université d'Orléans, Université d'Orléans (UO), School of Geographical and Earth Sciences [Glasgow], Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), CEA-CNRS UMR 9956, CEA Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CIRIR, Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Université de Fribourg = University of Fribourg (UNIFR)
- Subjects
[SDU] Sciences of the Universe [physics] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
37. Topography of the Balearic Promontory during the Messinian Salinity Crisis: Isostatic response to desiccation and evaporite deposition
- Author
-
Heida, Hanneke, García-Castellanos, Daniel, Jimenez-Munt, Ivone, Maillard, Agnès, Lofi, J., and Raad, Fadl
- Subjects
Mediterranean Sea ,Geology ,Messinian Salinity Crisis - Abstract
Topo-Europe Conference in Granada, Spain, 5–10 May 2019, The Messinian Salinity Crisis was a period of rapid and extreme environmental changes in the Mediterranean occurring from 5.96 to 5.33 Ma1¿, leading to deposition of a huge amount of evaporites in the deep basins and erosion on the margins. Erosional surfaces located deep below current sea level suggest a kilometric drop in base level commonly associated with the deposition of massive halite deposits at the `acme¿ of the crisis. However, the timing and magnitude of this sea level drawdown are not well constrained2¿, while this has important implications for the conditions under which the different MSC sedimentary units were deposited and the connectivity of various sub-basins during the crisis. Previous studies yield a sea level drop ranging from 400 m (Martínez et al. 2004) to 1500 m (Urgeles et al., 2010) for the Western Mediterranean, with values up to 2250 m reported for the Eastern Mediterranean. A pseudo 3-D (planform) flexural backstripping approach allows us to restore the Messinian topography in tectonically quiescent areas, estimating the isostatic subsidence due to the Plioquaternary sediment and restoring the elevation of paleoshorelines and the original depth of erosional surfaces and other stratigraphic markers.3¿ Here, we apply this method to the area spanning the Valencia Basin, Balearic Promontory and the Algero-Provençal Basin, to restore the Messinian Erosion Surface which formed above base level during the drawdown to its original elevation, constraining the minimum required base level drop for subaerial erosion at this elevation. Our results can be compared to previously obtained paleogeographies and checked for consistency with Messinian mammal migration onto the Balearic Islands (Mas et al., 2018).
- Published
- 2019
38. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
- Author
-
Christeson, G.L., Gulick, S.P.S., Morgan, J.V., Gebhardt, C., Kring, D.A., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A.S.P., Rebolledo-Vieyra, M., Riller, U., Schmitt, D.R., Wittmann, A., Bralower, T.J., Chenot, E., Claeys, P., Cockell, C.S., Coolen, M.J.L., Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C.M., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A.E., Rasmussen, C., Sato, H., Smit, J., Tikoo, S.M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M.T., Xiao, L., and Yamaguchi, K.E.
- Published
- 2018
- Full Text
- View/download PDF
39. ROCHECHOUART 2017-DRILLING CAMPAIGN: FIRST RESULTS
- Author
-
Lambert, P., Alwmark, C., Baratoux, D., Bouley, S., Brack, A., Bruneton, P., Buchner, E., Claeys, P., Dence, M.R., Courtin Nomade, A., Duhamel Achin, I., Floch, J.P., French, B.M., Fudge, C., Gattacceca, J., Gibson, R.L., Goderis, S., Grieve, R.A.F., Hodges, K.V., Hörz, F., Humayun, M., Jourdan, F., Kelley, S.P., Kenkmann, T., Kring, D.A., Langenhorst, F., Lee, M.R., Lindgren, P., Lofi, J., Lorand, J.P., Luais, B., Masaitis, V., Meunier, A., Moore, C.B., Ormö, J., Osinski, G.R., Petit, S., Pezard, P.A., Poelchau, M., Pohl, J., Quesnel, Y., Ramboz, C., Reeves, H., Rochette, P., Sapers, H.M., Schmieder, M., Schultz, P.H., Schwenzer, S.P., Sharp, T., Shoemaker, C.S., Simpson, S.L., Stöffler, D., Sturkell, E., Trumel, H., Walton, E., Westall, F., Wittmann, A., Wünnemann, K., Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; Characteristics and initial description of the 18 holes and 515m of cores recovered (cumulative length) at Rochechouart.
- Published
- 2018
40. The Forgotten Rivers of the Late Miocene Levant Basin: Implications for Sediment Provenance and Trap Timing
- Author
-
Bertoni, C., primary, Madof, A., additional, Lofi, J., additional, Kirkham, C., additional, Cartwright, J., additional, Rodriguez, K., additional, and Hodgson, N., additional
- Published
- 2019
- Full Text
- View/download PDF
41. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346
- Author
-
Tada, R, Irino, T, Ikehara, K, Karasuda, A, Sugisaki, S, Xuan, C, Sagawa, T, Itaki, T, Kubota, Y, Lu, S, Seki, A, Murray, RW, Alvarez-Zarikian, C, Anderson, WT, Bassetti, M-A, Brace, BJ, Clemens, SC, da Costa Gurgel, MH, Dickens, GR, Dunlea, AG, Gallagher, SJ, Giosan, L, Henderson, ACG, Holbourn, AE, Kinsley, CW, Lee, GS, Lee, KE, Lofi, J, Lopes, CICD, Saavedra-Pellitero, M, Peterson, LC, Singh, RK, Toucanne, S, Wan, S, Zheng, H, Ziegler, M, Tada, R, Irino, T, Ikehara, K, Karasuda, A, Sugisaki, S, Xuan, C, Sagawa, T, Itaki, T, Kubota, Y, Lu, S, Seki, A, Murray, RW, Alvarez-Zarikian, C, Anderson, WT, Bassetti, M-A, Brace, BJ, Clemens, SC, da Costa Gurgel, MH, Dickens, GR, Dunlea, AG, Gallagher, SJ, Giosan, L, Henderson, ACG, Holbourn, AE, Kinsley, CW, Lee, GS, Lee, KE, Lofi, J, Lopes, CICD, Saavedra-Pellitero, M, Peterson, LC, Singh, RK, Toucanne, S, Wan, S, Zheng, H, and Ziegler, M
- Published
- 2018
42. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
- Author
-
Christeson, G. L., Gulick, S. P.S., Morgan, J. V., Gebhardt, C., Kring, D. A., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A. S.P., Rebolledo-Vieyra, M., Riller, U., Schmitt, D. R., Wittmann, A., Bralower, T. J., Chenot, E., Claeys, P., Cockell, C. S., Coolen, M. J.L., Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C. M., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A. E., Rasmussen, C., Sato, H., Smit, J., Tikoo, S. M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M. T., Xiao, L., Yamaguchi, K. E., Christeson, G. L., Gulick, S. P.S., Morgan, J. V., Gebhardt, C., Kring, D. A., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A. S.P., Rebolledo-Vieyra, M., Riller, U., Schmitt, D. R., Wittmann, A., Bralower, T. J., Chenot, E., Claeys, P., Cockell, C. S., Coolen, M. J.L., Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C. M., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A. E., Rasmussen, C., Sato, H., Smit, J., Tikoo, S. M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M. T., Xiao, L., and Yamaguchi, K. E.
- Abstract
Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the top of the peak ring but 200 m in the c
- Published
- 2018
- Full Text
- View/download PDF
43. Erratum to: Rock fluidization during peak-ring formation of large impact structures (Nature, (2018), 562, 7728, (511-518), 10.1038/s41586-018-0607-z)
- Author
-
Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Jan, S., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., Bralower, T., Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Jan, S., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., and Bralower, T.
- Abstract
In this Article, the middle initial of author Kosei E. Yamaguchi (of the IODP–ICDP Expedition 364 Science Party) was missing and his affiliation is to Toho University (not Tohu University). These errors have been corrected online.
- Published
- 2018
44. Rock fluidization during peak-ring formation of large impact structures
- Author
-
Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Smit, J., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., Bralower, T., Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Smit, J., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., and Bralower, T.
- Abstract
Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequently regained sufficient strength to build and sustain topographic rings. The mechanisms of rock deformation that accomplish such extreme change in mechanical behaviour during cratering are largely unknown and have been debated for decades. Recent drilling of the approximately 200-km-diameter Chicxulub impact structure in Mexico has produced a record of brittle and viscous deformation within its peak-ring rocks. Here we show how catastrophic rock weakening upon impact is followed by an increase in rock strength that culminated in the formation of the peak ring during cratering. The observations point to quasi-continuous rock flow and hence acoustic fluidization as the dominant physical process controlling initial cratering, followed by increasingly localized faulting.
- Published
- 2018
45. Drilling-induced and logging-related features illustrated from IODP-ICDP Expedition 364 downhole logs and borehole imaging tools
- Author
-
Lofi, J., Smith, D., Delahunty, C., Le Ber, E., Brun, L., Henry, G., Paris, J., Tikoo, S., Zylberman, W., Pezard, P., Célérier, B., Schmitt, D., Nixon, C., Gulick, S., Morgan, J., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Green, S., Jones, H., Kring, D., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Xiao, L., Yamaguchi, K., Bralower, T., Lofi, J., Smith, D., Delahunty, C., Le Ber, E., Brun, L., Henry, G., Paris, J., Tikoo, S., Zylberman, W., Pezard, P., Célérier, B., Schmitt, D., Nixon, C., Gulick, S., Morgan, J., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Green, S., Jones, H., Kring, D., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Xiao, L., Yamaguchi, K., and Bralower, T.
- Abstract
Expedition 364 was a joint IODP and ICDP mission-specific platform (MSP) expedition to explore the Chicxulub impact crater buried below the surface of the Yucatán continental shelf seafloor. In April and May 2016, this expedition drilled a single borehole at Site M0077 into the crater's peak ring. Excellent quality cores were recovered from ~ 505 to ~1335m below seafloor (m b.s.f.), and high-resolution open hole logs were acquired between the surface and total drill depth. Downhole logs are used to image the borehole wall, measure the physical properties of rocks that surround the borehole, and assess borehole quality during drilling and coring operations. When making geological interpretations of downhole logs, it is essential to be able to distinguish between features that are geological and those that are operation-related. During Expedition 364 some drilling-induced and logging-related features were observed and include the following: effects caused by the presence of casing and metal debris in the hole, logging-tool eccentering, drilling-induced corkscrew shape of the hole, possible re-magnetization of low-coercivity grains within sedimentary rocks, markings on the borehole wall, and drilling-induced changes in the borehole diameter and trajectory.
- Published
- 2018
46. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction
- Author
-
Lowery, C., Bralower, T., Owens, J., Rodríguez-Tovar, F., Jones, H., Smit, J., Whalen, M., Claeys, P., Farley, K., Gulick, S., Morgan, J., Green, S., Chenot, E., Christeson, G., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Kring, D., Lofi, J., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Vellekoop, J., Wittmann, A., Xiao, L., Yamaguchi, K., Zylberman, W., Lowery, C., Bralower, T., Owens, J., Rodríguez-Tovar, F., Jones, H., Smit, J., Whalen, M., Claeys, P., Farley, K., Gulick, S., Morgan, J., Green, S., Chenot, E., Christeson, G., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Kring, D., Lofi, J., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Vellekoop, J., Wittmann, A., Xiao, L., Yamaguchi, K., and Zylberman, W.
- Abstract
The Cretaceous/Palaeogene mass extinction eradicated 76% of species on Earth1,2. It was caused by the impact of an asteroid3,4on the Yucatán carbonate platform in the southern Gulf of Mexico 66 million years ago5, forming the Chicxulub impact crater6,7. After the mass extinction, the recovery of the global marine ecosystem - measured as primary productivity - was geographically heterogeneous8; export production in the Gulf of Mexico and North Atlantic-western Tethys was slower than in most other regions8-11, taking 300 thousand years (kyr) to return to levels similar to those of the Late Cretaceous period. Delayed recovery of marine productivity closer to the crater implies an impact-related environmental control, such as toxic metal poisoning12, on recovery times. If no such geographic pattern exists, the best explanation for the observed heterogeneity is a combination of ecological factors - trophic interactions13, species incumbency and competitive exclusion by opportunists14- and 'chance'8,15,16. The question of whether the post-impact recovery of marine productivity was delayed closer to the crater has a bearing on the predictability of future patterns of recovery in anthropogenically perturbed ecosystems. If there is a relationship between the distance from the impact and the recovery of marine productivity, we would expect recovery rates to be slowest in the crater itself. Here we present a record of foraminifera, calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200 kyr of the Palaeocene. We show that life reappeared in the basin just years after the impact and a high-productivity ecosystem was established within 30 kyr, which indicates that proximity to the impact did not delay recovery and that there was therefore no impact-related environmental control on recovery. Ecological processes probably controlled the recovery of productivity after the Cretaceous/Palaeogene mass
- Published
- 2018
47. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
- Author
-
Christeson, G., Gulick, S., Morgan, J., Gebhardt, C., Kring, D., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A., Rebolledo-Vieyra, M., Riller, U., Schmitt, D., Wittmann, A., Bralower, T., Chenot, E., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Sato, H., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Xiao, L., Yamaguchi, K., Christeson, G., Gulick, S., Morgan, J., Gebhardt, C., Kring, D., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A., Rebolledo-Vieyra, M., Riller, U., Schmitt, D., Wittmann, A., Bralower, T., Chenot, E., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Sato, H., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Xiao, L., and Yamaguchi, K.
- Abstract
© 2018 Elsevier B.V. Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the top of the peak ring but 200 m in the central basin, s
- Published
- 2018
48. Quantifying the Release of Climate‐Active Gases by Large Meteorite Impacts With a Case Study of Chicxulub
- Author
-
Artemieva , Natalia, Morgan , Joanna, Gulick , S.P.S., Chenot , E., Christeson , G.L., Claeys , P., Cockell , C.S., Coolen , M.J.L., Ferrière , L., Gebhardt , C., Goto , K., Green , S., Jones , H., Kring , D.A., Lofi , J., Lowery , C.M., Ocampo-Torres , R., Perez-Cruz , L., Pickersgill , A.E., Poelchau , M., Rae , A.S.P., Rasmussen , C., Rebolledo-Vieyra , M., Riller , U., Sato , H., Smit , J., Tikoo , S.M., Tomioka , N., Urrutia-Fucugauchi , J., Whalen , M.T., Wittmann , A., Xiao , L., Yamaguchi , K.E., Zylberman , W., Collins , G.S., Bralower , T.J., Biogéosciences [Dijon] ( BGS ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Géosciences Montpellier, Université des Antilles et de la Guyane ( UAG ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de chimie et procédés pour l'énergie, l'environnement et la santé ( ICPEES ), Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ) -Matériaux et nanosciences d'Alsace, Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Centre européen de recherche et d'enseignement de géosciences de l'environnement ( CEREGE ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Aix Marseille Université ( AMU ) -Collège de France ( CdF ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Funding from the International Ocean Discovery Program (IODP), the International Continental scientific Drilling Project (ICDP), NASA grant 15-EXO15_2-0054 and NERC grant NE/P005217/1., Natural Environment Research Council (NERC), The Leverhulme Trust, Biogéosciences [UMR 6282] [Dijon] (BGS), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Earth science ,Potentially hazardous object ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Sediment ,[ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Shock (mechanics) ,Water depth ,Geophysics ,Meteorite ,Volume (thermodynamics) ,13. Climate action ,Meteorology & Atmospheric Sciences ,General Earth and Planetary Sciences ,Sedimentary rock ,Porosity ,Geology ,0105 earth and related environmental sciences - Abstract
9 pages; International audience; Potentially hazardous asteroids and comets have hit Earth throughout its history, with catastrophic consequences in the case of the Chicxulub impact. Here we reexamine one of the mechanisms that allow an impact to have a global effect—the release of climate-active gases from sedimentary rocks. We use the SOVA hydrocode and model ejected materials for a sufficient time after impact to quantify the volume of gases that reach high enough altitudes (> 25 km) to have global consequences. We vary impact angle, sediment thickness and porosity, water depth, and shock pressure for devolatilization and present the results in a dimensionless form so that the released gases can be estimated for any impact into a sedimentary target. Using new constraints on the Chicxulub impact angle and target composition, we estimate that 325 ± 130 Gt of sulfur and 425 ± 160 Gt CO2 were ejected and produced severe changes to the global climate.
- Published
- 2017
- Full Text
- View/download PDF
49. The >DREAM> IODP project to drill the Mediterranean Salt Giant on the Balearic Promontory
- Author
-
Lofi, J., Camerienghi, A., Aloisi, G., Maillard, Agnès, García-Castellanos, Daniel, Huebscher, C., and Kuroda, J.
- Abstract
Salt giants preserving kilometer-thick evaporite layers are the sedimentary expression of extreme environmental events of global relevance. Despite their global occurrence and general importance on Earth, there is currently no complete stratigraphic record through an un-deformed salt giant of marine origin. Similarly, there is a significant lack of knowledge about the factors controlling salt giants deposition, their early evolution, the impact they exert on the isostatic response of continental margins and on sub-salt formations, and the unprecedented deep biosphere they may harbor. The Mediterranean Messinian salt giant, which formed 5.5 Myrs ago, is one of the youngest salt giant on Earth and is currently lying below the Plio-Quaternary cover in a relatively un-deformed state close to its original depositional configuration. This salt giant is thus accessible by drilling and forms an ideal case study that could be used as a reference for older salt giants. However, since its discovery in 1970 during the DSDP Leg XIII, and despite 40 years or multi-disciplinary researches, this salt giant is still not fully understood and remains one of the longest-living controversies in Earth Science. In this context, the IODP DREAM project aims at exploring the Mediterranean salt giant by drilling with the JOIDES Resolution a transect of 4 sites on the southern margin of the Balearic promontory (Western Mediterranean). We identified this area as likely the only place in the Mediterranean where we could implement a shallow-to-deep transect of non-riser drilling sites. Due to the geological history and pre-structuration of the Promontory, MSC deposits are found preserved in a series of sedimentary basins lying at different water depths between the present-day coastline and the deep central salt basins. DREAM thus offers a unique opportunity to sample several hundred of meters of material forming the Mediterranean salt giant in varied water depths. This unique sedimentary record should allow testing 1) the contradictory emplacement models that explain its genesis and 2) the presence of halophilic micro-organisms it may host/feed.
- Published
- 2017
50. IODP Expedition 339 in the Gulf of Cadiz and off West Iberia: decoding the environmental significance of the Mediterranean outflow water and its global influence
- Author
-
Hernández-Molina, F.J., Stow, D.A.V., Alvarez-Zarikian, C., Acton, G., Bahr, A., Balestra, B., Ducassou, E., Flood, R., Flores, J.-A., Furota, S., Grunert, P., Hodell, D., Jimenez-Espejo, F., Kim, J.K., Krissek, L., Kuroda, J., Li, B., Llave, E., Lofi, J., Lourens, L., Miller, M., Nanayama, F., Nishida, N., Richter, C., Roque, C., Pereira, H., Sanchez Goñi, M.F., Sierro, F.J., Singh, A.D., Sloss, C., Takashimizu, Y., Tzanova, A., Voelker, A., Williams, T., Xuan, C., Stratigraphy & paleontology, and Stratigraphy and paleontology
- Subjects
Shore ,geography ,geography.geographical_feature_category ,Mechanical Engineering ,lcsh:QE1-996.5 ,Energy Engineering and Power Technology ,Contourite ,Unconformity ,Sedimentary depositional environment ,lcsh:Geology ,Tectonics ,Paleontology ,Oceanography ,Sedimentary rock ,Quaternary ,Sediment transport ,Geology - Abstract
IODP Expedition 339 drilled five sites in the Gulf of Cadiz and two off the west Iberian margin (November 2011 to January 2012), and recovered 5.5 km of sediment cores with an average recovery of 86.4%. The Gulf of Cadiz was targeted for drilling as a key location for the investigation of Mediterranean outflow water (MOW) through the Gibraltar Gateway and its influence on global circulation and climate. It is also a prime area for understanding the effects of tectonic activity on evolution of the Gibraltar Gateway and on margin sedimentation. We penetrated into the Miocene at two different sites and established a strong signal of MOW in the sedimentary record of the Gulf of Cadiz, following the opening of the Gibraltar Gateway. Preliminary results show the initiation of contourite deposition at 4.2–4.5 Ma, although subsequent research will establish whether this dates the onset of MOW. The Pliocene succession, penetrated at four sites, shows low bottom current activity linked with a weak MOW. Significant widespread unconformities, present in all sites but with hiatuses of variable duration, are interpreted as a signal of intensified MOW, coupled with flow confinement. The Quaternary succession shows a much more pronounced phase of contourite drift development, with two periods of MOW intensification separated by a widespread unconformity. Following this, the final phase of drift evolution established the contourite depositional system (CDS) architecture we see today. There is a significant climate control on this evolution of MOW and bottom-current activity. However, from the closure of the Atlantic–Mediterranean gateways in Spain and Morocco just over 6 Ma and the opening of the Gibraltar Gateway at 5.3 Ma, there has been an even stronger tectonic control on margin development, downslope sediment transport and contourite drift evolution. The Gulf of Cadiz is the world's premier contourite laboratory and thus presents an ideal testing ground for the contourite paradigm. Further study of these contourites will allow us to resolve outstanding issues related to depositional processes, drift budgets, and recognition of fossil contourites in the ancient record on shore. The expedition also verified an enormous quantity and extensive distribution of contourite sands that are clean and well sorted. These represent a relatively untapped and important exploration target for potential oil and gas reservoirs.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.