332 results on '"Ludewig B"'
Search Results
2. Molecular characterization of virus-induced autoantibody responses
- Author
-
Metters, Ludewig B, Krebs P, Türeci Ö, and Sahin U
- Subjects
Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 ,Cytology ,QH573-671 - Published
- 2004
- Full Text
- View/download PDF
3. Uroonkologische Forschung aus Labor und Klinik
- Author
-
Engeler, D., Ludewig, B., and Schmid, H.-P.
- Abstract
Zusammenfassung: Der vorliegende Artikel zeigt aktuelle Arbeiten und Ergebnisse von Projekten im uroonkologischen Bereich am Kantonsspital St. Gallen. Einerseits wird die Immuntherapie des hormonrefraktären Prostatakarzinoms mittels dendritischer Zellvakzinierung aufgezeigt. Auf der anderen Seite stellen wir aktuelle Arbeiten aus Labor und Klinik zum nicht muskelinvasiven Urothelkarzinom der Blase vor.
- Published
- 2024
- Full Text
- View/download PDF
4. Dissecting the cardiac cell landscape in myocarditis
- Author
-
Gil-Cruz, C, primary, Perez-Shibayama, C, additional, Naegele, M, additional, Cheng, H W, additional, Luetge, M, additional, Frischmann, K, additional, Joachimbauer, A, additional, Parianos, D, additional, Flammer, A J, additional, Ruschitzka, F, additional, Ludewig, B, additional, and Schmidt, D, additional
- Published
- 2022
- Full Text
- View/download PDF
5. Dendritic Cell Vaccination and Viral Infection — Animal Models
- Author
-
Ludewig, B., Compans, R. W., editor, Cooper, M. D., editor, Ito, Y., editor, Koprowski, H., editor, Melchers, F., editor, Oldstone, M. B. A., editor, Olsnes, S., editor, Potter, M., editor, Vogt, P. K., editor, Wagner, H., editor, and Steinkasserer, Alexander, editor
- Published
- 2003
- Full Text
- View/download PDF
6. Mechanisms of virus-induced autoimmune disease
- Author
-
Ludewig, B., Aichele, P., Zinkernagel, R. M., Hengartner, H., Manns, M. P., editor, Paumgartner, G., editor, and Leuschner, U., editor
- Published
- 2000
- Full Text
- View/download PDF
7. Virustransport durch dendritische Zellen: Trojanisches Pferd oder Alarmsignal für erfolgreiche Verteidigung?
- Author
-
Ludewig, B., Maloy, K. J., Hengartner, H., Zinkernagel, R. M., Brockmeyer, Norbert H., editor, Hoffmann, Klaus, editor, Reimann, G., editor, Stücker, Markus, editor, Altmeyer, Peter, editor, and Brodt, R., editor
- Published
- 2000
- Full Text
- View/download PDF
8. POS1215 IMMUNE CORRELATES AND CLINICAL COURSE OF PATIENTS WITH RHEUMATOID ARTHRITIS FOLLOWING VACCINATION WITH ANTI SARS-CoV-2 mRNA BASED VACCINES: RESULTS FROM A PROSPECTIVE, OBSERVATIONAL AND CONTROLLED STUDY
- Author
-
Schmiedeberg, K., primary, Abela, I. A., additional, Pikor, N. B., additional, Vuilleumier, N., additional, Schwarzmueller, M., additional, Epp, S., additional, Pagano, S., additional, Grabherr, S., additional, Patterson, A. B., additional, Nussberger, M., additional, Trkola, A., additional, Ludewig, B., additional, Von Kempis, J., additional, and Rubbert-Roth, A., additional
- Published
- 2022
- Full Text
- View/download PDF
9. A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity
- Author
-
Alexandre, YO, Schienstock, D, Lee, HJ, Gandolfo, LC, Williams, CG, Devi, S, Pal, B, Groom, JR, Cao, W, Christo, SN, Gordon, CL, Starkey, G, D'Costa, R, Mackay, LK, Haque, A, Ludewig, B, Belz, GT, Mueller, SN, Alexandre, YO, Schienstock, D, Lee, HJ, Gandolfo, LC, Williams, CG, Devi, S, Pal, B, Groom, JR, Cao, W, Christo, SN, Gordon, CL, Starkey, G, D'Costa, R, Mackay, LK, Haque, A, Ludewig, B, Belz, GT, and Mueller, SN
- Abstract
The spleen is a compartmentalized organ that serves as a blood filter and safeguard of systemic immune surveillance. Labyrinthine networks of fibroblastic stromal cells construct complex niches within the white pulp and red pulp that are important for tissue homeostasis and immune activation. However, the identity and roles of the global splenic fibroblastic stromal cells in homeostasis and immune responses are poorly defined. Here, we performed a cellular and molecular dissection of the splenic reticular stromal cell landscape. We found that white pulp fibroblastic reticular cells (FRCs) responded robustly during acute viral infection, but this program of gene regulation was suppressed during persistent viral infection. Single-cell transcriptomic analyses in mice revealed diverse fibroblast cell niches and unexpected heterogeneity among podoplanin-expressing cells that include glial, mesothelial, and adventitial cells in addition to FRCs. We found analogous fibroblastic stromal cell diversity in the human spleen. In addition, we identify the transcription factor SpiB as a critical regulator required to support white pulp FRC differentiation, homeostatic chemokine expression, and antiviral T cell responses. Together, our study provides a comprehensive map of fibroblastic stromal cell types in the spleen and defines roles for red and white pulp fibroblasts for splenic function and orchestration of immune responses.
- Published
- 2022
10. Fibroblastic reticular cell lineage convergence in Peyer’s patches governs intestinal immunity
- Author
-
Prados, A. Onder, L. Cheng, H.-W. Mörbe, U. Lütge, M. Gil-Cruz, C. Perez-Shibayama, C. Koliaraki, V. Ludewig, B. Kollias, G.
- Abstract
Fibroblastic reticular cells (FRCs) determine the organization of lymphoid organs and control immune cell interactions. While the cellular and molecular mechanisms underlying FRC differentiation in lymph nodes and the splenic white pulp have been elaborated to some extent, in Peyer’s patches (PPs) they remain elusive. Using a combination of single-cell transcriptomics and cell fate mapping in advanced mouse models, we found that PP formation in the mouse embryo is initiated by an expansion of perivascular FRC precursors, followed by FRC differentiation from subepithelial progenitors. Single-cell transcriptomics and cell fate mapping confirmed the convergence of perivascular and subepithelial FRC lineages. Furthermore, lineage-specific loss- and gain-of-function approaches revealed that the two FRC lineages synergistically direct PP organization, maintain intestinal microbiome homeostasis and control anticoronavirus immune responses in the gut. Collectively, this study reveals a distinct mosaic patterning program that generates key stromal cell infrastructures for the control of intestinal immunity. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature.
- Published
- 2021
11. Fibroblasts as immune regulators in infection, inflammation and cancer
- Author
-
Davidson, S. Coles, M. Thomas, T. Kollias, G. Ludewig, B. Turley, S. Brenner, M. Buckley, C.D.
- Abstract
In chronic infection, inflammation and cancer, the tissue microenvironment controls how local immune cells behave, with tissue-resident fibroblasts emerging as a key cell type in regulating activation or suppression of an immune response. Fibroblasts are heterogeneous cells, encompassing functionally distinct populations, the phenotypes of which differ according to their tissue of origin and type of inciting disease. Their immunological properties are also diverse, ranging from the maintenance of a potent inflammatory environment in chronic inflammation to promoting immunosuppression in malignancy, and encapsulating and incarcerating infectious agents within tissues. In this Review, we compare the mechanisms by which fibroblasts control local immune responses, as well as the factors regulating their inflammatory and suppressive profiles, in different tissues and pathological settings. This cross-disease perspective highlights the importance of tissue context in determining fibroblast–immune cell interactions, as well as potential therapeutic avenues to exploit this knowledge for the benefit of patients with chronic infection, inflammation and cancer. © 2021, Springer Nature Limited.
- Published
- 2021
12. Uroonkologische Forschung aus Labor und Klinik
- Author
-
Engeler, D., Ludewig, B., and Schmid, H.-P.
- Published
- 2008
- Full Text
- View/download PDF
13. Fibroblast-derived IL-33 is dispensable for lymph node homeostasis but critical for CD8 T-cell responses to acute and chronic viral infection
- Author
-
Aparicio-Domingo, P, Cannelle, H, Buechler, MB, Nguyen, S, Kallert, SM, Favre, S, Alouche, N, Papazian, Natalie, Ludewig, B, Cupedo, Tom, Pinschewer, DD, Turley, SJ, Luther, SA, Aparicio-Domingo, P, Cannelle, H, Buechler, MB, Nguyen, S, Kallert, SM, Favre, S, Alouche, N, Papazian, Natalie, Ludewig, B, Cupedo, Tom, Pinschewer, DD, Turley, SJ, and Luther, SA
- Abstract
Upon viral infection, stressed or damaged cells can release alarmins like IL-33 that act as endogenous danger signals alerting innate and adaptive immune cells. IL-33 coming from nonhematopoietic cells has been identified as important factor triggering the expansion of antiviral CD8+ T cells. In LN the critical cellular source of IL-33 is unknown, as is its potential cell-intrinsic function as a chromatin-associated factor. Using IL-33-GFP reporter mice, we identify fibroblastic reticular cells (FRC) and lymphatic endothelial cells (LEC) as the main IL-33 source. In homeostasis, IL-33 is dispensable as a transcriptional regulator in FRC, indicating it functions mainly as released cytokine. Early during infection with lymphocytic choriomeningitis virus (LCMV) clone 13, both FRC and LEC lose IL-33 protein expression suggesting cytokine release, correlating timewise with IL-33 receptor expression by reactive CD8+ T cells and their greatly augmented expansion in WT versus ll33−/− mice. Using mice lacking IL-33 selectively in FRC versus LEC, we identify FRC as key IL-33 source driving acute and chronic antiviral T-cell responses. Collectively, these findings show that LN T-zone FRC not only regulate the homeostasis of naïve T cells but also their expansion and differentiation several days into an antiviral response.
- Published
- 2021
14. A novel CCL19-Cre/CCL21 dual BAC transgenic mouse system investigates functions of T cell zone stromal cells: W65.005
- Author
-
Chai, Q., Onder, L., Rülicke, T., Scandella, E., and Ludewig, B.
- Published
- 2012
15. Lymphotoxin beta receptor signaling in endothelial cells is critical for lymph node development and high endothelial venule formation: W65.004
- Author
-
Onder, L., Danuser, R., Scandella, E., Hehlgans, T., Stein, J. V., and Ludewig, B.
- Published
- 2012
16. Dissecting the impact of hematopoetic versus stromal APCs in the process of central tolerance towards a natural occurring autoantigen: W17.003
- Author
-
Nindl, V., Onder, L., Scandella, E., Chai, Q., De Giuli, R., Ledermann, B., Waisman, A., Rülicke, T., Thiel, V., and Ludewig, B.
- Published
- 2012
17. TNF-alpha protects from exacerbated autoinflammatory response in mouse model of experimental autoimmune myocarditis
- Author
-
Rolski, F, primary, Weglarczyk, K, additional, Pelczar, P, additional, Siedlar, M, additional, Ludewig, B, additional, Kania, G, additional, and Blyszczuk, P, additional
- Published
- 2020
- Full Text
- View/download PDF
18. Expression of AXL receptor tyrosine kinase relates to monocyte dysfunction and severity of cirrhosis
- Author
-
Brenig, R, Pop, OT, Triantafyllou, E, Geng, A, Singanayagam, A, Perez-Shibayama, C, Besse, L, Cupovic, J, Kuenzler, P, Boldanova, T, Brand, S, Semela, D, Duong, FHT, Weston, CJ, Ludewig, B, Heim, MH, Wendon, J, Antoniades, CG, and Bernsmeier, C
- Subjects
Life Sciences & Biomedicine - Other Topics ,CHRONIC LIVER-FAILURE ,Adult ,Liver Cirrhosis ,Male ,METFORMIN ,THP-1 Cells ,Lymphocyte Activation ,Severity of Illness Index ,BACTERIAL-INFECTIONS ,IMMUNE DYSFUNCTION ,Monocytes ,ACUTE DECOMPENSATION ,INFLAMMATION ,Phagocytosis ,Transduction, Genetic ,Proto-Oncogene Proteins ,APOPTOTIC CELLS ,INTERLEUKIN-1 ,Humans ,MACROPHAGES ,Biology ,Research Articles ,Aged ,Science & Technology ,Interleukin-6 ,Tumor Necrosis Factor-alpha ,Receptor Protein-Tyrosine Kinases ,Middle Aged ,Axl Receptor Tyrosine Kinase ,DR EXPRESSION ,Immunity, Innate ,Female ,Life Sciences & Biomedicine ,Biomarkers ,Research Article ,Follow-Up Studies ,Signal Transduction - Abstract
Immune dysfunction determines morbidity and mortality in liver cirrhosis. Distinct AXL-expressing circulating monocytes, which regulate antimicrobial responses, expand with progression of the disease., Infectious complications in patients with cirrhosis frequently initiate episodes of decompensation and substantially contribute to the high mortality. Mechanisms of the underlying immuneparesis remain underexplored. TAM receptors (TYRO3/AXL/MERTK) are important inhibitors of innate immune responses. To understand the pathophysiology of immuneparesis in cirrhosis, we detailed TAM receptor expression in relation to monocyte function and disease severity prior to the onset of acute decompensation. TNF-α/IL-6 responses to lipopolysaccharide were attenuated in monocytes from patients with cirrhosis (n = 96) compared with controls (n = 27) and decreased in parallel with disease severity. Concurrently, an AXL-expressing (AXL+) monocyte population expanded. AXL+ cells (CD14+CD16highHLA-DRhigh) were characterised by attenuated TNF-α/IL-6 responses and T cell activation but enhanced efferocytosis and preserved phagocytosis of Escherichia coli. Their expansion correlated with disease severity, complications, infection, and 1-yr mortality. AXL+ monocytes were generated in response to microbial products and efferocytosis in vitro. AXL kinase inhibition and down-regulation reversed attenuated monocyte inflammatory responses in cirrhosis ex vivo. AXL may thus serve as prognostic marker and deserves evaluation as immunotherapeutic target in cirrhosis.
- Published
- 2019
19. B cell zone reticular cell microenvironments shape CXCL13 gradient formation
- Author
-
Cosgrove, J. (Jason), Novkovic, M. (Mario), Albrecht, S. (Stefan), Pikor, N.B. (Natalia B.), Zhou, Z. (Zhaoukun), Onder, G. (Graziano), Mörbe, U. (Urs), Cupovic, J. (Jovana), Miller, H. (Helen), Alden, K. (Kieran), Thuery, A. (Anne), O’Toole, P. (Peter), Pinter, R. (Rita), Jarrett, S. (Simon), Taylor, E. (Emily), Venetz, D. (Daniel), Heller, M. (Manfred), Uguccioni, M. (Mariagrazia), Legler, D.F. (Daniel F.), Lacey, C.J. (Charles J.), Coatesworth, A. (Andrew), Polak, W.G. (Wojciech), Cupedo, T. (Tom), Manoury, B. (Bénedicte), Thelen, M. (Marcus), Stein, J.V. (Jens V.), Wolf, M. (Marlene), Leake, M.C. (Mark C.), Timmis, J. (Jon), Ludewig, B. (Burkhard), Coles, M. (Mark), Cosgrove, J. (Jason), Novkovic, M. (Mario), Albrecht, S. (Stefan), Pikor, N.B. (Natalia B.), Zhou, Z. (Zhaoukun), Onder, G. (Graziano), Mörbe, U. (Urs), Cupovic, J. (Jovana), Miller, H. (Helen), Alden, K. (Kieran), Thuery, A. (Anne), O’Toole, P. (Peter), Pinter, R. (Rita), Jarrett, S. (Simon), Taylor, E. (Emily), Venetz, D. (Daniel), Heller, M. (Manfred), Uguccioni, M. (Mariagrazia), Legler, D.F. (Daniel F.), Lacey, C.J. (Charles J.), Coatesworth, A. (Andrew), Polak, W.G. (Wojciech), Cupedo, T. (Tom), Manoury, B. (Bénedicte), Thelen, M. (Marcus), Stein, J.V. (Jens V.), Wolf, M. (Marlene), Leake, M.C. (Mark C.), Timmis, J. (Jon), Ludewig, B. (Burkhard), and Coles, M. (Mark)
- Abstract
Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients.
- Published
- 2020
- Full Text
- View/download PDF
20. B cell zone reticular cell microenvironments shape CXCL13 gradient formation
- Author
-
Cosgrove, J, Novkovic, M, Albrecht, S, Pikor, NB, Zhou, ZK, Onder, L, Morbe, U, Cupovic, J, Miller, H, Alden, K, Thuery, A, O'Toole, P, Pinter, R, Jarrett, S, Taylor, E, Venetz, D, Heller, M, Uguccioni, M, Legler, DF, Lacey, CJ, Coatesworth, A, Polak, Wojtek, Cupedo, Tom, Manoury, B, Thelen, M, Stein, JV, Wolf, M, Leake, MC, Timmis, J, Ludewig, B, Coles, MC, Cosgrove, J, Novkovic, M, Albrecht, S, Pikor, NB, Zhou, ZK, Onder, L, Morbe, U, Cupovic, J, Miller, H, Alden, K, Thuery, A, O'Toole, P, Pinter, R, Jarrett, S, Taylor, E, Venetz, D, Heller, M, Uguccioni, M, Legler, DF, Lacey, CJ, Coatesworth, A, Polak, Wojtek, Cupedo, Tom, Manoury, B, Thelen, M, Stein, JV, Wolf, M, Leake, MC, Timmis, J, Ludewig, B, and Coles, MC
- Published
- 2020
21. Simulation of the interferon-mediated protective field in lymphoid organs with their spatial and functional organization taken into consideration
- Author
-
Bocharov, G. A., Danilov, A. A., Vassilevski, Yu. V., Marchuk, G. I., Chereshnev, V. A., and Ludewig, B.
- Published
- 2011
- Full Text
- View/download PDF
22. Type I interferon induces CXCL13 to support ectopic germinal center formation
- Author
-
Denton, AE, Innocentin, S, Carr, EJ, Bradford, BM, Lafouresse, F, Mabbott, NA, Morbe, U, Ludewig, B, Groom, JR, Good-Jacobson, KL, Linterman, MA, Denton, AE, Innocentin, S, Carr, EJ, Bradford, BM, Lafouresse, F, Mabbott, NA, Morbe, U, Ludewig, B, Groom, JR, Good-Jacobson, KL, and Linterman, MA
- Abstract
Ectopic lymphoid structures form in a wide range of inflammatory conditions, including infection, autoimmune disease, and cancer. In the context of infection, this response can be beneficial for the host: influenza A virus infection-induced pulmonary ectopic germinal centers give rise to more broadly cross-reactive antibody responses, thereby generating cross-strain protection. However, despite the ubiquity of ectopic lymphoid structures and their role in both health and disease, little is known about the mechanisms by which inflammation is able to convert a peripheral tissue into one that resembles a secondary lymphoid organ. Here, we show that type I IFN produced after viral infection can induce CXCL13 expression in a phenotypically distinct population of lung fibroblasts, driving CXCR5-dependent recruitment of B cells and initiating ectopic germinal center formation. This identifies type I IFN as a novel inducer of CXCL13, which, in combination with other stimuli, can promote lung remodeling, converting a nonlymphoid tissue into one permissive to functional tertiary lymphoid structure formation.
- Published
- 2019
23. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
- Author
-
Cossarizza, A, Chang, H-D, Radbruch, A, Acs, A, Adam, D, Adam-Klages, S, Agace, WW, Aghaeepour, N, Akdis, M, Allez, M, Almeida, LN, Alvisi, G, Anderson, G, Andrae, I, Annunziato, F, Anselmo, A, Bacher, P, Baldari, CT, Bari, S, Barnaba, V, Barros-Martins, J, Battistini, L, Bauer, W, Baumgart, S, Baumgarth, N, Baumjohann, D, Baying, B, Bebawy, M, Becher, B, Beisker, W, Benes, V, Beyaert, R, Blanco, A, Boardman, DA, Bogdan, C, Borger, JG, Borsellino, G, Boulais, PE, Bradford, JA, Brenner, D, Brinkman, RR, Brooks, AES, Busch, DH, Buescher, M, Bushnell, TP, Calzetti, F, Cameron, G, Cammarata, I, Cao, X, Cardell, SL, Casola, S, Cassatella, MA, Cavani, A, Celada, A, Chatenoud, L, Chattopadhyay, PK, Chow, S, Christakou, E, Cicin-Sain, L, Clerici, M, Colombo, FS, Cook, L, Cooke, A, Cooper, AM, Corbett, AJ, Cosma, A, Cosmi, L, Coulie, PG, Cumano, A, Cvetkovic, L, Dang, VD, Dang-Heine, C, Davey, MS, Davies, D, De Biasi, S, Del Zotto, G, Dela Cruz, GV, Delacher, M, Della Bella, S, Dellabona, P, Deniz, G, Dessing, M, Di Santo, JP, Diefenbach, A, Dieli, F, Dolf, A, Doerner, T, Dress, RJ, Dudziak, D, Dustin, M, Dutertre, C-A, Ebner, F, Eckle, SBG, Edinger, M, Eede, P, Ehrhardt, GRA, Eich, M, Engel, P, Engelhardt, B, Erdei, A, Esser, C, Everts, B, Evrard, M, Falk, CS, Fehniger, TA, Felipo-Benavent, M, Ferry, H, Feuerer, M, Filby, A, Filkor, K, Fillatreau, S, Follo, M, Foerster, I, Foster, J, Foulds, GA, Frehse, B, Frenette, PS, Frischbutter, S, Fritzsche, W, Galbraith, DW, Gangaev, A, Garbi, N, Gaudilliere, B, Gazzinelli, RT, Geginat, J, Gerner, W, Gherardin, NA, Ghoreschi, K, Gibellini, L, Ginhoux, F, Goda, K, Godfrey, DI, Goettlinger, C, Gonzalez-Navajas, JM, Goodyear, CS, Gori, A, Grogan, JL, Grummitt, D, Gruetzkau, A, Haftmann, C, Hahn, J, Hammad, H, Haemmerling, G, Hansmann, L, Hansson, G, Harpur, CM, Hartmann, S, Hauser, A, Hauser, AE, Haviland, DL, Hedley, D, Hernandez, DC, Herrera, G, Herrmann, M, Hess, C, Hoefer, T, Hoffmann, P, Hogquist, K, Holland, T, Hollt, T, Holmdahl, R, Hombrink, P, Houston, JP, Hoyer, BF, Huang, B, Huang, F-P, Huber, JE, Huehn, J, Hundemer, M, Hunter, CA, Hwang, WYK, Iannone, A, Ingelfinger, F, Ivison, SM, Jaeck, H-M, Jani, PK, Javega, B, Jonjic, S, Kaiser, T, Kalina, T, Kamradt, T, Kaufmann, SHE, Keller, B, Ketelaars, SLC, Khalilnezhad, A, Khan, S, Kisielow, J, Klenerman, P, Knopf, J, Koay, H-F, Kobow, K, Kolls, JK, Kong, WT, Kopf, M, Korn, T, Kriegsmann, K, Kristyanto, H, Kroneis, T, Krueger, A, Kuehne, J, Kukat, C, Kunkel, D, Kunze-Schumacher, H, Kurosaki, T, Kurts, C, Kvistborg, P, Kwok, I, Landry, J, Lantz, O, Lanuti, P, LaRosa, F, Lehuen, A, LeibundGut-Landmann, S, Leipold, MD, Leung, LYT, Levings, MK, Lino, AC, Liotta, F, Litwin, V, Liu, Y, Ljunggren, H-G, Lohoff, M, Lombardi, G, Lopez, L, Lopez-Botet, M, Lovett-Racke, AE, Lubberts, E, Luche, H, Ludewig, B, Lugli, E, Lunemann, S, Maecker, HT, Maggi, L, Maguire, O, Mair, F, Mair, KH, Mantovani, A, Manz, RA, Marshall, AJ, Martinez-Romero, A, Martrus, G, Marventano, I, Maslinski, W, Matarese, G, Mattioli, AV, Maueroder, C, Mazzoni, A, McCluskey, J, McGrath, M, McGuire, HM, McInnes, IB, Mei, HE, Melchers, F, Melzer, S, Mielenz, D, Miller, SD, Mills, KHG, Minderman, H, Mjosberg, J, Moore, J, Moran, B, Moretta, L, Mosmann, TR, Mueller, S, Multhoff, G, Munoz, LE, Munz, C, Nakayama, T, Nasi, M, Neumann, K, Ng, LG, Niedobitek, A, Nourshargh, S, Nunez, G, O'Connor, J-E, Ochel, A, Oja, A, Ordonez, D, Orfao, A, Orlowski-Oliver, E, Ouyang, W, Oxenius, A, Palankar, R, Panse, I, Pattanapanyasat, K, Paulsen, M, Pavlinic, D, Penter, L, Peterson, P, Peth, C, Petriz, J, Piancone, F, Pickl, WF, Piconese, S, Pinti, M, Pockley, AG, Podolska, MJ, Poon, Z, Pracht, K, Prinz, I, Pucillo, CEM, Quataert, SA, Quatrini, L, Quinn, KM, Radbruch, H, Radstake, TRDJ, Rahmig, S, Rahn, H-P, Rajwa, B, Ravichandran, G, Raz, Y, Rebhahn, JA, Recktenwald, D, Reimer, D, Reis e Sousa, C, Remmerswaal, EBM, Richter, L, Rico, LG, Riddell, A, Rieger, AM, Robinson, JP, Romagnani, C, Rubartelli, A, Ruland, J, Saalmueller, A, Saeys, Y, Saito, T, Sakaguchi, S, Sala-de-Oyanguren, F, Samstag, Y, Sanderson, S, Sandrock, I, Santoni, A, Sanz, RB, Saresella, M, Sautes-Fridman, C, Sawitzki, B, Schadt, L, Scheffold, A, Scherer, HU, Schiemann, M, Schildberg, FA, Schimisky, E, Schlitzer, A, Schlosser, J, Schmid, S, Schmitt, S, Schober, K, Schraivogel, D, Schuh, W, Schueler, T, Schulte, R, Schulz, AR, Schulz, SR, Scotta, C, Scott-Algara, D, Sester, DP, Shankey, TV, Silva-Santos, B, Simon, AK, Sitnik, KM, Sozzani, S, Speiser, DE, Spidlen, J, Stahlberg, A, Stall, AM, Stanley, N, Stark, R, Stehle, C, Steinmetz, T, Stockinger, H, Takahama, Y, Takeda, K, Tan, L, Tarnok, A, Tiegs, G, Toldi, G, Tornack, J, Traggiai, E, Trebak, M, Tree, TIM, Trotter, J, Trowsdale, J, Tsoumakidou, M, Ulrich, H, Urbanczyk, S, van de Veen, W, van den Broek, M, van der Pol, E, Van Gassen, S, Van Isterdael, G, van Lier, RAW, Veldhoen, M, Vento-Asturias, S, Vieira, P, Voehringer, D, Volk, H-D, von Borstel, A, von Volkmann, K, Waisman, A, Walker, RV, Wallace, PK, Wang, SA, Wang, XM, Ward, MD, Ward-Hartstonge, KA, Warnatz, K, Warnes, G, Warth, S, Waskow, C, Watson, JV, Watzl, C, Wegener, L, Weisenburger, T, Wiedemann, A, Wienands, J, Wilharm, A, Wilkinson, RJ, Willimsky, G, Wing, JB, Winkelmann, R, Winkler, TH, Wirz, OF, Wong, A, Wurst, P, Yang, JHM, Yang, J, Yazdanbakhsh, M, Yu, L, Yue, A, Zhang, H, Zhao, Y, Ziegler, SM, Zielinski, C, Zimmermann, J, Zychlinsky, A, Cossarizza, A, Chang, H-D, Radbruch, A, Acs, A, Adam, D, Adam-Klages, S, Agace, WW, Aghaeepour, N, Akdis, M, Allez, M, Almeida, LN, Alvisi, G, Anderson, G, Andrae, I, Annunziato, F, Anselmo, A, Bacher, P, Baldari, CT, Bari, S, Barnaba, V, Barros-Martins, J, Battistini, L, Bauer, W, Baumgart, S, Baumgarth, N, Baumjohann, D, Baying, B, Bebawy, M, Becher, B, Beisker, W, Benes, V, Beyaert, R, Blanco, A, Boardman, DA, Bogdan, C, Borger, JG, Borsellino, G, Boulais, PE, Bradford, JA, Brenner, D, Brinkman, RR, Brooks, AES, Busch, DH, Buescher, M, Bushnell, TP, Calzetti, F, Cameron, G, Cammarata, I, Cao, X, Cardell, SL, Casola, S, Cassatella, MA, Cavani, A, Celada, A, Chatenoud, L, Chattopadhyay, PK, Chow, S, Christakou, E, Cicin-Sain, L, Clerici, M, Colombo, FS, Cook, L, Cooke, A, Cooper, AM, Corbett, AJ, Cosma, A, Cosmi, L, Coulie, PG, Cumano, A, Cvetkovic, L, Dang, VD, Dang-Heine, C, Davey, MS, Davies, D, De Biasi, S, Del Zotto, G, Dela Cruz, GV, Delacher, M, Della Bella, S, Dellabona, P, Deniz, G, Dessing, M, Di Santo, JP, Diefenbach, A, Dieli, F, Dolf, A, Doerner, T, Dress, RJ, Dudziak, D, Dustin, M, Dutertre, C-A, Ebner, F, Eckle, SBG, Edinger, M, Eede, P, Ehrhardt, GRA, Eich, M, Engel, P, Engelhardt, B, Erdei, A, Esser, C, Everts, B, Evrard, M, Falk, CS, Fehniger, TA, Felipo-Benavent, M, Ferry, H, Feuerer, M, Filby, A, Filkor, K, Fillatreau, S, Follo, M, Foerster, I, Foster, J, Foulds, GA, Frehse, B, Frenette, PS, Frischbutter, S, Fritzsche, W, Galbraith, DW, Gangaev, A, Garbi, N, Gaudilliere, B, Gazzinelli, RT, Geginat, J, Gerner, W, Gherardin, NA, Ghoreschi, K, Gibellini, L, Ginhoux, F, Goda, K, Godfrey, DI, Goettlinger, C, Gonzalez-Navajas, JM, Goodyear, CS, Gori, A, Grogan, JL, Grummitt, D, Gruetzkau, A, Haftmann, C, Hahn, J, Hammad, H, Haemmerling, G, Hansmann, L, Hansson, G, Harpur, CM, Hartmann, S, Hauser, A, Hauser, AE, Haviland, DL, Hedley, D, Hernandez, DC, Herrera, G, Herrmann, M, Hess, C, Hoefer, T, Hoffmann, P, Hogquist, K, Holland, T, Hollt, T, Holmdahl, R, Hombrink, P, Houston, JP, Hoyer, BF, Huang, B, Huang, F-P, Huber, JE, Huehn, J, Hundemer, M, Hunter, CA, Hwang, WYK, Iannone, A, Ingelfinger, F, Ivison, SM, Jaeck, H-M, Jani, PK, Javega, B, Jonjic, S, Kaiser, T, Kalina, T, Kamradt, T, Kaufmann, SHE, Keller, B, Ketelaars, SLC, Khalilnezhad, A, Khan, S, Kisielow, J, Klenerman, P, Knopf, J, Koay, H-F, Kobow, K, Kolls, JK, Kong, WT, Kopf, M, Korn, T, Kriegsmann, K, Kristyanto, H, Kroneis, T, Krueger, A, Kuehne, J, Kukat, C, Kunkel, D, Kunze-Schumacher, H, Kurosaki, T, Kurts, C, Kvistborg, P, Kwok, I, Landry, J, Lantz, O, Lanuti, P, LaRosa, F, Lehuen, A, LeibundGut-Landmann, S, Leipold, MD, Leung, LYT, Levings, MK, Lino, AC, Liotta, F, Litwin, V, Liu, Y, Ljunggren, H-G, Lohoff, M, Lombardi, G, Lopez, L, Lopez-Botet, M, Lovett-Racke, AE, Lubberts, E, Luche, H, Ludewig, B, Lugli, E, Lunemann, S, Maecker, HT, Maggi, L, Maguire, O, Mair, F, Mair, KH, Mantovani, A, Manz, RA, Marshall, AJ, Martinez-Romero, A, Martrus, G, Marventano, I, Maslinski, W, Matarese, G, Mattioli, AV, Maueroder, C, Mazzoni, A, McCluskey, J, McGrath, M, McGuire, HM, McInnes, IB, Mei, HE, Melchers, F, Melzer, S, Mielenz, D, Miller, SD, Mills, KHG, Minderman, H, Mjosberg, J, Moore, J, Moran, B, Moretta, L, Mosmann, TR, Mueller, S, Multhoff, G, Munoz, LE, Munz, C, Nakayama, T, Nasi, M, Neumann, K, Ng, LG, Niedobitek, A, Nourshargh, S, Nunez, G, O'Connor, J-E, Ochel, A, Oja, A, Ordonez, D, Orfao, A, Orlowski-Oliver, E, Ouyang, W, Oxenius, A, Palankar, R, Panse, I, Pattanapanyasat, K, Paulsen, M, Pavlinic, D, Penter, L, Peterson, P, Peth, C, Petriz, J, Piancone, F, Pickl, WF, Piconese, S, Pinti, M, Pockley, AG, Podolska, MJ, Poon, Z, Pracht, K, Prinz, I, Pucillo, CEM, Quataert, SA, Quatrini, L, Quinn, KM, Radbruch, H, Radstake, TRDJ, Rahmig, S, Rahn, H-P, Rajwa, B, Ravichandran, G, Raz, Y, Rebhahn, JA, Recktenwald, D, Reimer, D, Reis e Sousa, C, Remmerswaal, EBM, Richter, L, Rico, LG, Riddell, A, Rieger, AM, Robinson, JP, Romagnani, C, Rubartelli, A, Ruland, J, Saalmueller, A, Saeys, Y, Saito, T, Sakaguchi, S, Sala-de-Oyanguren, F, Samstag, Y, Sanderson, S, Sandrock, I, Santoni, A, Sanz, RB, Saresella, M, Sautes-Fridman, C, Sawitzki, B, Schadt, L, Scheffold, A, Scherer, HU, Schiemann, M, Schildberg, FA, Schimisky, E, Schlitzer, A, Schlosser, J, Schmid, S, Schmitt, S, Schober, K, Schraivogel, D, Schuh, W, Schueler, T, Schulte, R, Schulz, AR, Schulz, SR, Scotta, C, Scott-Algara, D, Sester, DP, Shankey, TV, Silva-Santos, B, Simon, AK, Sitnik, KM, Sozzani, S, Speiser, DE, Spidlen, J, Stahlberg, A, Stall, AM, Stanley, N, Stark, R, Stehle, C, Steinmetz, T, Stockinger, H, Takahama, Y, Takeda, K, Tan, L, Tarnok, A, Tiegs, G, Toldi, G, Tornack, J, Traggiai, E, Trebak, M, Tree, TIM, Trotter, J, Trowsdale, J, Tsoumakidou, M, Ulrich, H, Urbanczyk, S, van de Veen, W, van den Broek, M, van der Pol, E, Van Gassen, S, Van Isterdael, G, van Lier, RAW, Veldhoen, M, Vento-Asturias, S, Vieira, P, Voehringer, D, Volk, H-D, von Borstel, A, von Volkmann, K, Waisman, A, Walker, RV, Wallace, PK, Wang, SA, Wang, XM, Ward, MD, Ward-Hartstonge, KA, Warnatz, K, Warnes, G, Warth, S, Waskow, C, Watson, JV, Watzl, C, Wegener, L, Weisenburger, T, Wiedemann, A, Wienands, J, Wilharm, A, Wilkinson, RJ, Willimsky, G, Wing, JB, Winkelmann, R, Winkler, TH, Wirz, OF, Wong, A, Wurst, P, Yang, JHM, Yang, J, Yazdanbakhsh, M, Yu, L, Yue, A, Zhang, H, Zhao, Y, Ziegler, SM, Zielinski, C, Zimmermann, J, and Zychlinsky, A
- Abstract
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
- Published
- 2019
24. Guidelines for the use of flow cytometry and cell sorting in immunological studies
- Author
-
Cossarizza, Andrea, Chang, Hyun-Dong, Radbruch, Andreas, Akdis, Mübeccel, et al, Becher, Burkhard, Engelhardt, B, LeibundGut-Landmann, Salomé, Ludewig, B, Oxenius, Annette, University of Zurich, and Cossarizza, Andrea
- Subjects
2403 Immunology ,Immunology ,2723 Immunology and Allergy ,570 Life sciences ,biology ,Immunology and Allergy ,610 Medicine & health ,10263 Institute of Experimental Immunology ,10244 Institute of Virology - Published
- 2017
- Full Text
- View/download PDF
25. Myocarditis elicits dendritic cell and monocyte infiltration in the heart and self-antigen presentation by conventional type 2 dendritic cells
- Author
-
Van Der Borght, K. (Katrien), Scott, C.L. (C.), Martens, L. (Liesbet), Sichien, D. (Dorine), Van Isterdael, G. (Gert), Nindl, V. (Veronika), Saeys, Y. (Yvan), Boon, L. (Louis), Ludewig, B. (Burkhard), Gillebert, T.C. (Thierry), Lambrecht, B.N.M. (Bart), Van Der Borght, K. (Katrien), Scott, C.L. (C.), Martens, L. (Liesbet), Sichien, D. (Dorine), Van Isterdael, G. (Gert), Nindl, V. (Veronika), Saeys, Y. (Yvan), Boon, L. (Louis), Ludewig, B. (Burkhard), Gillebert, T.C. (Thierry), and Lambrecht, B.N.M. (Bart)
- Abstract
Autoimmune myocarditis often leads to dilated cardiomyopathy (DCM). Although T cell reactivity to cardiac self-antigen is common in the disease, it is unknown which antigen presenting cell (APC) triggers autoimmunity. Experimental autoimmune myocarditis (EAM) was induced by immunizing mice with a-myosin loaded bone marrow APCs cultured in GM-CSF. APCs found in such cultures include conventional type 2 CD11b+ cDCs (GM-cDC2s) and monocyte-derived cells (GM-MCs). However, only a-myosin loaded GM-cDC2s could induce EAM. We also studied antigen presenting capacity of endogenous type 1 CD24+ cDCs (cDC1s), cDC2s, and MCs for a-myosin-specific TCR-transgenic TCR-M CD4+ T cells. After EAM induction, all cardiac APCs significantly increased and cDCs migrated to the heart-draining mediastinal lymph node (LN). Primarily cDC2s presented a-myosin to TCR-M cells and induced Th1/Th17 differentiation. Loss of IRF4 in Irf4fl/fl.Cd11cCre mice reduced MHCII expression on GM-cDC2s in vitro and cDC2 migration in vivo. However, partly defective cDC2 functions in Irf4fl/fl.Cd11cCre mice did not suppress EAM. MCs were the largest APC subset in the inflamed heart and produced pro-inflammatory cytokines. Targeting APC populations could be exploited in the design of new therapies for cardiac autoimmunity.
- Published
- 2018
- Full Text
- View/download PDF
26. Myocarditis Elicits Dendritic Cell and Monocyte Infiltration in the Heart and Self-Antigen Presentation by Conventional Type 2 Dendritic Cells
- Author
-
Van der Borght, K, Scott, CL, Martens, L, Sichien, D, Van Isterdael, G, Nindl, V, Saeys, Y, Boon, L, Ludewig, B, Gillebert, TC, Lambrecht, Bart, Van der Borght, K, Scott, CL, Martens, L, Sichien, D, Van Isterdael, G, Nindl, V, Saeys, Y, Boon, L, Ludewig, B, Gillebert, TC, and Lambrecht, Bart
- Published
- 2018
27. CD8(+) T cell memory inflation after infection with a non-replicating adenovirus
- Author
-
Bolinger, B, Krebs, P, Ludewig, B, and Klenerman, P
- Published
- 2016
28. Erratum: Underwhelming the immune response: Effect of slow virus growth on CD8+-T-lymphocyte responses (Journal of Virology (2004) 78, 5 (2247-2254))
- Author
-
Bocharov, G, Ludewig, B, Bertoletti, A, Klenerman, P, Junt, T, Krebs, P, Luzyanina, T, Fraser, C, and Anderson, RM
- Published
- 2016
29. Guidelines for the use of flow cytometry and cell sorting in immunological studies
- Author
-
Cossarizza, A. (Andrea), Chang, H.-D. (Hyun-Dong), Radbruch, A. (Andreas), Andrä, I. (Immanuel), Annunziato, F. (Francesco), Bacher, P. (Petra), Barnaba, V. (Vincenzo), Battistini, L. (Luca), Bauer, W.M. (Wolfgang M.), Baumgart, S. (Sabine), Becher, B. (Burkhard), Beisker, W. (Wolfgang), Berek, C. (Claudia), Blanco, A. (Alfonso), Borsellino, G. (Giovanna), Boulais, P.E. (Philip E.), Brinkman, R.R. (Ryan R.), Büscher, M. (Martin), Busch, D.H. (Dirk), Bushnell, T.P. (Timothy P.), Cao, X. (Xuetao), Cavani, A. (Andrea), Chattopadhyay, P.K. (Pratip K.), Cheng, Q. (Qingyu), Chow, S. (Sue), Clerici, M. (Mario), Cooke, A. (Anne), Cosma, A. (Antonio), Cosmi, L. (Lorenzo), Cumano, A. (Ana), Dang, V.D. (Van Duc), Davies, D. (Derek), De Biasi, S. (Sara), Del Zotto, G. (Genny), Della Bella, S. (Silvia), Dellabona, P. (Paolo), Deniz, G. (Gunnur), Dessing, M. (Mark), Diefenbach, A. (Andreas), Santo, J.P. (James) di, Dieli, F. (Francesco), Dolf, A. (Andreas), Donnenberg, V.S. (Vera S.), Dörner, A. (Andrea), Ehrhardt, G.R.A. (Götz R. A.), Endl, E. (Elmar), Engel, P. (Pablo), Engelhardt, B. (Britta), Esser, C. (Charlotte), Everts, B. (Bart), Falk, C.S. (Christine S.), Fehniger, T.A. (Todd A.), Filby, A. (Andrew), Fillatreau, S. (Simon), Follo, M. (Marie), Förster, I. (Irmgard), Foster, J. (John), Foulds, G.A. (Gemma A.), Frenette, P.S. (Paul S.), Galbraith, D. (David), Garbi, N. (Natalio), García-Godoy, M.D. (Maria Dolores), Ghoreschi, K. (Kamran), Gibellini, L. (Lara), Goettlinger, C. (Christoph), Goodyear, C.S. (Carl), Gori, A. (Andrea), Grogan, J.L. (Jane), Gross, M. (Mor), Grützkau, A. (Andreas), Grummitt, D. (Daryl), Hahn, J. (Jonas), Hammer, Q. (Quirin), Hauser, A.E. (Anja E.), Haviland, D.L. (David L.), Hedley, D. (David), Herrera, G. (Guadalupe), Herrmann, M. (Martin), Hiepe, F. (Falk), Holland, T. (Tristan), Hombrink, P. (Pleun), Houston, J.P. (Jessica P.), Hoyer, B.F. (Bimba F.), Huang, B. (Bo), Hunter, C.A. (Christopher A.), Iannone, A. (Anna), Jäck, H.-M. (Hans-Martin), Jávega, B. (Beatriz), Jonjic, S. (Stipan), Juelke, K. (Kerstin), Jung, S. (Steffen), Kaiser, T. (Toralf), Kalina, T. (Tomas), Keller, B. (Baerbel), Khan, S. (Srijit), Kienhöfer, D. (Deborah), Kroneis, T. (Thomas), Kunkel, D. (Désirée), Kurts, C. (Christian), Kvistborg, P. (Pia), Lannigan, J. (Joanne), Lantz, O. (Olivier), Larbi, A. (Anis), LeibundGut-Landmann, S. (Salome), Leipold, M.D. (Michael D.), Levings, M.K., Litwin, V. (Virginia), Liu, Y. (Yanling), Lohoff, M. (Michael), Lombardi, G. (Giovanna), Lopez, L. (Lilly), Lovett-Racke, A. (Amy), Lubberts, E.W. (Erik), Ludewig, B. (Burkhard), Lugli, E. (Enrico), Maecker, H.T. (Holden T.), Martrus, G. (Glòria), Matarese, G. (Giuseppe), Maueröder, C. (Christian), McGrath, M. (Mairi), McInnes, I.B. (Iain), Mei, H.E. (Henrik E.), Melchers, F. (Fritz), Melzer, S. (Susanne), Mielenz, D. (Dirk), Mills, K. (Kingston), Mjösberg, J.M. (Jenny), Moore, J. (Jonni), Moran, B. (Barry), Moretta, A. (Alessandro), Moretta, L. (Lorenzo), Mosmann, T.R. (Tim R.), Müller, S. (Susann), Müller, W. (Werner), Münz, C. (Christian), Multhoff, G. (Gabriele), Munoz, L.E. (Luis Enrique), Murphy, K.M. (Kenneth M.), Nakayama, T. (Toshinori), Nasi, M. (Milena), Neudörfl, C. (Christine), Nolan, J. (John), Nourshargh, S. (Sussan), O'Connor, J.-E. (José-Enrique), Ouyang, W. (Wenjun), Oxenius, A. (Annette), Palankar, R. (Raghav), Panse, I. (Isabel), Peterson, P. (Pärt), Peth, C. (Christian), Petriz, J. (Jordi), Philips, D. (Daisy), Pickl, W. (Winfried), Piconese, S. (Silvia), Pinti, M. (Marcello), Pockley, A.G. (A. Graham), Podolska, M.J. (Malgorzata Justyna), Pucillo, C. (Carlo), Quataert, S.A. (Sally A.), Radstake, T.R.D.J. (Timothy R. D. J.), Rajwa, B. (Bartek), Rebhahn, J.A. (Jonathan A.), Recktenwald, D. (Diether), Remmerswaal, D. (Daniëlle), Rezvani, K. (Katy), Rico, L.G. (Laura G.), Robinson, J.P. (J. Paul), Romagnani, C. (Chiara), Rubartelli, A. (Anna), Ruland, J. (Jürgen), Sakaguchi, S. (Shimon), Sala-de-Oyanguren, F. (Francisco), Samstag, Y. (Yvonne), Sanderson, S. (Sharon), Sawitzki, B. (Birgit), Scheffold, A. (Alexander), Schiemann, M. (Matthias), Schildberg, F. (Frank), Schimisky, E. (Esther), Schmid, S.A. (Stephan A), Schmitt, S. (Steffen), Schober, K. (Kilian), Schüler, T. (Thomas), Schulz, A.R. (Axel Ronald), Schumacher, T.N. (Ton), Scotta, C. (Cristiano), Shankey, T.V. (T. Vincent), Shemer, A. (Anat), Simon, A.-K. (Anna-Katharina), Spidlen, J. (Josef), Stall, A.M. (Alan M.), Stark, R. (Regina), Stehle, C. (Christina), Stein, M. (Merle), Steinmetz, T. (Tobit), Stockinger, H. (Hannes), Takahama, Y. (Yousuke), Tarnok, A. (Attila), Tian, Z. (ZhiGang), Toldi, G. (Gergely), Tornack, J. (Julia), Traggiai, E. (Elisabetta), Trotter, J. (Joe), Ulrich, H. (Henning), van der Braber, M. (Marlous), Van Lier, R.A.W. (Rene A. W.), Veldhoen, M. (Marcello), Vento-Asturias, S. (Salvador), Vieira, P. (Paulo), Voehringer, D. (David), Volk, H.D. (Hans), von Volkmann, K. (Konrad), Waisman, A. (Ari), Walker, R. (Rachael), Ward, M.D. (Michael D.), Warnatz, K. (Klaus), Warth, S. (Sarah), Watson, J.V. (James V.), Watzl, C. (Carsten), Wegener, L. (Leonie), Wiedemann, A. (Annika), Wienands, J. (Jürgen), Willimsky, G. (Gerald), Wing, J. (James), Wurst, P. (Peter), Yu, L. (Liping), Yue, A. (Alice), Zhang, Q. (Qianjun), Zhao, Y. (Yi), Ziegler, S. (Susanne), Zimmermann, J. (Jakob), Cossarizza, A. (Andrea), Chang, H.-D. (Hyun-Dong), Radbruch, A. (Andreas), Andrä, I. (Immanuel), Annunziato, F. (Francesco), Bacher, P. (Petra), Barnaba, V. (Vincenzo), Battistini, L. (Luca), Bauer, W.M. (Wolfgang M.), Baumgart, S. (Sabine), Becher, B. (Burkhard), Beisker, W. (Wolfgang), Berek, C. (Claudia), Blanco, A. (Alfonso), Borsellino, G. (Giovanna), Boulais, P.E. (Philip E.), Brinkman, R.R. (Ryan R.), Büscher, M. (Martin), Busch, D.H. (Dirk), Bushnell, T.P. (Timothy P.), Cao, X. (Xuetao), Cavani, A. (Andrea), Chattopadhyay, P.K. (Pratip K.), Cheng, Q. (Qingyu), Chow, S. (Sue), Clerici, M. (Mario), Cooke, A. (Anne), Cosma, A. (Antonio), Cosmi, L. (Lorenzo), Cumano, A. (Ana), Dang, V.D. (Van Duc), Davies, D. (Derek), De Biasi, S. (Sara), Del Zotto, G. (Genny), Della Bella, S. (Silvia), Dellabona, P. (Paolo), Deniz, G. (Gunnur), Dessing, M. (Mark), Diefenbach, A. (Andreas), Santo, J.P. (James) di, Dieli, F. (Francesco), Dolf, A. (Andreas), Donnenberg, V.S. (Vera S.), Dörner, A. (Andrea), Ehrhardt, G.R.A. (Götz R. A.), Endl, E. (Elmar), Engel, P. (Pablo), Engelhardt, B. (Britta), Esser, C. (Charlotte), Everts, B. (Bart), Falk, C.S. (Christine S.), Fehniger, T.A. (Todd A.), Filby, A. (Andrew), Fillatreau, S. (Simon), Follo, M. (Marie), Förster, I. (Irmgard), Foster, J. (John), Foulds, G.A. (Gemma A.), Frenette, P.S. (Paul S.), Galbraith, D. (David), Garbi, N. (Natalio), García-Godoy, M.D. (Maria Dolores), Ghoreschi, K. (Kamran), Gibellini, L. (Lara), Goettlinger, C. (Christoph), Goodyear, C.S. (Carl), Gori, A. (Andrea), Grogan, J.L. (Jane), Gross, M. (Mor), Grützkau, A. (Andreas), Grummitt, D. (Daryl), Hahn, J. (Jonas), Hammer, Q. (Quirin), Hauser, A.E. (Anja E.), Haviland, D.L. (David L.), Hedley, D. (David), Herrera, G. (Guadalupe), Herrmann, M. (Martin), Hiepe, F. (Falk), Holland, T. (Tristan), Hombrink, P. (Pleun), Houston, J.P. (Jessica P.), Hoyer, B.F. (Bimba F.), Huang, B. (Bo), Hunter, C.A. (Christopher A.), Iannone, A. (Anna), Jäck, H.-M. (Hans-Martin), Jávega, B. (Beatriz), Jonjic, S. (Stipan), Juelke, K. (Kerstin), Jung, S. (Steffen), Kaiser, T. (Toralf), Kalina, T. (Tomas), Keller, B. (Baerbel), Khan, S. (Srijit), Kienhöfer, D. (Deborah), Kroneis, T. (Thomas), Kunkel, D. (Désirée), Kurts, C. (Christian), Kvistborg, P. (Pia), Lannigan, J. (Joanne), Lantz, O. (Olivier), Larbi, A. (Anis), LeibundGut-Landmann, S. (Salome), Leipold, M.D. (Michael D.), Levings, M.K., Litwin, V. (Virginia), Liu, Y. (Yanling), Lohoff, M. (Michael), Lombardi, G. (Giovanna), Lopez, L. (Lilly), Lovett-Racke, A. (Amy), Lubberts, E.W. (Erik), Ludewig, B. (Burkhard), Lugli, E. (Enrico), Maecker, H.T. (Holden T.), Martrus, G. (Glòria), Matarese, G. (Giuseppe), Maueröder, C. (Christian), McGrath, M. (Mairi), McInnes, I.B. (Iain), Mei, H.E. (Henrik E.), Melchers, F. (Fritz), Melzer, S. (Susanne), Mielenz, D. (Dirk), Mills, K. (Kingston), Mjösberg, J.M. (Jenny), Moore, J. (Jonni), Moran, B. (Barry), Moretta, A. (Alessandro), Moretta, L. (Lorenzo), Mosmann, T.R. (Tim R.), Müller, S. (Susann), Müller, W. (Werner), Münz, C. (Christian), Multhoff, G. (Gabriele), Munoz, L.E. (Luis Enrique), Murphy, K.M. (Kenneth M.), Nakayama, T. (Toshinori), Nasi, M. (Milena), Neudörfl, C. (Christine), Nolan, J. (John), Nourshargh, S. (Sussan), O'Connor, J.-E. (José-Enrique), Ouyang, W. (Wenjun), Oxenius, A. (Annette), Palankar, R. (Raghav), Panse, I. (Isabel), Peterson, P. (Pärt), Peth, C. (Christian), Petriz, J. (Jordi), Philips, D. (Daisy), Pickl, W. (Winfried), Piconese, S. (Silvia), Pinti, M. (Marcello), Pockley, A.G. (A. Graham), Podolska, M.J. (Malgorzata Justyna), Pucillo, C. (Carlo), Quataert, S.A. (Sally A.), Radstake, T.R.D.J. (Timothy R. D. J.), Rajwa, B. (Bartek), Rebhahn, J.A. (Jonathan A.), Recktenwald, D. (Diether), Remmerswaal, D. (Daniëlle), Rezvani, K. (Katy), Rico, L.G. (Laura G.), Robinson, J.P. (J. Paul), Romagnani, C. (Chiara), Rubartelli, A. (Anna), Ruland, J. (Jürgen), Sakaguchi, S. (Shimon), Sala-de-Oyanguren, F. (Francisco), Samstag, Y. (Yvonne), Sanderson, S. (Sharon), Sawitzki, B. (Birgit), Scheffold, A. (Alexander), Schiemann, M. (Matthias), Schildberg, F. (Frank), Schimisky, E. (Esther), Schmid, S.A. (Stephan A), Schmitt, S. (Steffen), Schober, K. (Kilian), Schüler, T. (Thomas), Schulz, A.R. (Axel Ronald), Schumacher, T.N. (Ton), Scotta, C. (Cristiano), Shankey, T.V. (T. Vincent), Shemer, A. (Anat), Simon, A.-K. (Anna-Katharina), Spidlen, J. (Josef), Stall, A.M. (Alan M.), Stark, R. (Regina), Stehle, C. (Christina), Stein, M. (Merle), Steinmetz, T. (Tobit), Stockinger, H. (Hannes), Takahama, Y. (Yousuke), Tarnok, A. (Attila), Tian, Z. (ZhiGang), Toldi, G. (Gergely), Tornack, J. (Julia), Traggiai, E. (Elisabetta), Trotter, J. (Joe), Ulrich, H. (Henning), van der Braber, M. (Marlous), Van Lier, R.A.W. (Rene A. W.), Veldhoen, M. (Marcello), Vento-Asturias, S. (Salvador), Vieira, P. (Paulo), Voehringer, D. (David), Volk, H.D. (Hans), von Volkmann, K. (Konrad), Waisman, A. (Ari), Walker, R. (Rachael), Ward, M.D. (Michael D.), Warnatz, K. (Klaus), Warth, S. (Sarah), Watson, J.V. (James V.), Watzl, C. (Carsten), Wegener, L. (Leonie), Wiedemann, A. (Annika), Wienands, J. (Jürgen), Willimsky, G. (Gerald), Wing, J. (James), Wurst, P. (Peter), Yu, L. (Liping), Yue, A. (Alice), Zhang, Q. (Qianjun), Zhao, Y. (Yi), Ziegler, S. (Susanne), and Zimmermann, J. (Jakob)
- Published
- 2017
- Full Text
- View/download PDF
30. Myocardial Infarction Primes Autoreactive T Cells through Activation of Dendritic Cells
- Author
-
Van der Borght, K, Scott, CL, Nindl, V, Bouche, A, Martens, L, Sichien, D, van Moorleghem, J, Vanheerswynghels, M, De Prijck, S, Saeys, Y, Ludewig, B, Gillebert, T, Guilliams, M, Carmeliet, P, Lambrecht, Bart, Van der Borght, K, Scott, CL, Nindl, V, Bouche, A, Martens, L, Sichien, D, van Moorleghem, J, Vanheerswynghels, M, De Prijck, S, Saeys, Y, Ludewig, B, Gillebert, T, Guilliams, M, Carmeliet, P, and Lambrecht, Bart
- Published
- 2017
31. IFN-gamma-receptor signaling ameliorates transplant vasculopathy through attenuation of CD8+ T-cell-mediated injury of vascular endothelial cells
- Author
-
Bolinger, B, Engeler, D, Krebs, P, Miller, S, Firner, S, Hoffmann, M, Palmer, D C, Restifo, N P, Tian, Y, Clavien, P A, Ludewig, B, University of Zurich, and Ludewig, B
- Subjects
2403 Immunology ,2723 Immunology and Allergy ,610 Medicine & health ,10217 Clinic for Visceral and Transplantation Surgery - Published
- 2010
- Full Text
- View/download PDF
32. Cytotoxic tumor targeting with scFv antibody-modified liposomes
- Author
-
Ludewig, B, Hoffmann, M W, Ludewig, B ( B ), Hoffmann, M W ( M W ), Marty, Cornelia, Schwendener, Reto A, Ludewig, B, Hoffmann, M W, Ludewig, B ( B ), Hoffmann, M W ( M W ), Marty, Cornelia, and Schwendener, Reto A
- Abstract
Specific targeting of liposome-formulated cytotoxic drugs or antigens to receptors expressed selectively on target cells represents an effective strategy for increasing the pharmacological efficacy of the delivered molecules. We have developed a feasible technique to selectively attach antibodies and fragments thereof, but also small-mol-wt ligands such as peptides, carbohydrates, or any molecules that recognize and bind target antigens or receptors to the surface of small unilamellar liposomes. Our concept is based on the site-specific functionalization of the ligands to be attached to the liposomes by thiol groups. These thiol groups can easily be introduced to antibodies or peptides by addition of cysteines, preferably at sites that do not interfere with the receptor binding domains. Optimally, the site-specific modification is introduced at the C-terminal end of the ligand, separated by an inert spacer sequence located between the thiols and the specific part of the ligand. The thiol-reactive molecules on the liposome surface are maleimides that are linked to phospholipids composing the liposome bilayer membrane. We illustrate the coupling method of a functionalized single-chain antibody fragment with binding specificity to ED-B fibronectin, an isoform of fibronectin exclusively expressed in tumor tissues, to long circulating small unilamellar poly(ethylene glycol) liposomes.
- Published
- 2005
33. Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL
- Author
-
Cordeiro, OG, Chypre, M, Brouard, N, Rauber, S, Alloush, F, Romera Hernandez, Monica, Benezech, C, Li, Z, Eckly, A, Coles, MC, Rot, A, Yagita, H, Leon, C, Ludewig, B, Cupedo, Tom, Lanza, F, Mueller, CG, Cordeiro, OG, Chypre, M, Brouard, N, Rauber, S, Alloush, F, Romera Hernandez, Monica, Benezech, C, Li, Z, Eckly, A, Coles, MC, Rot, A, Yagita, H, Leon, C, Ludewig, B, Cupedo, Tom, Lanza, F, and Mueller, CG
- Abstract
Microenvironment and activation signals likely imprint heterogeneity in the lymphatic endothelial cell (LEC) population. Particularly LECs of secondary lymphoid organs are exposed to different cell types and immune stimuli. However, our understanding of the nature of LEC activation signals and their cell source within the secondary lymphoid organ in the steady state remains incomplete. Here we show that integrin alpha 2b (ITGA2b), known to be carried by platelets, megakaryocytes and hematopoietic progenitors, is expressed by a lymph node subset of LECs, residing in medullary, cortical and subcapsular sinuses. In the subcapsular sinus, the floor but not the ceiling layer expresses the integrin, being excluded from ACKR4(+) LECs but overlapping with MAdCAM-1 expression. ITGA2b expression increases in response to immunization, raising the possibility that heterogeneous ITGA2b levels reflect variation in exposure to activation signals. We show that alterations of the level of receptor activator of NF-kappa B ligand (RANKL), by overexpression, neutralization or deletion from stromal marginal reticular cells, affected the proportion of ITGA2b(+) LECs. Lymph node LECs but not peripheral LECs express RANK. In addition, we found that lymphotoxin-beta receptor signaling likewise regulated the proportion of ITGA2b(+) LECs. These findings demonstrate that stromal reticular cells activate LECs via RANKL and support the action of hematopoietic cell-derived lymphotoxin.
- Published
- 2016
34. Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells
- Author
-
Ludewig, B, Oehen, S, Barchiesi, F, Schwendener, R, Hengartner, H, Zinkernagel, R M, University of Zurich, and Ludewig, B
- Subjects
Cytotoxicity, Immunologic ,2403 Immunology ,10061 Institute of Molecular Cancer Research ,Immunology ,Mice, Transgenic ,Dendritic Cells ,Lymphocytic Choriomeningitis ,Lymphocyte Activation ,Immunotherapy, Adoptive ,Cell Line ,Mice, Inbred C57BL ,Mice ,2723 Immunology and Allergy ,Tumor Cells, Cultured ,570 Life sciences ,biology ,Immunology and Allergy ,Animals ,Lymphocytic choriomeningitis virus ,Immunologic Memory ,T-Lymphocytes, Cytotoxic - Abstract
Dendritic cells (DC) play a key role in the initiation of T cell-mediated immune responses and may therefore be successfully used in antiviral and antitumor vaccination strategies. Because both strength and duration of an immune response determines the outcome of a vaccination protocol, we evaluated the life span of DC-induced antiviral CTL memory against systemic and peripheral challenge infections with lymphocytic choriomeningitis virus (LCMV). We found that expansion and activation of CTL by DC was transient. Protection against systemic LCMV infection after DC immunization was relatively long-lived (>60 days), whereas complete protection against peripheral infection via intracerebral infection or infection into the footpad with LCMV, where rapid recruitment of effector T cells to the site of infection and elimination of viral pathogen plays a major role, was short-lived (
- Published
- 1999
35. Hematopoietic cell-derived interferon controls viral replication and virus-induced disease
- Author
-
Lang, P A, Cervantes-Barragan, L, Verschoor, A, Navarini, A A, Recher, M, Pellegrini, M, Flatz, L, Bergthaler, A, Honda, K, Ludewig, B, Ohashi, P S, Lang, K S, and University of Zurich
- Subjects
1307 Cell Biology ,2403 Immunology ,1303 Biochemistry ,2720 Hematology ,10177 Dermatology Clinic ,610 Medicine & health - Published
- 2009
- Full Text
- View/download PDF
36. The immune system in the pathogenesis of vascular proliferative disease
- Author
-
Laman, Jon, Ludewig, B, Dunckers, H.J., Nabel, E.G., Serruys, P.E., and Immunology
- Published
- 2007
37. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells drive pro-atherogenic immunity
- Author
-
Sage, A.P., primary, Murphy, D., additional, Maffia, P., additional, Masters, L.M., additional, Baker, L.L., additional, Harrison, J.E., additional, Ludewig, B., additional, Reith, W., additional, Hansson, G.K., additional, Reizis, B., additional, Hugues, S., additional, and Mallat, Z., additional
- Published
- 2014
- Full Text
- View/download PDF
38. IL-7-producing stromal cells are critical for lymph node remodeling
- Author
-
Onder, G. (Graziano), Narang, P. (Priyanka), Scandella, E. (Elke), Chai, Q. (Qian), Iolyeva, M. (Maria), Hoorweg, K. (Kerim), Halin, C. (Cornelia), Richie, E. (Ellen), Kaye, P. (Paul), Westermann, J. (Jürgen), Cupedo, T. (Tom), Coles, M. (Mark), Ludewig, B. (Burkhard), Onder, G. (Graziano), Narang, P. (Priyanka), Scandella, E. (Elke), Chai, Q. (Qian), Iolyeva, M. (Maria), Hoorweg, K. (Kerim), Halin, C. (Cornelia), Richie, E. (Ellen), Kaye, P. (Paul), Westermann, J. (Jürgen), Cupedo, T. (Tom), Coles, M. (Mark), and Ludewig, B. (Burkhard)
- Abstract
Nonhematopoietic stromal cells of secondary lymphoid organs form important scaffold and fluid transport structures, such as lymph node (LN) trabeculae, lymph vessels, and conduits. Furthermore, through the production of chemokines and cytokines, these cells generate a particular microenvironment that determines lymphocyte positioning and supports lymphocyte homeostasis. IL-7 is an important stromal cell-derived cytokine that has been considered to be derived mainly from T-cell zone fibroblastic reticular cells. We show here that lymphatic endothelial cells (LECs) are a prominent source of IL-7 both in human and murine LNs. Using bacterial artificial chromosome transgenic IL-7-Cre mice, we found that fibroblastic reticular cells and LECs strongly up-regulated IL-7 expression during LN remodeling after viral infection and LN reconstruction after avascular transplantation. Furthermore, IL-7-producing stromal cells contributed to de novo formation of LyveI-positive lymphatic structures connecting reconstructed LNs with the surrounding tissue. Importantly, diphtheria toxin-mediated depletion of IL-7-producing stromal cells completely abolished LN reconstruction. Taken together, this study identifies LN LECs as a major source of IL-7 and shows that IL-7-producing stromal cells are critical for reconstruction and remodeling of the distinct LN microenvironment.
- Published
- 2012
- Full Text
- View/download PDF
39. Reaction-Diffusion Modelling of Interferon Distribution in Secondary Lymphoid Organs
- Author
-
Bocharov, G., Danilov, A., Vassilevski, Yu, Marchuk, G. I., Chereshnev, V. A., Ludewig, B., Bocharov, G., Danilov, A., Vassilevski, Yu, Marchuk, G. I., Chereshnev, V. A., and Ludewig, B.
- Published
- 2011
40. Qualitative and quantitative requirements for CD4+ T cell-mediated antiviral protection
- Author
-
Maloy, Kj, Burkhart, C, Freer, Giulia, Rulicke, T, Pircher, H, Kono, Dh, Theofilopoulos, An, Ludewig, B, Hoffmann Rohrer, U, Zinkernagel, Rm, and Hengartner, H.
- Subjects
CD4-Positive T-Lymphocytes ,Membrane Glycoproteins ,Receptors, Antigen, T-Cell, alpha-beta ,Immunology ,Mice, Transgenic ,Antibodies, Viral ,Adoptive Transfer ,Immunoglobulin Class Switching ,Vesicular stomatitis Indiana virus ,Mice, Inbred C57BL ,Mice ,Viral Envelope Proteins ,Virus Diseases ,Immunoglobulin G ,Immunology and Allergy ,Animals ,Female - Abstract
CD4+ Th cells deliver the cognate and cytokine signals that promote the production of protective virus-neutralizing IgG by specific B cells and are also able to mediate direct antiviral effector functions. To quantitatively and qualitatively analyze the antiviral functions of CD4+ Th cells, we generated transgenic mice (tg7) expressing an MHC class II (I-Ab)-restricted TCR specific for a peptide derived from the glycoprotein (G) of vesicular stomatitis virus (VSV). The elevated precursor frequency of naive VSV-specific Th cells in tg7 mice led to a markedly accelerated and enhanced class switching to virus-neutralizing IgG after immunization with inactivated VSV. Furthermore, in contrast to nontransgenic controls, tg7 mice rapidly cleared a recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G) from peripheral organs. By adoptive transfer of naive tg7 CD4+ T cells into T cell-deficient recipients, we found that 105 transferred CD4+ T cells were sufficient to induce isotype switching after challenge with a suboptimal dose of inactivated VSV. In contrast, naive transgenic CD4+ T cells were unable to adoptively confer protection against peripheral infection with Vacc-IND-G. However, tg7 CD4+ T cells that had been primed in vitro with VSV-G peptide were able to adoptively transfer protection against Vacc-IND-G. These results demonstrate that the antiviral properties of CD4+ T cells are governed by the differentiation status of the CD4+ T cell and by the type of effector response required for virus elimination.
- Published
- 1999
41. Liposome-based vaccines
- Author
-
Weissig, V, Weissig, V ( V ), Schwendener, R A, Ludewig, B, Cerny, A, Engler, O, Weissig, V, Weissig, V ( V ), Schwendener, R A, Ludewig, B, Cerny, A, and Engler, O
- Abstract
Here, we report methods of preparation of liposome vaccine formulations for the entrapment of antigenic peptides and antigen encoding plasmid DNAs. Two examples of liposomal vaccine formulations producing highly effective immune responses are given. Firstly, a formulation with encapsulated antigenic peptides derived from the hepatitis C virus NS4 and the core proteins, and secondly, the encapsulation of a plasmid DNA encoding the gp33 glycoprotein of the lymphocytic choriomeningitis virus (LCMV). Vaccination with liposomal HCV peptides in HLA-A2 transgenic mice by subcutaneous injections induced strong cytotoxic T cell responses as shown by lysis of human target cells expressing HCV proteins. The immunogenicity of the liposomal peptide vaccines was further enhanced by incorporation of immunostimulatory CpG oligonucleotide sequences, shown by a strong increase of the frequency of IFN-gamma secreting cells that persisted at high levels for long periods of time. With the LCMV model, we could show that upon intradermal injection, plasmid-DNA liposomes formed LCMV gp33 antigen depots facilitating long-lasting in vivo antigen loading of dendritic cells (DC), followed by a strong immune response. Our data show that liposomal formulations of peptide or plasmid-DNA vaccines are highly effective at direct in vivo antigen loading and activation of DC leading to protective antiviral and anti-tumor immune responses.
- Published
- 2010
42. Immunologic ignorance of vascular endothelial cells expressing minor histocompatibility antigen
- Author
-
Bolinger, B, Krebs, P, Tian, Y, Engeler, D, Scandella, E, Miller, S, Palmer, D C, Restifo, N P, Clavien, P A, Ludewig, B, Bolinger, B, Krebs, P, Tian, Y, Engeler, D, Scandella, E, Miller, S, Palmer, D C, Restifo, N P, Clavien, P A, and Ludewig, B
- Abstract
Endothelial cells (ECs) presenting minor histocompatibility antigen (mhAg) are major target cells for alloreactive effector CD8(+) T cells during chronic transplant rejection and graft-versus-host disease (GVHD). The contribution of ECs to T-cell activation, however, is still a controversial issue. In this study, we have assessed the antigen-presenting capacity of ECs in vivo using a transgenic mouse model with beta-galactosidase (beta-gal) expression confined to the vascular endothelium (Tie2-LacZ mice). In a GVHD-like setting with adoptive transfer of beta-gal-specific T-cell receptor-transgenic T cells, beta-gal expression by ECs was not sufficient to either activate or tolerize CD8(+) T cells. Likewise, transplantation of fully vascularized heart or liver grafts from Tie2-LacZ mice into nontransgenic recipients did not suffice to activate beta-gal-specific CD8(+) T cells, indicating that CD8(+) T-cell responses against mhAg cannot be initiated by ECs. Moreover, we could show that spontaneous activation of beta-gal-specific CD8(+) T cells in Tie2-LacZ mice was exclusively dependent on CD11c(+) dendritic cells (DCs), demonstrating that mhAgs presented by ECs remain immunologically ignored unless presentation by DCs is granted.
- Published
- 2008
43. Leistungsmerkmale pilzwiderstandsfähiger Rebsorten
- Author
-
Jörger, V., Boos, M., Ludewig, B., Jörger, V., Boos, M., and Ludewig, B.
- Abstract
In het artikel de vorderingen bij de veredeling van nieuwe druivensoorten aan het wijnbouwinstituut Freiburg. Deze omvat de beoordeling van schimmeltolerantie van zaailingen tot pratijkinvoering
- Published
- 2005
44. Underwhelming the immune response: Effect of slow virus growth on CD8+ T-lymphocyte responses
- Author
-
UCL, Bocharov, G, Ludewig, B, Bertoletti, A, Klenerman, P, Junt, T, Krebs, P, Luzyanina, T, Fraser, C, Anderson, RM, UCL, Bocharov, G, Ludewig, B, Bertoletti, A, Klenerman, P, Junt, T, Krebs, P, Luzyanina, T, Fraser, C, and Anderson, RM
- Published
- 2004
45. Reaction-Diffusion Modelling of Interferon Distribution in Secondary Lymphoid Organs
- Author
-
Bocharov, G., primary, Danilov, A., additional, Vassilevski, Yu., additional, Marchuk, G.I., additional, Chereshnev, V.A., additional, and Ludewig, B., additional
- Published
- 2011
- Full Text
- View/download PDF
46. MP-04.13: Epirubicin and ciprofloxacin synergistically induce apoptosis in human urothelial cancer cell lines
- Author
-
Engeler, D.S., primary, Scandella, E., additional, Schmid, H.P., additional, and Ludewig, B., additional
- Published
- 2007
- Full Text
- View/download PDF
47. Computational approaches to parameter estimation and model selection in immunology
- Author
-
Baker, C.T.H., primary, Bocharov, G.A., additional, Ford, J.M., additional, Lumb, P.M., additional, Norton, S.J., additional, Paul, C.A.H., additional, Junt, T., additional, Krebs, P., additional, and Ludewig, B., additional
- Published
- 2005
- Full Text
- View/download PDF
48. Adaptive Immuntherapie des fortgeschrittenen Prostatakarzinoms - Cancer Testis Antigene (CTA) als mögliche Zielantigene
- Author
-
Prikler, L., primary, Scandella, E., additional, Men, Y., additional, Engeler, D. S., additional, Diener, P.-A., additional, Gillessen, S., additional, Ludewig, B., additional, and Schmid, H.-P., additional
- Published
- 2004
- Full Text
- View/download PDF
49. 855 Evaluating cancer testis antigens as targets for immunotherapy in prostate cancer
- Author
-
Prikler, L., primary, Scandella, E., additional, Diener, P.A., additional, Gillessen, S., additional, Ludewig, B., additional, and Schmid, H.P., additional
- Published
- 2004
- Full Text
- View/download PDF
50. Arterial Inflammation and Atherosclerosis
- Author
-
Ludewig, B, primary
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.