1. One dimensional chains of nickelocene fragments on Au(111)
- Author
-
Jyoti, Divya, Fétida, Alex, Limot, Laurent, Robles, Roberto, Lorente, Nicolás, and Choi, Deung-Jang
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Physics - Chemical Physics - Abstract
We investigate the temperature-dependent deposition of nickelocene (NiCp$_2$) molecules on a single crystal Au(111) substrate, revealing distinct adsorption behaviors and structural formations. At low temperatures (4.2 K), individual NiCp$_2$ molecules adsorb on the herringbone elbows and step edges, forming ordered patterns as molecular coverage increases. However, at 77 K, the molecules dissociate, yielding two main fragments: NiCp fragments that are Ni atoms capped by cyclopentadienyl (Cp) rings, which preferentially adsorb at FCC hollow sites, and Cp radical fragments exhibiting strong substrate interactions. NiCp fragments self-assemble into one-dimensional (1-D) chains along the $\langle 1 1 \bar{2} \rangle$ directions, displaying higher protrusion in STM images. The strain and steric hindrance from the Cp protons induce chiral patterns within the chains, which are well-reproduced by our DFT simulations. In contrast, the Cp fragments maintain distances due to short-range repulsive forces and exhibit low diffusion barriers. Interestingly, the fragments are non-magnetic, as confirmed by both STM measurements and DFT calculations, in contrast to the magnetic signals from intact Nc molecules. In addition to linear chains, dimers of the Ni-Cp fragments form along the $\langle 1 \bar{1} 0\rangle$ directions, requiring gold adatoms for their creation. These results demonstrate the feasibility of constructing complex nanostructures based on metallocenes via on-surface synthesis, opening the possibility for realizing low-dimensional magnetic systems by selecting substrates that preserve the magnetic moment of the fragments., Comment: 8 pages, 9 figures
- Published
- 2024