10 results on '"Loiselle H"'
Search Results
2. Monoallelic pathogenic variants in LEPR do not cause obesity.
- Author
-
Delplanque J, Le Collen L, Loiselle H, Leloire A, Toussaint B, Vaillant E, Charpentier G, Franc S, Balkau B, Marre M, Henriques E, Buse Falay E, Derhourhi M, Froguel P, and Bonnefond A
- Subjects
- Adult, Female, Humans, Male, Middle Aged, Alleles, Body Mass Index, Heterozygote, Receptor, Melanocortin, Type 4 genetics, Obesity genetics, Receptors, Leptin genetics
- Abstract
Individuals with obesity caused by biallelic pathogenic LEPR (leptin receptor) variants can benefit from setmelanotide, the novel MC4R agonist. An ongoing phase 3 clinical trial (NCT05093634) includes individuals with obesity who carry a heterozygous LEPR variant, although the obesogenic impact of these variants remains incompletely evaluated. The aim of this study was to functionally assess heterozygous variants in LEPR and to evaluate their effect on obesity. We sequenced LEPR in ∼10,000 participants from the French RaDiO study. We found 86 rare heterozygous variants. Each identified variant was then investigated in vitro using luciferase and western blot assays. Using the criteria of the American College of Medical Genetics and Genomics (ACMG), including the strong criterion related to functional assays, we found 12 pathogenic LEPR variants. Most heterozygotes did not present with obesity, and we found no association between these pathogenic variants and body mass index (BMI). This lack of association between pathogenic LEPR variants and obesity risk or BMI was confirmed using exome data from 200,000 individuals in the UK Biobank. In the literature, among 55 reported heterozygotes for of a rare pathogenic LEPR variant, only 27% had obesity. In conclusion, monoallelic pathogenic LEPR variants were functionally tested, and they do not elevate the risk of obesity or BMI levels. This raises questions about the use of setmelanotide, a costly drug with potential side effects, based solely on the presence of a heterozygous LEPR variant., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Functional genetics reveals the contribution of delta opioid receptor to type 2 diabetes and beta-cell function.
- Author
-
Meulebrouck S, Merrheim J, Queniat G, Bourouh C, Derhourhi M, Boissel M, Yi X, Badreddine A, Boutry R, Leloire A, Toussaint B, Amanzougarene S, Vaillant E, Durand E, Loiselle H, Huyvaert M, Dechaume A, Scherrer V, Marchetti P, Balkau B, Charpentier G, Franc S, Marre M, Roussel R, Scharfmann R, Cnop M, Canouil M, Baron M, Froguel P, and Bonnefond A
- Subjects
- Humans, Male, Female, Middle Aged, Insulin metabolism, Insulin Secretion drug effects, Insulin Secretion genetics, Adult, Receptors, Opioid, delta metabolism, Receptors, Opioid, delta genetics, Diabetes Mellitus, Type 2 genetics, Diabetes Mellitus, Type 2 metabolism, Insulin-Secreting Cells metabolism
- Abstract
Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of OPRD1 and in vitro analysis reveal that loss-of-function variants are associated with higher adiposity and lower hyperglycemia risk, whereas gain-of-function variants are associated with lower adiposity and higher type 2 diabetes risk. These findings align with studies of opium addicts. OPRD1 is expressed in human islets and beta cells, with decreased expression under type 2 diabetes conditions. DOP inhibition by an antagonist enhances insulin secretion from human beta cells and islets. RNA-sequencing identifies pathways regulated by DOP antagonism, including nerve growth factor, circadian clock, and nuclear receptor pathways. Our study highlights DOP as a key player between opioids and metabolic homeostasis, suggesting its potential as a therapeutic target for type 2 diabetes., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Pathogenic, Total Loss-of-Function DYRK1B Variants Cause Monogenic Obesity Associated With Type 2 Diabetes.
- Author
-
Folon L, Baron M, Scherrer V, Toussaint B, Vaillant E, Loiselle H, Dechaume A, De Pooter F, Boutry R, Boissel M, Diallo A, Ning L, Balkau B, Charpentier G, Franc S, Marre M, Derhourhi M, Froguel P, and Bonnefond A
- Subjects
- Humans, Case-Control Studies, Obesity complications, Obesity genetics, Phenotype, Glucose, Diabetes Mellitus, Type 2 genetics
- Abstract
Objective: Rare variants in DYRK1B have been described in some patients with central obesity, type 2 diabetes, and early-onset coronary disease. Owing to the limited number of conducted studies, the broader impact of DYRK1B variants on a larger scale has yet to be investigated., Research Design and Methods: DYRK1B was sequenced in 9,353 participants from a case-control study for obesity and type 2 diabetes. Each DYRK1B variant was functionally assessed in vitro. Variant pathogenicity was determined using criteria from the American College of Medical Genetics and Genomics (ACMG). The effect of pathogenic or likely pathogenic (P/LP) variants on metabolic traits was assessed using adjusted mixed-effects score tests., Results: Sixty-five rare, heterozygous DYRK1B variants were identified and were not associated with obesity or type 2 diabetes. Following functional analyses, 20 P/LP variants were pinpointed, including 6 variants that exhibited a fully inhibitory effect (P/LP-null) on DYRK1B activity. P/LP and P/LP-null DYRK1B variants were associated with increased BMI and obesity risk; however, the impact was notably more pronounced for the P/LP-null variants (effect of 8.0 ± 3.2 and odds ratio of 7.9 [95% CI 1.2-155]). Furthermore, P/LP-null variants were associated with higher fasting glucose and type 2 diabetes risk (effect of 2.9 ± 1.0 and odds ratio of 4.8 [95% CI 0.85-37]), while P/LP variants had no effect on glucose homeostasis., Conclusions: P/LP, total loss-of-function DYRK1B variants cause monogenic obesity associated with type 2 diabetes. This study underscores the significance of conducting functional assessments in order to accurately ascertain the tangible effects of P/LP DYRK1B variants., (© 2024 by the American Diabetes Association.)
- Published
- 2024
- Full Text
- View/download PDF
5. Pathogenic monoallelic variants in GLIS3 increase type 2 diabetes risk and identify a subgroup of patients sensitive to sulfonylureas.
- Author
-
Meulebrouck S, Scherrer V, Boutry R, Toussaint B, Vaillant E, Dechaume A, Loiselle H, Balkau B, Charpentier G, Franc S, Marre M, Baron M, Vaxillaire M, Derhourhi M, Boissel M, Froguel P, and Bonnefond A
- Subjects
- Mice, Animals, Infant, Newborn, Humans, Transcription Factors genetics, Transcription Factors metabolism, Gene Expression Regulation, Mutation, DNA-Binding Proteins metabolism, Repressor Proteins metabolism, Trans-Activators metabolism, Diabetes Mellitus, Type 2 drug therapy, Diabetes Mellitus, Type 2 genetics, Insulin-Secreting Cells metabolism
- Abstract
Aims/hypothesis: GLIS3 encodes a transcription factor involved in pancreatic beta cell development and function. Rare pathogenic, bi-allelic mutations in GLIS3 cause syndromic neonatal diabetes whereas frequent SNPs at this locus associate with common type 2 diabetes risk. Because rare, functional variants located in other susceptibility genes for type 2 diabetes have already been shown to strongly increase individual risk for common type 2 diabetes, we aimed to investigate the contribution of rare pathogenic GLIS3 variants to type 2 diabetes., Methods: GLIS3 was sequenced in 5471 individuals from the Rare Variants Involved in Diabetes and Obesity (RaDiO) study. Variant pathogenicity was assessed following the criteria established by the American College of Medical Genetics and Genomics (ACMG). To address the pathogenic strong criterion number 3 (PS3), we conducted functional investigations of these variants using luciferase assays, focusing on capacity of GLIS family zinc finger 3 (GLIS3) to bind to and activate the INS promoter. The association between rare pathogenic or likely pathogenic (P/LP) variants and type 2 diabetes risk (and other metabolic traits) was then evaluated. A meta-analysis combining association results from RaDiO, the 52K study (43,125 individuals) and the TOPMed study (44,083 individuals) was finally performed., Results: Through targeted resequencing of GLIS3, we identified 105 rare variants that were carried by 395 participants from RaDiO. Among them, 49 variants decreased the activation of the INS promoter. Following ACMG criteria, 18 rare variants were classified as P/LP, showing an enrichment in the last two exons compared with the remaining exons (p<5×10
-6 ; OR>3.5). The burden of these P/LP variants was strongly higher in individuals with type 2 diabetes (p=3.0×10-3 ; OR 3.9 [95% CI 1.4, 12]), whereas adiposity, age at type 2 diabetes diagnosis and cholesterol levels were similar between variant carriers and non-carriers with type 2 diabetes. Interestingly, all carriers with type 2 diabetes were sensitive to oral sulfonylureas. A total of 7 P/LP variants were identified in both 52K and TOPMed studies. The meta-analysis of association studies obtained from RaDiO, 52K and TOPMed showed an enrichment of P/LP GLIS3 variants in individuals with type 2 diabetes (p=5.6×10-5 ; OR 2.1 [95% CI 1.4, 2.9])., Conclusions/interpretation: Rare P/LP GLIS3 variants do contribute to type 2 diabetes risk. The variants located in the distal part of the protein could have a direct effect on its functional activity by impacting its transactivation domain, by homology with the mouse GLIS3 protein. Furthermore, rare P/LP GLIS3 variants seem to have a direct clinical effect on beta cell function, which could be improved by increasing insulin secretion via the use of sulfonylureas., (© 2023. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
6. Exploring the role of purinergic receptor P2RY1 in type 2 diabetes risk and pathophysiology: Insights from human functional genomics.
- Author
-
Dance A, Fernandes J, Toussaint B, Vaillant E, Boutry R, Baron M, Loiselle H, Balkau B, Charpentier G, Franc S, Ibberson M, Marre M, Gernay M, Fadeur M, Paquot N, Vaxillaire M, Boissel M, Amanzougarene S, Derhourhi M, Khamis A, Froguel P, and Bonnefond A
- Subjects
- Humans, Insulin metabolism, Genomics, Glucose metabolism, Receptors, Purinergic P2Y1 genetics, Receptors, Purinergic P2Y1 metabolism, Diabetes Mellitus, Type 2 genetics, Diabetes Mellitus, Type 2 metabolism, Islets of Langerhans metabolism
- Abstract
Objective: Human functional genomics has proven powerful in discovering drug targets for common metabolic disorders. Through this approach, we investigated the involvement of the purinergic receptor P2RY1 in type 2 diabetes (T2D)., Methods: P2RY1 was sequenced in 9,266 participants including 4,177 patients with T2D. In vitro analyses were then performed to assess the functional effect of each variant. Expression quantitative trait loci (eQTL) analysis was performed in pancreatic islets from 103 pancreatectomized individuals. The effect of P2RY1 on glucose-stimulated insulin secretion was finally assessed in human pancreatic beta cells (EndoCβH5), and RNA sequencing was performed on these cells., Results: Sequencing P2YR1 in 9,266 participants revealed 22 rare variants, seven of which were loss-of-function according to our in vitro analyses. Carriers, except one, exhibited impaired glucose control. Our eQTL analysis of human islets identified P2RY1 variants, in a beta-cell enhancer, linked to increased P2RY1 expression and reduced T2D risk, contrasting with variants located in a silent region associated with decreased P2RY1 expression and increased T2D risk. Additionally, a P2RY1-specific agonist increased insulin secretion upon glucose stimulation, while the antagonist led to decreased insulin secretion. RNA-seq highlighted TXNIP as one of the main transcriptomic markers of insulin secretion triggered by P2RY1 agonist., Conclusion: Our findings suggest that P2RY1 inherited or acquired dysfunction increases T2D risk and that P2RY1 activation stimulates insulin secretion. Selective P2RY1 agonists, impermeable to the blood-brain barrier, could serve as potential insulin secretagogues., Competing Interests: Declaration of competing interest Authors declare that they have no competing interests., (Copyright © 2023 The Authors. Published by Elsevier GmbH.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
7. Contribution of heterozygous PCSK1 variants to obesity and implications for precision medicine: a case-control study.
- Author
-
Folon L, Baron M, Toussaint B, Vaillant E, Boissel M, Scherrer V, Loiselle H, Leloire A, Badreddine A, Balkau B, Charpentier G, Franc S, Marre M, Aboulouard S, Salzet M, Canouil M, Derhourhi M, Froguel P, and Bonnefond A
- Subjects
- Adolescent, Adult, Child, Humans, Case-Control Studies, Precision Medicine, Diabetes Mellitus, Type 2 genetics, Obesity genetics, Overweight genetics, Proprotein Convertase 1 genetics
- Abstract
Background: Rare biallelic pathogenic mutations in PCSK1 (encoding proprotein convertase subtilisin/kexin type 1 [PC1/3]) cause early-onset obesity associated with various endocrinopathies. Setmelanotide has been approved for carriers of these biallelic mutations in the past 3 years. We aimed to perform a large-scale functional genomic study focusing on rare heterozygous variants of PCSK1 to decipher their putative impact on obesity risk., Methods: This case-control study included all participants with overweight and obesity (ie, cases) or healthy weight (ie, controls) from the RaDiO study of three community-based and one hospital-based cohort in France recruited between Jan 1, 1995, and Dec 31, 2000. In adults older than 18 years, healthy weight was defined as BMI of less than 25·0 kg/m
2 , overweight as 25·0-29·9 kg/m2 , and obesity as 30·0 kg/m2 or higher. Participants with type 2 diabetes had fasting glucose of 7·0 mmol/L or higher or used treatment for hyperglycaemia (or both) and were negative for islet or insulin autoantibodies. Functional assessment of rare missense variants of PCSK1 was performed. Pathogenicity clusters of variants were determined with machine learning. The effect of each cluster of PCSK1 variants on obesity was assessed using the adjusted mixed-effects score test., Findings: All 13 coding exons of PCSK1 were sequenced in 9320 participants (including 7260 adults and 2060 children and adolescents) recruited from the RaDiO study. We detected 65 rare heterozygous PCSK1 variants, including four null variants and 61 missense variants that were analysed in vitro and clustered into five groups (A-E), according to enzymatic activity. Compared with the wild-type, 15 missense variants led to complete PC1/3 loss of function (group A; reference) and rare exome variant ensemble learner (REVEL) led to 15 (25%) false positives and four (7%) false negatives. Carrying complete loss-of-function or null PCSK1 variants was significantly associated with obesity (six [86%] of seven carriers vs 1518 [35%] of 4395 non-carriers; OR 9·3 [95% CI 1·5-177·4]; p=0·014) and higher BMI (32·0 kg/m2 [SD 9·3] in carriers vs 27·3 kg/m2 [6·5] in non-carriers; mean effect π 6·94 [SE 1·95]; p=0·00029). Clusters of PCSK1 variants with partial or neutral effect on PC1/3 activity did not have an effect on obesity or overweight and on BMI., Interpretation: Only carriers of heterozygous, null, or complete loss-of-function PCSK1 variants cause monogenic obesity and, therefore, might be eligible for setmelanotide. In silico tests were unable to accurately detect these variants, which suggests that in vitro assays are necessary to determine the variant pathogenicity for genetic diagnosis and precision medicine purposes., Funding: Agence Nationale de la Recherche, European Research Council, National Center for Precision Diabetic Medicine, European Regional Development Fund, Hauts-de-France Regional Council, and the European Metropolis of Lille., Competing Interests: Declaration of interests We declare no competing interests., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
8. Phylogenomic analysis points to a South American origin of Manihot and illuminates the primary gene pool of cassava.
- Author
-
Simon MF, Mendoza Flores JM, Liu HL, Martins MLL, Drovetski SV, Przelomska NAS, Loiselle H, Cavalcanti TB, Inglis PW, Mueller NG, Allaby RG, Freitas FO, and Kistler L
- Subjects
- Biological Evolution, Gene Pool, Phylogeny, South America, Manihot genetics
- Abstract
The genus Manihot, with around 120 known species, is native to a wide range of habitats and regions in the tropical and subtropical Americas. Its high species richness and recent diversification only c. 6 million years ago have significantly complicated previous phylogenetic analyses. Several basic elements of Manihot evolutionary history therefore remain unresolved. Here, we conduct a comprehensive phylogenomic analysis of Manihot, focusing on exhaustive sampling of South American taxa. We find that two recently described species from northeast Brazil's Atlantic Forest were the earliest to diverge, strongly suggesting a South American common ancestor of Manihot. Ancestral state reconstruction indicates early Manihot diversification in dry forests, with numerous independent episodes of new habitat colonization, including into savannas and rainforests within South America. We identify the closest wild relatives to Manihot esculenta, including the crop cassava, and we quantify extensive wild introgression into the cassava gene pool from at least five wild species, including Manihot glaziovii, a species used widely in breeding programs. Finally, we show that this wild-to-crop introgression substantially shapes the mutation load in cassava. Our findings provide a detailed case study for neotropical evolutionary history in a diverse and widespread group, and a robust phylogenomic framework for future Manihot and cassava research., (© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. This article has been contributed to by US Government employees and their work is in the public domain in the USA.)
- Published
- 2022
- Full Text
- View/download PDF
9. Loss-of-function mutations in MRAP2 are pathogenic in hyperphagic obesity with hyperglycemia and hypertension.
- Author
-
Baron M, Maillet J, Huyvaert M, Dechaume A, Boutry R, Loiselle H, Durand E, Toussaint B, Vaillant E, Philippe J, Thomas J, Ghulam A, Franc S, Charpentier G, Borys JM, Lévy-Marchal C, Tauber M, Scharfmann R, Weill J, Aubert C, Kerr-Conte J, Pattou F, Roussel R, Balkau B, Marre M, Boissel M, Derhourhi M, Gaget S, Canouil M, Froguel P, and Bonnefond A
- Subjects
- Adolescent, Adult, Child, Energy Metabolism genetics, Female, Humans, Hyperglycemia complications, Hyperglycemia genetics, Hyperglycemia metabolism, Hyperglycemia pathology, Hyperphagia complications, Hyperphagia metabolism, Hyperphagia pathology, Hypertension complications, Hypertension genetics, Hypertension metabolism, Hypertension pathology, Islets of Langerhans metabolism, Islets of Langerhans pathology, Loss of Function Mutation genetics, Male, Middle Aged, Obesity complications, Obesity metabolism, Obesity pathology, Receptor, Melanocortin, Type 4 genetics, Risk Factors, Young Adult, Adaptor Proteins, Signal Transducing genetics, Genetic Predisposition to Disease, Hyperphagia genetics, Obesity genetics
- Abstract
The G-protein-coupled receptor accessory protein MRAP2 is implicated in energy control in rodents, notably via the melanocortin-4 receptor
1 . Although some MRAP2 mutations have been described in people with obesity1-3 , their functional consequences on adiposity remain elusive. Using large-scale sequencing of MRAP2 in 9,418 people, we identified 23 rare heterozygous variants associated with increased obesity risk in both adults and children. Functional assessment of each variant shows that loss-of-function MRAP2 variants are pathogenic for monogenic hyperphagic obesity, hyperglycemia and hypertension. This contrasts with other monogenic forms of obesity characterized by excessive hunger, including melanocortin-4 receptor deficiency, that present with low blood pressure and normal glucose tolerance4 . The pleiotropic metabolic effect of loss-of-function mutations in MRAP2 might be due to the failure of different MRAP2-regulated G-protein-coupled receptors in various tissues including pancreatic islets.- Published
- 2019
- Full Text
- View/download PDF
10. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America.
- Author
-
Kistler L, Maezumi SY, Gregorio de Souza J, Przelomska NAS, Malaquias Costa F, Smith O, Loiselle H, Ramos-Madrigal J, Wales N, Ribeiro ER, Morrison RR, Grimaldo C, Prous AP, Arriaza B, Gilbert MTP, de Oliveira Freitas F, and Allaby RG
- Subjects
- Genome, Plant, Models, Biological, Mutation, Phylogeny, South America, Biological Evolution, Domestication, Zea mays classification, Zea mays genetics
- Abstract
Domesticated maize evolved from wild teosinte under human influences in Mexico beginning around 9000 years before the present (yr B.P.), traversed Central America by ~7500 yr B.P., and spread into South America by ~6500 yr B.P. Landrace and archaeological maize genomes from South America suggest that the ancestral population to South American maize was brought out of the domestication center in Mexico and became isolated from the wild teosinte gene pool before traits of domesticated maize were fixed. Deeply structured lineages then evolved within South America out of this partially domesticated progenitor population. Genomic, linguistic, archaeological, and paleoecological data suggest that the southwestern Amazon was a secondary improvement center for partially domesticated maize. Multiple waves of human-mediated dispersal are responsible for the diversity and biogeography of modern South American maize., (Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.