1. Mesenchymal stem cell-derived exosomal miR-26a induces ferroptosis, suppresses hepatic stellate cell activation, and ameliorates liver fibrosis by modulating SLC7A11
- Author
-
Cao Ying, Yang Huan, Huang Yan, Lu Jian, Du Hong, and Wang Bingying
- Subjects
fibrosis ,mesenchymal stem cell ,exosome ,mir-26a ,ferroptosis ,slc7a11 ,Medicine - Abstract
Liver fibrosis is a key contributor to hepatic disease-related mortality. Exosomes derived from mesenchymal stem cells (MSCs) have been revealed to improve liver fibrosis. To explore the effect and mechanism of MSC-derived exosomal miR-26a on liver fibrosis, exosomes were separated from bone marrow-derived MSCs (BMSCs) and used to treat with LX2 cells. The miR-26a level was decreased in BMSC-derived exosomes. Treatment with exosomes isolated from human BMSCs transfected with miR-26a mimics (miR-26a mimic-Exo) decreased the 5-ethynyl-2'-deoxyuridine-positive cell rate, the protein level of α-SMA and collagen I, and the glutathione (GSH) level but enhanced the apoptosis rate and the reactive oxide species (ROS) level in LX2 cells, which were reversed by the treatment of deferoxamine. Mechanically, miR-26a directly bound SLC7A11 mRNA and negatively modulated the level of SLC7A11 in LX2 cells. Overexpression of SLC7A11 reversed the miR-26a mimic-Exo-induced alterations in the level of ROS, Fe2+, malonaldehyde, and GSH in LX2 cells. In vivo, miR-26a mimic-Exo decreased the level of SLC7A11 and attenuated CCL4-induced liver fibrosis. Collectively, miR-26a mimic-Exo induced ferroptosis to alleviate liver fibrosis by regulating SLC7A11, which may provide new strategies for the treatment of liver fibrosis, and even other relevant diseases.
- Published
- 2024
- Full Text
- View/download PDF