17 results on '"Lorenzo V. Mugnai"'
Search Results
2. Detecting molecules in Ariel Tier 1 transmission spectra
- Author
-
Andrea Bocchieri, Lorenzo V. Mugnai, Enzo Pascale, Quentin Changeat, and Giovanna Tinetti
- Abstract
The Ariel Space Mission will observe a large and diverse sample of exoplanetary atmospheres in the 0.5 to 7.8-micron range of the electromagnetic spectrum. As part of the Ariel observing programme, a shallow Reconnaissance survey (Tier 1) will provide transiting and eclipse spectroscopy on about 1000 targets, with low spectral resolution but sufficient SNR to identify the signature of molecular species. The wealth of information provided by this survey will be the basis for promoting targets for re-observation to reach sufficient SNR at higher spectral resolution. At the same time, these low spectral resolution observations are not suitable for estimating molecular abundances with an appropriate confidence level. Therefore, it is paramount to develop special data analysis techniques to extract their information content. This work investigates using the abundance posteriors from spectral retrieval as an unbiased metric to assess the presence of a molecule up to a certain threshold. The experimental dataset comprises simulated Tier 1 transmission spectra for about 300 targets from the Ariel Mission Reference Sample produced using the Alfnoor software. We use the TauRex 3 retrieval framework to run spectral retrievals on each “observed” spectrum, and we compute the probability that the spectra bear a molecule by integrating the posteriors above a specified threshold of molecular concentration. We find that the retrieved probabilities correlate with the abundances in the forward models and that this method is statistically reliable and has considerable predictive power and diagnostic ability. The predictive power is not significantly affected by adding molecules in the fitted composition that are not present in the forward models, while omitting molecules should be discouraged as it can lead to biased results.
- Published
- 2022
- Full Text
- View/download PDF
3. ExoSim 2. The new time-domain simulator applied to the Ariel space mission
- Author
-
Lorenzo V. Mugnai, Enzo Pascale, Ahmed F. Al-Refaie, Andrea Bocchieri, Andreas Papageorgiou, and Subhajit Sarkar
- Abstract
ExoSim 2 is a time-domain simulator for exoplanet observations. The software can simulate exoplanetary transit, eclipse and phase curve observations from ground and space-based instruments. Such simulation can capture temporal effects, such as correlated noise and systematics on the light curve. The simulator will produce spectral images like those produced by an actual observation. ExoSim 2 has been developed for the Ariel Space Mission, to assess the impact of astronomical and instrumental systematic on astrophysical measurement, and to prepare the data reduction pipeline against realistic data sets. ExoSim 2 output can be utilised by different data reduction methods, not only to determine the best pipeline strategy to remove the systematics in the measurements but also to assess the confidence level of retrieved quantities. ExoSim 2 is a refactored version of ExoSim: an end-to-end simulator that models noise and systematics in a dynamical simulation. The first version of ExoSim (Sarkar et al. 2020) was developed for the Ariel Space Mission, then adapted to the James Webb Telescope and presented to the community as JexoSim (Sarkar et al. 2019 and Sarkar et al. 2021). ExoSim 2 is meant to be easier to use than its predecessor and largely customizable. It is completely written in Python, tested against Python 3.7+, and follows the object-oriented philosophy. It comes with an installer, documented examples, a comprehensive guide, and almost every part of the code can be replaced by a user-defined function, which allows the user to include new functionalities to the simulator. We believe that ExoSim 2 is a versatile tool, which can be used for the development of instruments other than Ariel, or to assess the impact of different astronomical or instrumental systematics.
- Published
- 2022
- Full Text
- View/download PDF
4. ExoClock project: an open platform for monitoring the ephemerides of Ariel targets with contributions from the public
- Author
-
M. Bretton, Cédric Pereira, Matthieu Bachschmidt, Mauro Caló, Francois Hurter, John Savage, Andrea Tomacelli, Angelos Tsiaras, Vikrant Kumar Agnihotri, Simon Dawes, Roger Dymock, Claudio Lopresti, Anastasia Kokori, Roland Casali, Danilo Sedita, Martin Crow, Manfred Raetz, Francois Regembal, Mark W. Phillips, Pavel Pintr, Geoffrey Thurston, Marc Deldem, Carmelo Falco, Mario Morvan, Antonio Marino, A. Wunsche, Fabio Mortari, Martin Fowler, Dimitrios Deligeorgopoulos, Hamish Caines, Stephane Ferratfiat, Nick Sioulas, Alessandro Nastasi, Valère Perroud, P. Guerra, Taewoo Kim, Stephen Futcher, Phil Evans, W. Kang, Matthias Mallonn, Adrian Jones, Marco Rocchetto, Giovanna Tinetti, Billy Edwards, Iakovos Strikis, Richard J. Lee, Nikolaos Paschalis, Alberto Tomatis, and Lorenzo V. Mugnai
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Open science ,Open platform ,Data collection ,010308 nuclear & particles physics ,Computer science ,Process (engineering) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Ephemeris ,01 natural sciences ,Data science ,Exoplanet ,Space and Planetary Science ,Planet ,0103 physical sciences ,Citizen science ,Data analysis ,Ephemerides ,Exoplanets ,Photometry ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets' ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 119 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 83 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too., Comment: 33 pages, 3 figures, 3 tables, accepted for publication in Experimental Astronomy, data available through OSF at DOI: 10.17605/OSF.IO/3W7HM
- Published
- 2022
- Full Text
- View/download PDF
5. A survey of exoplanet phase curves with Ariel
- Author
-
Benjamin Charnay, Nicolas B. Cowan, Billy Edwards, Enzo Pascale, Jake Taylor, Olivier Demangeon, Lorenzo V. Mugnai, Laura Kreidberg, Robert T. Zellem, Carole A. Haswell, João M. Mendonça, Giuseppe Morello, Pascal Tremblin, Giovanna Tinetti, Taylor J. Bell, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), National Space Institute [Lyngby] (DTU Space), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Max Planck Institute for Astronomy (MPIA), Department of Physics [McGill University], McGill University = Université McGill [Montréal, Canada], Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford, Instituto de Astrofísica e Ciências do Espaço. Universidade do Porto, University College of London [London] (UCL), The Open University [Milton Keynes] (OU), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Phase (waves) ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Ariel space mission ,atmospheres ,exoplanets ,phase curves ,Phase curve ,01 natural sciences ,Exoplanet ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Thermal ,Astrophysics::Earth and Planetary Astrophysics ,Atmospheric dynamics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The ESA-Ariel mission will include a tier dedicated to exoplanet phase curves corresponding to ~10% of the science time. We present here the current observing strategy for studying exoplanet phase curves with Ariel. We define science questions, requirements and a list of potential targets. We also estimate the precision of phase curve reconstruction and atmospheric retrieval using simulated phase curves. Based on this work, we found that full-orbit phase variations for 35-40 exoplanets could be observed during the 3.5-yr mission. This statistical sample would provide key constraints on atmospheric dynamics, composition, thermal structure and clouds of warm exoplanets, complementary to the scientific yield from spectroscopic transits/eclipses measurements., 27 pages, 10 figures, accepted for publication in Experimental Astronomy, Ariel Special Issue
- Published
- 2022
- Full Text
- View/download PDF
6. Observability of temperate exoplanets with Ariel
- Author
-
Marc Ollivier, Giovanna Tinetti, Emmanuel Marcq, Athena Coustenis, Therese Encrenaz, Karan Molaverdikhani, Gabriella Gilli, Lorenzo V. Mugnai, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Instituto de Astrofísica e Ciências do Espaço (IASTRO), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Dipartimento di Fisica [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University College of London [London] (UCL), Universitats-Sternwarte [München], Ludwig-Maximilians-Universität München (LMU), Zentrum für Astronomie der Universität Heidelberg (ZAH), Universität Heidelberg [Heidelberg], Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Department of Physics and Astronomy [UCL London]
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Exoplanet transit spectroscopy ,Infrared spectroscopy ,Temperate exoplanets ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astronomy ,Astronomy and Astrophysics ,Observable ,Stellar classification ,7. Clean energy ,01 natural sciences ,Exoplanet ,Stars ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,Infrared transmission ,Temperate climate ,Transit (astronomy) ,Observability ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
International audience; While the Ariel mission is primarily designed for the study of warm and hot objects, with an equilibrium temperature above 500 K, in this paper we want to explore a larger sample of possible colder targets. We thus investigate the detectability with Ariel of “temperate” exoplanets (with an equilibrium temperature of 400 K). We first consider the case of hydrogen-rich exoplanets (from Jupiters to sub-Neptunes) and we calculate their infrared transmission spectrum for several classes of stars. We consider the Tier 2 mode of Ariel, for which the resolving power (R = 50 for l < 4 mm and R=15 for l > 4 mm) is sufficient to get information about the chemical composition of the objects. Results show that temperate Jupiters and sub-Neptunes around all types of stars from G2 to M8, with revolution periods of a few tens of days and transit durations of a few hours, could be observed with Ariel, up to distances of about 50 pc for Jupiters and 25 pc for sub-Neptunes. In the case of temperate super-Earths, we estimate that they will not be observable in the Ariel Tier 2 mode. In a study of currently available target candidates, we find one sub-Neptune (TOI-178 g) as possibly observable in Ariel’s Tier 2. This study, a follow-up of “Transit spectroscopy of temperate Jupiters with ARIEL: A feasibility study” (Encrenaz et al., Exp. Astr. 46:31-44, 2018), is submitted to the ARIEL special issue of Experimental Astronomy (manuscript under revision)
- Published
- 2021
- Full Text
- View/download PDF
7. Alfnoor: assessing the information content of Ariel's low resolution spectra with planetary population studies
- Author
-
Lorenzo V. Mugnai, Ahmed Al-Refaie, Andrea Bocchieri, Quentin Changeat, Enzo Pascale, and Giovanna Tinetti
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Exoplanet atmospheric composition ,Space and Planetary Science ,Transmission spectroscopy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Transmission spectroscopy, Exoplanet atmospheric composition, Space telescopes ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Space telescopes ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The ARIEL Space Telescope will provide a large and diverse sample of exoplanet spectra, performing spectroscopic observations of about 1000 exoplanets in the wavelength range $0.5 \to 7.8 \; \mu m$. In this paper, we investigate the information content of ARIEL's Reconnaissance Survey low resolution transmission spectra. Among the goals of the ARIEL Reconnaissance Survey is also to identify planets without molecular features in their atmosphere. In this work, (1) we present a strategy that will allow to select candidate planets to be reobserved in a ARIEL's higher resolution Tier; (2) we propose a metric to preliminary classify exoplanets by their atmospheric composition without performing an atmospheric retrieval; (3) we introduce the possibility to find other methods to better exploit the data scientific content., Comment: 31 pages, 14 figures, submitted to ApJ
- Published
- 2021
8. High-precision photometry with Ariel
- Author
-
T. Pribulla, A. Claret, Dave Waltham, L. Borsato, Lorenzo V. Mugnai, Enzo Pascale, Szilárd Kálmán, Róbert Szabó, Z. Garai, Gyula M. Szabó, Hungarian Academy of Sciences, National Research, Development and Innovation Office (Hungary), Agenzia Spaziale Italiana, Ministerio de Ciencia e Innovación (España), and European Commission
- Subjects
Physics ,Thermal infrared ,Instrumentation – techniques: photometric ,Instrumentation ,Stellar rotation ,photometric [Techniques] ,Astronomy ,Astronomy and Astrophysics ,Photometer ,Rotation ,law.invention ,Photometry (astronomy) ,Wavelength ,photometric [Instrumentation – techniques] ,Space and Planetary Science ,law ,Cadence ,Techniques: photometric - Abstract
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited., In this paper we describe the photometry instruments of Ariel, consisting of the VISPhot, FGS1 and FGS2 photometers in the visual and mid-IR wavelength. These photometers have their own cadence, which can be independent from each other and the cadence of the spectral instruments. Ariel will be capable to do high cadence and high precision photometry in independent bands. There is also a possibility for synthetic Jsynth, Hsynth, and wide-band thermal infrared photometry from spectroscopic data. Although the cadence of the synthetic bands will be identical to that of the spectrographs, the precision of synthetic photometry in the suggested synthetic bands will be at least as precise as the optical data. We present the accuracy of these instruments. We also review selected fields of new science which will be opened up by the possibility of high cadence multiband space photometry, including stellar rotation, spin-orbit misalignment, orbital precession, planetary rotation and oblateness, tidal distortions, rings, and moons. © 2021, The Author(s)., This work has been supported by the Hungarian National Research, Development and Innovation Office (NKFI) grants K-119517, K-115709, and GINOP-2.3.2-15-2016-00003, the Lendület Program of the Hungarian Academy of Sciences, project No. LP2018-7/2020, and the City of Szombathely under agreement No. S-11-1027. L.V.M. and E.P. was supported by the ASI grant n. 2018.22.HH.O. ZG and TP acknowledge support from the VEGA grant of the Slovak Academy of Sciences No. 2/0031/18 and by the grant of the Slovak Research and Development Agency number APVV-15-0458. LBo acknowledges the funding support from Italian Space Agency (ASI) regulated by “Accordo ASI-INAF n. 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015 CHEOPS Fasi A/B/C”., With funding from the Spanish government through the Severo Ochoa Centre of Excellence accreditation SEV-2017-0709.
- Published
- 2021
9. Alfnoor: a population study on Ariel's low resolution transmission spectra
- Author
-
Lorenzo V. Mugnai, Ahmed Al-Refaie, Andrea Bocchieri, Quentin Changeat, Enzo Pascale, and Giovanna Tinetti
- Abstract
In the next decade, the Ariel Space Telescope will provide the first statistical data set of exoplanet spectra, performing spectroscopic observations of about 1000 exoplanets in the wavelength range 0.5 - 7.8 micron during its Reconnaissance Survey. The Ariel Reconnaissance Survey has been designed specifically to identify planets without molecular features in their atmosphere, and select targets (about 500) for accurate chemical characterisation with higher SNR spectroscopic observations. In this work, we investigate the information content of Ariel's Reconnaissance Survey low resolution transmission spectra. We produce different planetary populations using the Ariel candidate target list, randomizing the planetary atmospheres, and simulating the Ariel observations using the Alfnoor software. Then we analyse the dataset, getting three different results: (1) We present a solid strategy that will allow selecting candidate planets to be reobserved in an Ariel's higher resolution, using a chi-squared based metric to identify the flat spectra. (2) Because the reconnaissance survey is not optimised for spectral retrieval, we propose a novel model-independent metric to preliminary classify exoplanets by their atmospheric composition. Without any other planetary information than the spectrum, our metric proves capable of indicating the presence of a molecule when its abundance in the atmosphere is in excess of 10-4 in mixing ratio. (3) We introduce the possibility of finding other methods to better exploit the data scientific content. We report as an example of possible strategies, a preliminary study involving Deep and Machine Learning algorithms. We show that their performance in identifying the presence of a certain molecule in the spectra is marginally better than our metric for some of these algorithms, while others outperform the metric. We conclude that the the Ariel reconnaissance survey is effective in detecting exoplanets manifesting featureless spectra, and we further show that the data collected in this observing mode have a rich scientific content, allowing for a first chemical classification of the observed targets.
- Published
- 2021
- Full Text
- View/download PDF
10. ARES V: No evidence for molecular absorption in the HST WFC3 spectrum of GJ 1132 b
- Author
-
Jeroen Bouwman, Benjamin Charnay, Quentin Changeat, William Pluriel, Pierre Drossart, Amélie Gressier, Niall Whiteford, Tiziano Zingales, Mario Morvan, Ahmed Al-Refaie, Jean-Philippe Beaulieu, Sam Wright, Michelle Fabienne Bieger, Jérémy Leconte, Nour Skaf, Mathilde Poveda, Kai Hou Yip, Giuseppe Morello, Darius Modirrousta-Galian, Ingo Waldmann, Billy Edwards, Doriann Blain, Yassin Jaziri, Flavien Kiefer, Robin Baeyens, Gloria Guilluy, Olivia Venot, Lorenzo V. Mugnai, Dipartimento di Fisica [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), INAF - Osservatorio Astronomico di Palermo (OAPa), Istituto Nazionale di Astrofisica (INAF), Dipartimento di Fisica e Chimica [Palermo] (DiFC), Università degli studi di Palermo - University of Palermo, Department of Physics and Astronomy [UCL London], University College of London [London] (UCL), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Instituto de Astrofisica de Canarias (IAC), Institute of Astronomy [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), College of Engineering, Mathematics and Physical Sciences [Exeter] (EMPS), University of Exeter, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Fisica [Torino], Università degli studi di Torino = University of Turin (UNITO), INAF - Osservatorio Astrofisico di Torino (OATo), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Subaru Telescope, National Astronomical Observatory of Japan (NAOJ), Institute for Astronomy [Edinburgh] (IfA), University of Edinburgh, Centre for Exoplanet Science, School of Physical Sciences [Hobart], University of Tasmania [Hobart, Australia] (UTAS), European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie grant agreement No. 895525., ANR-16-CE31-0005,e-PYTHEAS,Etude des hydrocarbures en émission et absorption dasn les exoplanètes à haute température(2016), European Project: 776403,EXOPLANET, European Project: 757858,ATMO, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Università degli studi di Torino (UNITO), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
010504 meteorology & atmospheric sciences ,HD 3167C ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,STELLAR ATMOSPHERE MODELS ,FOS: Physical sciences ,SUPER-EARTH ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astronomy & Astrophysics ,01 natural sciences ,Spectral line ,55 CNC E ,Atmosphere ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,TRANSMISSION SPECTRUM ,KEPLER PLANETS ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,PLANETARY SYSTEM ,HOT ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Science & Technology ,Secondary atmosphere ,EXOMOL LINE LISTS ,ERROR-CORRECTION ,James Webb Space Telescope ,Astronomy and Astrophysics ,Exoplanet ,Grism ,13. Climate action ,Space and Planetary Science ,Exoplanet atmospheres ,Astronomy data analysis ,Hubble Space Telescope ,Exoplanets ,Physical Sciences ,Astrophysics::Earth and Planetary Astrophysics ,Wide Field Camera 3 ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present a study on the spatially scanned spectroscopic observations of the transit of GJ 1132 b, a warm ($\sim$500 K) Super-Earth (1.13 R$_\oplus$) that was obtained with the G141 grism (1.125 - 1.650 $\mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope. We used the publicly available Iraclis pipeline to extract the planetary transmission spectra from the five visits and produce a precise transmission spectrum. We analysed the spectrum using the TauREx3 atmospheric retrieval code with which we show that the measurements do not contain molecular signatures in the investigated wavelength range and are best-fit with a flat-line model. Our results suggest that the planet does not have a clear primordial, hydrogen-dominated atmosphere. Instead, GJ 1132 b could have a cloudy hydrogen-dominated envelope, a very enriched secondary atmosphere, be airless, or have a tenuous atmosphere that has not been detected. Due to the narrow wavelength coverage of WFC3, these scenarios cannot be distinguished yet but the James Webb Space Telescope may be capable of detecting atmospheric features, although several observations may be required to provide useful constraints., Comment: 17 pages, 11 figures. Accepted for publication in AJ
- Published
- 2021
- Full Text
- View/download PDF
11. ARES IV: Probing the Atmospheres of the Two Warm Small Planets HD 106315c and HD 3167c with the HST/WFC3 Camera
- Author
-
Sam Wright, Emmanuel Marcq, Adam Yassin Jaziri, Amélie Gressier, Quentin Changeat, Doriann Blain, Michelle Fabienne Bieger, Alexandre Santerne, Jérémy Leconte, Ahmed Al-Refaie, Darius Modirrousta-Galian, Alessandro Sozzetti, Tiziano Tsingales, William Pluriel, Pierre Drossart, Jean-Philippe Beaulieu, Gloria Guilluy, Kai Hou Yip, Niall Whiteford, Olivia Venot, Lorenzo V. Mugnai, Ingo Waldmann, Mario Morvan, Robin Baeyens, Flavien Kiefer, Billy Edwards, Angelos Tsiaras, Mathilde Poveda, Nour Skaf, Benjamin Charnay, Dipartimento di Fisica [Torino], Università degli studi di Torino = University of Turin (UNITO), INAF - Osservatorio Astrofisico di Torino (OATo), Istituto Nazionale di Astrofisica (INAF), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Department of Physics and Astronomy [UCL London], University College of London [London] (UCL), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Palermo (OAPa), Dipartimento di Fisica e Chimica [Palermo] (DiFC), Università degli studi di Palermo - University of Palermo, Instituut voor Sterrenkunde [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), College of Engineering, Mathematics and Physical Sciences [Exeter] (EMPS), University of Exeter, Dipartimento di Fisica [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institute for Astronomy [Edinburgh] (IfA), University of Edinburgh, Centre for Exoplanet Science, School of Physical Sciences [Hobart], University of Tasmania [Hobart, Australia] (UTAS), ANR-16-CE31-0005,e-PYTHEAS,Etude des hydrocarbures en émission et absorption dasn les exoplanètes à haute température(2016), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Università degli studi di Torino (UNITO), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Paris (UP)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
astronomy data analysis ,Exoplanets ,Exoplanet atmospheres ,Hubble Space Telescope ,EXOPLANET ,010504 meteorology & atmospheric sciences ,Infrared ,MODELS ,Astrophysics ,Astronomy & Astrophysics ,01 natural sciences ,7. Clean energy ,Atmosphere ,METHANE ,Planet ,Hubble space telescope ,0103 physical sciences ,PHOTOMETRY ,Absorption (logic) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,SPECTRUM ,Science & Technology ,SPECTROSCOPY ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astronomy and Astrophysics ,Radius ,FRAMEWORK ,Exoplanet ,LINE LISTS ,TRANSITING PLANET ,13. Climate action ,Space and Planetary Science ,Physical Sciences ,Wide Field Camera 3 ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present an atmospheric characterization study of two medium sized planets bracketing the radius of Neptune: HD 106315 c (R$_{\rm{P}}$=4.98 $\pm$ 0.23 R$_{\oplus}$) and HD 3167 c (R$_{\rm{P}}$=2.740$_{-0.100}^{+0.106}$ R$_{\oplus}$). We analyse spatially scanned spectroscopic observations obtained with the G141 grism (1.125 - 1.650 $\mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope. We use the publicly available Iraclis pipeline and TauREx3 atmospheric retrieval code and we detect water vapor in the atmosphere of both planets with an abundance of $\log_{10}[\mathrm{H_2O}]=-2.1^{+0.7}_{-1.3}$ ($\sim$5.68$\sigma$) and $\log_{10}[\mathrm{H_2O}]=-4.1^{+0.9}_{-0.9}$ ($\sim$3.17$\sigma$) for HD 106315 c and HD 3167 c, respectively. The transmission spectrum of HD 106315 c shows also a possible evidence of ammonia absorption ($\log_{10}[\mathrm {NH_3}]=-4.3^{+0.7}_{-2.0}$, $\sim$1.97$\sigma$ -even if it is not significant-), whilst carbon dioxide absorption features may be present in the atmosphere of HD 3167 c in the $\sim$1.1-1.6~$\mu$m wavelength range ($\log_{10}[\mathrm{CO_{2}}]= -2.4^{+0.7}_{-1.0}$, $\sim$3.28$\sigma$). However the CO$_2$ detection appears significant, it must be considered carefully and put into perspective. Indeed, CO$_2$ presence is not explained by 1D equilibrium chemistry models, and it could be due to possible systematics. The additional contribution of clouds, CO and CH$_4$ are discussed. HD 106315 c and HD 3167 c will be interesting targets for upcoming telescopes such as the James Webb Space Telescope (JWST) and the Atmospheric Remote-Sensing Infrared Exoplanet Large-Survey (Ariel)., Comment: Accepted for publication in AJ
- Published
- 2021
- Full Text
- View/download PDF
12. Alfnoor: assessing the information content of Ariel's low resolution spectra with planetary population studies
- Author
-
Giovanna Tinetti, Enzo Pascale, Ahmed Al-Refaie, Quentin Changeat, and Lorenzo V. Mugnai
- Subjects
education.field_of_study ,Low resolution ,Content (measure theory) ,Population ,Environmental science ,education ,Spectral line ,Remote sensing - Abstract
In the next decade the Ariel Space Telescope will provide the first statistical dataset of exoplanet spectra, performing spectroscopic observation of about 1000 exoplanets in the wavelength range 0.5→7.8 μm thanks to its Reconnaissance Survey. About one half of these 1000 targets will be then selected for more accurate observations with higher spectral resolution. We present a novel metric to assess the information content of the Ariel Reconnaissance Survey low resolution transmission spectra. The proposed strategy will not only allow us to select candidate planets to be re-observed in Ariel higher resolution Tiers, but also to classify exoplanets by their atmospheric composition and to put the basis for the statistical analysis of such a large exoplanetary sample. To test our metric we use Alfnoor, a new package combining the TauRex spectral modelling with the ArielRad payload performance model, to produce populations of hundreds of exoplanets matching those presented in the Ariel Mission Reference Sample. For each of the planets in the Ariel candidate targets list we create an atmosphere with a randomised quantity of H2O, CH4, CO2, NH3 and clouds. Our metric proves able to identify methane, carbon dioxide and water rich atmospheres in the cases of molecular abundances > 10−4 in mixing ratio, but it shows its limits in separating water from ammonia. We compare our metric with four different Deep Learning algorithms, they show only ∼10% better performance in identifying the molecular content.
- Published
- 2020
- Full Text
- View/download PDF
13. ARES. II. Characterizing the Hot Jupiters WASP-127 b, WASP-79 b, and WASP-62b with the Hubble Space Telescope
- Author
-
William Pluriel, Jean-Philippe Beaulieu, Tiziano Zingales, Doriann Blain, Nour Skaf, Quentin Changeat, Sam Wright, Benjamin Charnay, Darius Modirrousta-Galian, Amélie Gressier, Adam Yassin Jaziri, Ahmed Al-Refaie, Robin Baeyens, Billy Edwards, Pierre Drossart, Mathilde Poveda, Ingo Waldmann, Michelle Fabienne Bieger, Jérémy Leconte, Niall Whiteford, Kai Hou Yip, Mario Morvan, Angelos Tsiaras, Flavien Kiefer, Gloria Guilluy, Olivia Venot, Lorenzo V. Mugnai, Department of Physics and Astronomy [UCL London], University College of London [London] (UCL), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), College of Engineering, Mathematics and Physical Sciences [Exeter] (EMPS), University of Exeter, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ECLIPSE 2020, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Paris (UP)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Maison de la Simulation (MDLS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Instituut voor Sterrenkunde [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Dipartimento di Fisica [Torino], Università degli studi di Torino (UNITO), INAF - Osservatorio Astrofisico di Torino (OATo), Istituto Nazionale di Astrofisica (INAF), INAF - Osservatorio Astronomico di Palermo (OAPa), Department of Physics [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Institute for Astronomy [Edinburgh] (IfA), University of Edinburgh, Centre for Exoplanet Science, School of Physical Sciences [Hobart], University of Tasmania [Hobart, Australia] (UTAS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Torino = University of Turin (UNITO), Dipartimento di Fisica [Roma La Sapienza], and Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA)
- Subjects
Exoplanet atmospheres (487) ,010504 meteorology & atmospheric sciences ,Gas giant ,Exoplanet astronomy ,MOLECULAR OPACITIES ,Exoplanet atmospheres ,Astronomy data analysis ,Hubble Space Telescope ,MODELS ,Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486) ,Astronomy & Astrophysics ,01 natural sciences ,DWARF ,Astronomy data analysis (1858) ,CHEMISTRY ,Hubble space telescope ,0103 physical sciences ,Hot Jupiter ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,[PHYS]Physics [physics] ,Science & Technology ,SPECTROSCOPY ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astronomy ,Astronomy and Astrophysics ,Hubble Space Telescope (761) ,EXOPLANETS ,Grism ,On board ,13. Climate action ,Space and Planetary Science ,Physical Sciences ,ROTATION ,Wide Field Camera 3 ,ATMOSPHERIC CIRCULATION ,PLANETS - Abstract
International audience; This paper presents the atmospheric characterization of three large, gaseous planets: WASP-127 b, WASP-79 b, and WASP-62 b. We analyzed spectroscopic data obtained with the G141 grism (1.088-1.68 μm) of the Wide Field Camera 3 on board the Hubble Space Telescope using the Iraclis pipeline and the TauREx3 retrieval code, both of which are publicly available. For WASP-127 b, which is the least dense planet discovered so far and is located in the short-period Neptune desert, our retrieval results found strong water absorption corresponding to an abundance of log(H2O) = -2.71 +0.78−1.05 and absorption compatible with an iron hydride abundance of log(FeH) = −5.25+0.88−1.10, with an extended cloudy atmosphere. We also detected water vapor in the atmospheres of WASP-79 b and WASP-62 b, with best-fit models indicating the presence of iron hydride, too. We used the Atmospheric Detectability Index as well as Bayesian log evidence to quantify the strength of the detection and compared our results to the hot Jupiter population study by Tsiaras et al. While all the planets studied here are suitable targets for characterization with upcoming facilities such as the James Webb Space Telescope and Ariel, WASP-127 b is of particular interest due to its low density, and a thorough atmospheric study would develop our understanding of planet formation and migration. * ARES: Ariel Retrieval of Exoplanets School.
- Published
- 2020
- Full Text
- View/download PDF
14. ARES I: WASP-76 b, A Tale of Two HST Spectra
- Author
-
Sam Wright, Angelos Tsiaras, Mario Morvan, Mathilde Poveda, Ahmed Al-Refaie, Pierre Drossart, Gloria Guilluy, Amélie Gressier, Olivia Venot, William Pluriel, Lorenzo V. Mugnai, Flavien Kiefer, Tiziano Zingales, Niall Whiteford, Robin Baeyens, Ingo Waldmann, Billy Edwards, Adam Yassin Jaziri, Jean-Philippe Beaulieu, Darius Modirrousta-Galian, Doriann Blain, Jake Taylor, Quentin Changeat, Nour Skaf, Benjamin Charnay, Michelle Fabienne Bieger, Jérémy Leconte, Kai Hou Yip, Department of Physics and Astronomy [UCL London], University College of London [London] (UCL), Instituut voor Sterrenkunde [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford [Oxford], College of Engineering, Mathematics and Physical Sciences [Exeter] (EMPS), University of Exeter, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Dipartimento di Fisica [Torino], Università degli studi di Torino (UNITO), INAF - Osservatorio Astrofisico di Torino (OATo), Istituto Nazionale di Astrofisica (INAF), ECLIPSE 2020, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Palermo (OAPa), Dipartimento di Fisica e Chimica [Palermo] (DiFC), Università degli studi di Palermo - University of Palermo, Department of Physics [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institute for Astronomy [Edinburgh] (IfA), University of Edinburgh, Centre for Exoplanet Science, School of Physical Sciences [Hobart], University of Tasmania [Hobart, Australia] (UTAS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Torino = University of Turin (UNITO), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Oxford, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), and Dipartimento di Fisica [Roma La Sapienza]
- Subjects
Brightness ,010504 meteorology & atmospheric sciences ,Exoplanet atmospheres ,Exoplanet atmospheric composition ,Hubble Space Telescope ,Astrophysics - Earth and Planetary Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astronomy & Astrophysics ,01 natural sciences ,Spectral line ,Atmosphere ,Jupiter ,HAT-P-7B ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Emission spectrum ,MOLECULAR LINE LISTS ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,HOT ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Science & Technology ,Astronomy and Astrophysics ,ATMOSPHERE ,GIANT EXOPLANET ,Grism ,RESOLUTION ,Transmission (telecommunications) ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Physical Sciences ,INFERENCE ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Wide Field Camera 3 ,STARS - Abstract
We analyse the transmission and emission spectra of the ultra-hot Jupiter WASP-76b, observed with the G141 grism of the Hubble Space Telescope's Wide Field Camera 3 (WFC3). We reduce and fit the raw data for each observation using the open-source software Iraclis before performing a fully Bayesian retrieval using the publicly available analysis suite TauRex 3. Previous studies of the WFC3 transmission spectra of WASP-76 b found hints of titanium oxide (TiO) and vanadium oxide (VO) or non-grey clouds. Accounting for a fainter stellar companion to WASP-76, we reanalyse this data and show that removing the effects of this background star changes the slope of the spectrum, resulting in these visible absorbers no longer being detected, eliminating the need for a non-grey cloud model to adequately fit the data but maintaining the strong water feature previously seen. However, our analysis of the emission spectrum suggests the presence of TiO and an atmospheric thermal inversion, along with a significant amount of water. Given the brightness of the host star and the size of the atmospheric features, WASP-76 b is an excellent target for further characterisation with HST, or with future facilities, to better understand the nature of its atmosphere, to confirm the presence of TiO and to search for other optical absorbers., Accepted for publication in AJ
- Published
- 2020
- Full Text
- View/download PDF
15. ArielRad: the ARIEL Radiometric Model
- Author
-
Lorenzo V. Mugnai, Subhajit Sarkar, Enzo Pascale, Billy Edwards, and Andreas Papageorgiou
- Subjects
Cosmic Vision ,Computer science ,FOS: Physical sciences ,Sample (statistics) ,01 natural sciences ,010309 optics ,Primary (astronomy) ,0103 physical sciences ,Primary operation ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Remote sensing ,Earth and Planetary Astrophysics (astro-ph.EP) ,Payload ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Exoplanet ,ARIEL, exoplanetary science, simulations, observational astronomy ,Noise ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Radiometric dating ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
ArielRad, the Ariel radiometric model, is a simulator developed to address the challenges in optimising the space mission science payload and to demonstrate its compliance with the performance requirements. Ariel, the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, has been selected by ESA as the M4 mission in the Cosmic Vision programme and, during its 4 years primary operation, will provide the first unbiased spectroscopic survey of a large and diverse sample of transiting exoplanet atmospheres. To allow for an accurate study of the mission, ArielRad uses a physically motivated noise model to estimate contributions arising from stationary processes, and includes margins for correlated and time-dependent noise sources. We show that the measurement uncertainties are dominated by the photon statistic,and that an observing programme with about 1000 exoplanetary targets can be completed during the primary mission lifetime., Comment: 28 pages, 6 figures. Accepted in Exp.Astron
- Published
- 2019
16. An Updated Study of Potential Targets for Ariel
- Author
-
Enzo Pascale, Lorenzo V. Mugnai, Subhajit Sarkar, Billy Edwards, and Giovanna Tinetti
- Subjects
010504 meteorology & atmospheric sciences ,Population ,FOS: Physical sciences ,01 natural sciences ,Astrobiology ,Primary (astronomy) ,Planet ,0103 physical sciences ,education ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,education.field_of_study ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Galaxy ,Exoplanet ,ARIEL, exoplanetary science, simulations, observational astronomy ,Diverse population ,Reference sample ,13. Climate action ,Space and Planetary Science ,Satellite ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Ariel has been selected as ESA’s M4 mission for launch in 2028 and is designed for the characterization of a large and diverse population of exoplanetary atmospheres to provide insights into planetary formation and evolution within our Galaxy. Here we present a study of Ariel’s capability to observe currently known exoplanets and predicted Transiting Exoplanet Survey Satellite (TESS) discoveries. We use the Ariel radiometric model (ArielRad) to simulate the instrument performance and find that ∼2000 of these planets have atmospheric signals which could be characterized by Ariel. This list of potential planets contains a diverse range of planetary and stellar parameters. From these we select an example mission reference sample (MRS), comprised of 1000 diverse planets to be completed within the primary mission life, which is consistent with previous studies. We also explore the mission capability to perform an in-depth survey into the atmospheres of smaller planets, which may be enriched or secondary. Earth-sized planets and super-Earths with atmospheres heavier than H/He will be more challenging to observe spectroscopically. However, by studying the time required to observe ∼110 Earth-sized/super-Earths, we find that Ariel could have substantial capability for providing in-depth observations of smaller planets. Trade-offs between the number and type of planets observed will form a key part of the selection process and this list of planets will continually evolve with new exoplanet discoveries replacing predicted detections. The Ariel target list will be constantly updated and the MRS re-selected to ensure maximum diversity in the population of planets studied during the primary mission life.
- Published
- 2019
17. Alfnoor: A Retrieval Simulation of the Ariel Target List
- Author
-
Lorenzo V. Mugnai, Billy Edwards, Ahmed Al-Refaie, Enzo Pascale, Ingo Waldmann, Giovanna Tinetti, and Quentin Changeat
- Subjects
010504 meteorology & atmospheric sciences ,Population ,FOS: Physical sciences ,Astrophysics ,7. Clean energy ,01 natural sciences ,Planet ,0103 physical sciences ,education ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Eclipse ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,education.field_of_study ,Astronomy and Astrophysics ,Effective temperature ,Exoplanet ,Trace gas ,Chemical species ,13. Climate action ,Space and Planetary Science ,Space telescopes ,Exoplanet atmospheric composition ,Transmission spectroscopy ,Astrophysics - Instrumentation and Methods for Astrophysics ,Noise (radio) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
In this work, we present Alfnoor, a dedicated tool optimised for population studies of exoplanet atmospheres. Alfnoor combines the latest version of the retrieval algorithm TauREx 3, with the instrument noise simulator ArielRad and enables the simultaneous retrieval analysis of a large sample of exo-atmospheres. We applied this tool to the Ariel list of planetary candidates and focus on hydrogen dominated, cloudy atmospheres observed in transit with the Tier-2 mode (medium Ariel resolution). As a first experiment, we randomised the abundances - ranging from 10$^{-7}$ to 10$^{-2}$ - of the trace gases, which include H$_2$O, CH$_4$, CO, CO$_2$ and NH$_3$. This exercise allowed to estimate the detection limits for Ariel Tier-2 and Tier-3 modes when clouds are present. In a second experiment, we imposed an arbitrary trend between a chemical species and the effective temperature of the planet. A last experiment was run requiring molecular abundances being dictated by equilibrium chemistry at a certain temperature. Our results demonstrate the ability of Ariel Tier-2 and Tier-3 surveys to reveal trends between the chemistry and associated planetary parameters. Future work will focus on eclipse data, on atmospheres heavier than hydrogen and will be applied also to other observatories., 33 pages, 24 figures, Accepted in AJ
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.