1. Ground‐Based Far Infrared Emissivity Measurements Using the Absolute Radiance Interferometer.
- Author
-
Loveless, M., Adler, D., Best, F., Borbas, E., Huang, X., Knuteson, R., L'Ecuyer, T., Nalli, N. R., Olsen, E., Revercomb, H., and Taylor, J. K.
- Subjects
- *
INFRARED radiometry , *CLIMATE change models , *EMISSIVITY measurement , *SPACE sciences , *RADIATION measurements - Abstract
Far infrared (FIR) emission from the Earth's polar regions has become an area of increasing scientific interest and value. FIR emission is important for understanding Earth's radiative balance and improving global climate models, especially in rapidly changing Arctic conditions. Far‐infrared emission from Earth is not currently being monitored from space, except as part of broadband emission channels of Earth radiation budget measurements like those from the CERES project, and only limited measurements in the FIR spectrum exist. The Absolute Radiance Interferometer (ARI), developed as a prototype of the infrared spectrometer for CLARREO at the University of Wisconsin‐Madison, Space Science and Engineering Center, measures absolute spectrally resolved infrared (IR) radiance from 200 to 2,000 cm−1 (or 5–50 μm) at 0.5 cm−1 resolution with high accuracy (<0.1 K 3‐sigma brightness temperature at scene temperature). This instrument was taken into the field in Madison, Wisconsin, USA, during the winters of 2021 and 2022, where the weather can reach polar‐like conditions to measure high spectral resolution radiances of various sample types. Sample materials included water, snow, ice, evergreen leaves, dry grass, and sand, all characteristic of high latitude regions. Radiances collected from both a sky view and the sample view in clear‐sky conditions were used to retrieve FIR emissivity. This paper describes the ARI instrument configuration and capability for ground‐based measurements in the FIR region, and documents retrieved emissivities of various analyzed samples. The retrieved emissivity results are publicly available, and comparisons are made to simulated emissivity estimates. Key Points: Absolute Radiance Interferometer used to obtain high spectral resolution far infrared radiation measurements in semi‐controlled environmentsRadiation measurements of the sky and samples, including snow, water, ice, sand, and vegetation, allowed for retrieval of sample emissivityThe retrieved far infrared emissivity spectra and radiance measurements are available for model intercomparisons and other uses [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF