154 results on '"Luscombe NM"'
Search Results
2. Regionalization of the nervous system requires axial allocation prior to neural lineage commitment
- Author
-
Metzis, V, Steinhauser, S, Pakanavicius, E, Gouti, M, Stamataki, D, Ivanovitch, K, Watson, T, Rayon, T, Mousavy Gharavy, SN, Lovell-Badge, R, Luscombe, NM, and Briscoe, J
- Subjects
06 Biological Sciences ,11 Medical and Health Sciences ,Developmental Biology - Abstract
Neural induction in vertebrates generates a central nervous system that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity, with caudalising signals then converting a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility assays to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations this identified a developmental time window in which genome-wide chromatin remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This “primary regionalization” allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate central nervous system.
- Published
- 2018
3. A systems view of spliceosomal assembly and branchpoints with iCLIP
- Author
-
Briese, M, Haberman, N, Sibley, CR, Faraway, R, Elser, AS, Chakrabarti, AM, Wang, Z, Koenig, J, Perera, D, Wickramasinghe, VO, Venkitaraman, AR, Luscombe, NM, Saieva, L, Pellizzoni, L, Smith, CWJ, Curk, T, Ule, J, Briese, M, Haberman, N, Sibley, CR, Faraway, R, Elser, AS, Chakrabarti, AM, Wang, Z, Koenig, J, Perera, D, Wickramasinghe, VO, Venkitaraman, AR, Luscombe, NM, Saieva, L, Pellizzoni, L, Smith, CWJ, Curk, T, and Ule, J
- Abstract
Studies of spliceosomal interactions are challenging due to their dynamic nature. Here we used spliceosome iCLIP, which immunoprecipitates SmB along with small nuclear ribonucleoprotein particles and auxiliary RNA binding proteins, to map spliceosome engagement with pre-messenger RNAs in human cell lines. This revealed seven peaks of spliceosomal crosslinking around branchpoints (BPs) and splice sites. We identified RNA binding proteins that crosslink to each peak, including known and candidate splicing factors. Moreover, we detected the use of over 40,000 BPs with strong sequence consensus and structural accessibility, which align well to nearby crosslinking peaks. We show how the position and strength of BPs affect the crosslinking patterns of spliceosomal factors, which bind more efficiently upstream of strong or proximally located BPs and downstream of weak or distally located BPs. These insights exemplify spliceosome iCLIP as a broadly applicable method for transcriptomic studies of splicing mechanisms.
- Published
- 2019
4. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the uncontrolled exonization of Alu elements
- Author
-
Zarnack K, Kxf6nig J, Tajnik M, Martincorena I, Stxe9vant I, Reyes A, Anders S, and Luscombe NM* Ule J
- Published
- 2013
5. DNA-binding specificities of human transcription factors
- Author
-
Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei G, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes TR, Lemaire P, Ukkonen E, Kivioja T, and Taipale J.
- Published
- 2013
6. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution
- Author
-
Konig J, Zarnack K, Curk T, Gregor R, Kayikci M, Zupan, B, Luscombe NM, and Ule J
- Published
- 2010
7. An integrated encyclopedia of DNA elements in the human genome
- Author
-
Robert Altshuler, Laura Elnitski, Michael Anaya, Alec Victorsen, Deborah Winter, Javier Herrero, Katherine Varley, Andrea Sboner, Oscar Junhong Luo, Marco Mariotti, Cristina Sisu, Mike Kay, Timothy Dreszer, Jane Loveland, Alexandra Bignell, Ewan Birney, Tim @timjph Hubbard, Kuljeet Sandhu, Eric Haugen, Chris Gunter, Alexej Abyzov, Lucas Ward, Georgi Marinov, Michael Pazin, Thomas Gingeras, Alexander Dobin, Kimberly Foss, Xianjun Dong, Benoit Miotto, Piotr Mieczkowski, Cedric Notredame, Andrew Berry, Shawn Gillespie, Axel Visel, Shawn Levy, Richard Sandstrom, Jose M Gonzalez, Melissa Fullwood, Timo Lassmann, Michael Tress, Julien Lagarde, Kevin Yip, Leslie Adams, Sylvain Foissac, Bronwen Aken, Piero Carninci, Suganthi Balasubramanian, Andrea Tanzer, Sarah Djebali, Michael Hoffman, Gloria Despacio-Reyes, Peter Park, Felix Kokocinski, Katherine Fisher-Aylor, Juan M Vaquerizas, Peggy Farnham, Patrick Collins, Amonida Zadissa, Pedro Ferreira, Philippe Batut, Michael Snyder, Electra Tapanari, Adam Frankish, Paul Flicek, AMARTYA SANYAL, Tyler Alioto, Giovanni Bussotti, Laurence Meyer, Jingyi Jessica Li, Matthew Blow, Tristan FRUM, Roger Alexander, Rory Johnson, Charles Steward, Meizhen Zheng, Margus Lukk, Ross Hardison, Claire Davidson, Gary Saunders, Alan Boyle, Luiz Penalva, Rajinder Kaul, Lazaro Centanin, Florencia Pauli Behn, Thomas Derrien, Nathan Sheffield, Toby Hunt, Eric Nguyen, Jeff Vierstra, Konrad Karczewski, Kimberly Bell, Yanbao Yu, Hagen U Tilgner, James Taylor, Balázs Bánfai, Catherine Snow, Benjamin Vernot, Stephan Kirchmaier, Michael Sammeth, Steven Wilder, Angelika Merkel, Joanna Mieczkowska, Guoliang Li, Wei Lin, Jennifer Harrow, Thomas Oliver Auer, Daniel Barrell, Eddie Park, Alvis Brazma, Hazuki Takahashi, Nathan Johnson, Daniel Sobral, Terry Furey, Alexandre Reymond, Jonathan Mudge, Anshul Kundaje, Jose Rodriguez, Akshay Bhinge, James Gilbert, Jakub Karczewski, Venkat Malladi, Troy Whitfield, Orion Buske, Ian Dunham, Jennifer Moran, Joachim Wittbrodt, Charles B. Epstein, Laurens Wilming, Jason Gertz, Joshua Akey, Joel Rozowsky, Laboratoire de Génétique Cellulaire (LGC), Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA), National Human Genome Research Institute (NHGRI), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Antonarakis, Stylianos, Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science, Altshuler, Robert Charles, Ernst, Jason, Kellis, Manolis, Kheradpour, Pouya, Ward, Lucas D., Eaton, Matthew Lucas, Hendrix, David A., Jungreis, Irwin, Lin, Michael F., Washietl, Stefan, Lists of participants and their affiliations appear at the end of the paper and in the 'Collaboration/Projet' field., The Consortium is funded by grants from the NHGRI as follows: production grants: U54HG004570 (B. E. Bernstein), U01HG004695 (E. Birney), U54HG004563 (G. E. Crawford), U54HG004557 (T. R. Gingeras), U54HG004555 (T. J. Hubbard), U41HG004568 (W. J. Kent), U54HG004576 (R. M. Myers), U54HG004558 (M. Snyder), U54HG004592 (J. A. Stamatoyannopoulos). Pilot grants: R01HG003143 (J. Dekker), RC2HG005591 and R01HG003700 (M. C. Giddings), R01HG004456-03 (Y. Ruan), U01HG004571 (S. A. Tenenbaum), U01HG004561 (Z. Weng), RC2HG005679 (K. P. White). This project was supported in part by American Recovery and Reinvestment Act (ARRA) funds from the NHGRI through grants U54HG004570, U54HG004563, U41HG004568, U54HG004592, R01HG003143, RC2HG005591, R01HG003541,U01HG004561,RC2HG005679andR01HG003988(L. Pennacchio). In addition, work from NHGRI Groups was supported by the Intramural Research Program of the NHGRI (L. Elnitski, ZIAHG200323, E. H. Margulies, ZIAHG200341). Research in the Pennachio laboratory was performed at Lawrence Berkeley National Laboratory and at the United States Department of Energy Joint Genome Institute, Department of Energy Contract DE-AC02-05CH11231, University of California., Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Dunham I, Ernst J, Furey TS, Gerstein M, Giardine B, Greven M, Hardison RC, Harris RS, Herrero J, Hoffman MM, Iyer S, Kellis M, Khatun J, Kheradpour P, Kundaje A, Lassmann T, Li Q, Lin X, Marinov GK, Merkel A, Mortazavi A, Parker SC, Reddy TE, Rozowsky J, Schlesinger F, Thurman RE, Wang J, Ward LD, Whitfield TW, Wilder SP, Wu W, Xi HS, Yip KY, Zhuang J, Pazin MJ, Lowdon RF, Dillon LA, Adams LB, Kelly CJ, Zhang J, Wexler JR, Green ED, Good PJ, Feingold EA, Bernstein BE, Birney E, Crawford GE, Dekker J, Elnitski L, Farnham PJ, Gerstein M, Giddings MC, Gingeras TR, Green ED, Guigó R, Hardison RC, Hubbard TJ, Kellis M, Kent W, Lieb JD, Margulies EH, Myers RM, Snyder M, Stamatoyannopoulos JA, Tenenbaum SA, Weng Z, White KP, Wold B, Khatun J, Yu Y, Wrobel J, Risk BA, Gunawardena HP, Kuiper HC, Maier CW, Xie L, Chen X, Giddings MC, Bernstein BE, Epstein CB, Shoresh N, Ernst J, Kheradpour P, Mikkelsen TS, Gillespie S, Goren A, Ram O, Zhang X, Wang L, Issner R, Coyne MJ, Durham T, Ku M, Truong T, Ward LD, Altshuler RC, Eaton ML, Kellis M, Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Batut P, Bell I, Bell K, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena HP, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Li G, Luo OJ, Park E, Preall JB, Presaud K, Ribeca P, Risk BA, Robyr D, Ruan X, Sammeth M, Sandhu KS, Schaeffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Hayashizaki Y, Harrow J, Gerstein M, Hubbard TJ, Reymond A, Antonarakis SE, Hannon GJ, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR, Rosenbloom KR, Sloan CA, Learned K, Malladi VS, Wong MC, Barber GP, Cline MS, Dreszer TR, Heitner SG, Karolchik D, Kent W, Kirkup VM, Meyer LR, Long JC, Maddren M, Raney BJ, Furey TS, Song L, Grasfeder LL, Giresi PG, Lee BK, Battenhouse A, Sheffield NC, Simon JM, Showers KA, Safi A, London D, Bhinge AA, Shestak C, Schaner MR, Kim SK, Zhang ZZ, Mieczkowski PA, Mieczkowska JO, Liu Z, McDaniell RM, Ni Y, Rashid NU, Kim MJ, Adar S, Zhang Z, Wang T, Winter D, Keefe D, Birney E, Iyer VR, Lieb JD, Crawford GE, Li G, Sandhu KS, Zheng M, Wang P, Luo OJ, Shahab A, Fullwood MJ, Ruan X, Ruan Y, Myers RM, Pauli F, Williams BA, Gertz J, Marinov GK, Reddy TE, Vielmetter J, Partridge E, Trout D, Varley KE, Gasper C, Bansal A, Pepke S, Jain P, Amrhein H, Bowling KM, Anaya M, Cross MK, King B, Muratet MA, Antoshechkin I, Newberry KM, McCue K, Nesmith AS, Fisher-Aylor KI, Pusey B, DeSalvo G, Parker SL, Balasubramanian S, Davis NS, Meadows SK, Eggleston T, Gunter C, Newberry J, Levy SE, Absher DM, Mortazavi A, Wong WH, Wold B, Blow MJ, Visel A, Pennachio LA, Elnitski L, Margulies EH, Parker SC, Petrykowska HM, Abyzov A, Aken B, Barrell D, Barson G, Berry A, Bignell A, Boychenko V, Bussotti G, Chrast J, Davidson C, Derrien T, Despacio-Reyes G, Diekhans M, Ezkurdia I, Frankish A, Gilbert J, Gonzalez JM, Griffiths E, Harte R, Hendrix DA, Howald C, Hunt T, Jungreis I, Kay M, Khurana E, Kokocinski F, Leng J, Lin MF, Loveland J, Lu Z, Manthravadi D, Mariotti M, Mudge J, Mukherjee G, Notredame C, Pei B, Rodriguez JM, Saunders G, Sboner A, Searle S, Sisu C, Snow C, Steward C, Tanzer A, Tapanari E, Tress ML, van Baren MJ, Walters N, Washietl S, Wilming L, Zadissa A, Zhang Z, Brent M, Haussler D, Kellis M, Valencia A, Gerstein M, Reymond A, Guigó R, Harrow J, Hubbard TJ, Landt SG, Frietze S, Abyzov A, Addleman N, Alexander RP, Auerbach RK, Balasubramanian S, Bettinger K, Bhardwaj N, Boyle AP, Cao AR, Cayting P, Charos A, Cheng Y, Cheng C, Eastman C, Euskirchen G, Fleming JD, Grubert F, Habegger L, Hariharan M, Harmanci A, Iyengar S, Jin VX, Karczewski KJ, Kasowski M, Lacroute P, Lam H, Lamarre-Vincent N, Leng J, Lian J, Lindahl-Allen M, Min R, Miotto B, Monahan H, Moqtaderi Z, Mu XJ, O'Geen H, Ouyang Z, Patacsil D, Pei B, Raha D, Ramirez L, Reed B, Rozowsky J, Sboner A, Shi M, Sisu C, Slifer T, Witt H, Wu L, Xu X, Yan KK, Yang X, Yip KY, Zhang Z, Struhl K, Weissman SM, Gerstein M, Farnham PJ, Snyder M, Tenenbaum SA, Penalva LO, Doyle F, Karmakar S, Landt SG, Bhanvadia RR, Choudhury A, Domanus M, Ma L, Moran J, Patacsil D, Slifer T, Victorsen A, Yang X, Snyder M, Auer T, Centanin L, Eichenlaub M, Gruhl F, Heermann S, Hoeckendorf B, Inoue D, Kellner T, Kirchmaier S, Mueller C, Reinhardt R, Schertel L, Schneider S, Sinn R, Wittbrodt B, Wittbrodt J, Weng Z, Whitfield TW, Wang J, Collins PJ, Aldred SF, Trinklein ND, Partridge EC, Myers RM, Dekker J, Jain G, Lajoie BR, Sanyal A, Balasundaram G, Bates DL, Byron R, Canfield TK, Diegel MJ, Dunn D, Ebersol AK, Frum T, Garg K, Gist E, Hansen R, Boatman L, Haugen E, Humbert R, Jain G, Johnson AK, Johnson EM, Kutyavin TV, Lajoie BR, Lee K, Lotakis D, Maurano MT, Neph SJ, Neri FV, Nguyen ED, Qu H, Reynolds AP, Roach V, Rynes E, Sabo P, Sanchez ME, Sandstrom RS, Sanyal A, Shafer AO, Stergachis AB, Thomas S, Thurman RE, Vernot B, Vierstra J, Vong S, Wang H, Weaver MA, Yan Y, Zhang M, Akey JM, Bender M, Dorschner MO, Groudine M, MacCoss MJ, Navas P, Stamatoyannopoulos G, Kaul R, Dekker J, Stamatoyannopoulos JA, Dunham I, Beal K, Brazma A, Flicek P, Herrero J, Johnson N, Keefe D, Lukk M, Luscombe NM, Sobral D, Vaquerizas JM, Wilder SP, Batzoglou S, Sidow A, Hussami N, Kyriazopoulou-Panagiotopoulou S, Libbrecht MW, Schaub MA, Kundaje A, Hardison RC, Miller W, Giardine B, Harris RS, Wu W, Bickel PJ, Banfai B, Boley NP, Brown JB, Huang H, Li Q, Li JJ, Noble WS, Bilmes JA, Buske OJ, Hoffman MM, Sahu AD, Kharchenko PV, Park PJ, Baker D, Taylor J, Weng Z, Iyer S, Dong X, Greven M, Lin X, Wang J, Xi HS, Zhuang J, Gerstein M, Alexander RP, Balasubramanian S, Cheng C, Harmanci A, Lochovsky L, Min R, Mu XJ, Rozowsky J, Yan KK, Yip KY, Birney E., and Miotto, Benoit
- Subjects
Encyclopedias as Topic ,[SDV]Life Sciences [q-bio] ,DNA Footprinting ,Genoma humà ,Binding Sites/genetics ,Histones/chemistry/metabolism ,0302 clinical medicine ,Exons/genetics ,ddc:576.5 ,0303 health sciences ,Multidisciplinary ,[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,DNA-Binding Proteins/metabolism ,region ,Chemistry ,Genetic Predisposition to Disease/genetics ,Genomics ,Polymorphism, Single Nucleotide/genetics ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Neoplasms/genetics ,Chromatin ,Cell biology ,in vivo ,Genetic Variation/genetics ,030220 oncology & carcinogenesis ,Deoxyribonuclease I/metabolism ,Proteins/genetics ,transcription factor-binding ,chromosome conformation capture ,DNA Methylation/genetics ,Chromosomes, Human/genetics/metabolism ,Chromatin Immunoprecipitation ,Mammals/genetics ,DNA/genetics ,determinant ,Article ,03 medical and health sciences ,map ,Animals ,Humans ,Transcription Factors/metabolism ,Alleles ,mouse ,030304 developmental biology ,Transcription, Genetic/genetics ,Chromatin/genetics/metabolism ,Sequence Analysis, RNA ,human cell ,Molecular Sequence Annotation ,Regulatory Sequences, Nucleic Acid/genetics ,Promoter Regions, Genetic/genetics ,DNA binding site ,Genòmica ,Genome, Human/genetics ,chromatin ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,Genètica ,Genome-Wide Association Study - Abstract
The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research. The Consortium is funded by grants from the NHGRI as follows: production grants: U54HG004570 (B. E. Bernstein); U01HG004695 (E. Birney); U54HG004563 (G. E. Crawford); U54HG004557 (T. R. Gingeras); U54HG004555 (T. J. Hubbard); U41HG004568 /n(W. J. Kent); U54HG004576 (R. M. Myers); U54HG004558 (M. Snyder);/nU54HG004592 (J. A. Stamatoyannopoulos). Pilot grants: R01HG003143 (J. Dekker); RC2HG005591 and R01HG003700 (M. C. Giddings); R01HG004456-03 (Y. Ruan); U01HG004571 (S. A. Tenenbaum); U01HG004561 (Z. Weng); RC2HG005679 (K. P. White). This project was supported in part by American Recovery and/nReinvestment Act (ARRA) funds from the NHGRI through grants U54HG004570, U54HG004563, U41HG004568, U54HG004592, R01HG003143, RC2HG005591,R01HG003541, U01HG004561, RC2HG005679andR01HG003988(L. Pennacchio). In addition, work from NHGRI Groups was supported by the Intramural Research/nProgram of the NHGRI (L. Elnitski, ZIAHG200323; E. H. Margulies, ZIAHG200341). Research in the Pennachio laboratory was performed at Lawrence Berkeley National Laboratory and at the United States Department of Energy Joint Genome Institute, Department of Energy Contract DE-AC02-05CH11231, University of California.
- Published
- 2012
- Full Text
- View/download PDF
8. A User's Guide to the Encyclopedia of DNA Elements (ENCODE)
- Author
-
Zhi Lu, Giltae Song, Troy W. Whitfield, Vishwanath R. Iyer, Teresa Vales, Angelika Merkel, Max Libbrecht, David Haussler, Ting Wang, Kristen Lee, Lingyun Song, Richard M. Myers, Alfonso Valencia, Rachel A. Harte, Xiaoqin Xu, Lucas D. Ward, Hazuki Takahashi, Nathan C. Sheffield, Thomas Derrien, Georgi K. Marinov, Eric D. Nguyen, Bernard B. Suh, Brian J. Raney, Richard Sandstrom, Thomas D. Tullius, Benoit Miotto, Alexander Dobin, Youhan Xu, Lukas Habegger, Ian Dunham, Brian A. Risk, Paul G. Giresi, Morgan C. Giddings, Hualin Xi, Anshul Kundaje, Robert S. Harris, Devin Absher, Peter J. Bickel, Yanbao Yu, Browen Aken, Colin Kingswood, Bryan R. Lajoie, Peter J. Good, Katrina Learned, Laura Elnitski, Shirley Pepke, Brandon King, Piero Carninci, Xinqiong Yang, Ghia Euskirchen, Kathryn Beal, Christelle Borel, Michael Muratet, Robert L. Grossman, David G. Knowles, Zarmik Moqtaderi, Veronika Boychenko, Steven P. Wilder, Michael L. Tress, Florencia Pauli, Alan P. Boyle, Andrea Tanzer, Philipp Kapranov, Serafim Batzoglou, Audra K. Johnson, Jun Neri, Nitin Bhardwaj, Elise A. Feingold, Venkat S. Malladi, Michael M. Hoffman, William Stafford Noble, Andrea Sboner, Mark Gerstein, Stephanie L. Parker, Jacqueline Dumais, Felix Schlesinger, Deborah R. Winter, Randall H. Brown, Thanh Truong, Rebecca F. Lowdon, Paolo Ribeca, Brooke Rhead, Peggy J. Farnham, Krista Thibeault, Terrence S. Furey, Donna Karolchik, Alec Victorsen, Xiaoan Ruan, Rehab F. Abdelhamid, Amy S. Nesmith, Jing Wang, Nicholas M. Luscombe, Alina R. Cao, Diane Trout, Teri Slifer, Peter E. Newburger, Cricket A. Sloan, Dimitra Lotakis, Stephen M. J. Searle, Ali Mortazavi, Alexandra Bignell, Alex Reynolds, Orion J. Buske, Chris Zaleski, Theresa K. Canfield, Ian Bell, Jin Lian, Vanessa K. Swing, Katalin Toth Fejes, Catherine Ucla, Robert E. Thurman, Jacqueline Chrast, Wei Lin, Tim Hubbard, Gary Saunders, Minyi Shi, Vihra Sotirova, Sherman M. Weissman, Jason D. Lieb, Richard Humbert, Kevin M. Bowling, Assaf Gordon, Tarjei S. Mikkelsen, Jing Leng, Thomas R. Gingeras, Fabian Grubert, Nader Jameel, Jost Vielmetter, Hannah Monahan, Preti Jain, Lindsay L. Waite, Tony Shafer, Joel Rozowsky, Michael Coyne, Brian Reed, M. Kay, Harsha P. Gunawardena, Ross C. Hardison, Gavin Sherlock, Alexandra Charos, Joseph D. Fleming, Ann S. Zweig, Jason Gertz, Rajinder Kaul, Xianjun Dong, Alexandre Reymond, Carrie A. Davis, Haiyan Huang, Chao Cheng, Marco Mariotti, Phil Lacroute, Jason A. Dilocker, Kenneth McCue, R. Robilotto, Stylianos E. Antonarakis, Sridar V. Chittur, Justin Jee, Barbara J. Wold, Sudipto K. Chakrabortty, Erica Dumais, Amartya Sanyal, Nathan Boley, Tianyuan Wang, Julien Lagarde, Anthony Kirilusha, Jonathan B. Preall, Kevin Roberts, Erika Giste, Hugo Y. K. Lam, Alvis Brazma, Gregory J. Hannon, Eric Rynes, Philippe Batut, Kevin Struhl, Margus Lukk, Manching Ku, Suganthi Balasubramanian, Sonali Jha, Jorg Drenkow, W. James Kent, Michael Snyder, Jie Wang, Anna Battenhouse, Charles B. Epstein, Rami Rauch, Christopher Shestak, John A. Stamatoyannopoulos, Gaurab Mukherjee, Cédric Howald, Tanya Kutyavin, Huaien Wang, Scott A. Tenenbaum, Wan Ting Poh, Kate R. Rosenbloom, Manolis Kellis, Pauline A. Fujita, Linfeng Wu, Anita Bansal, Molly Weaver, Linda L. Grasfeder, Peter J. Sabo, Qiang Li, Melissa S. Cline, Robert M. Kuhn, Darin London, Seth Frietze, Atif Shahab, Shane Neph, Damian Keefe, James B. Brown, Mark Diekhans, Webb Miller, Katherine Aylor Fisher, Jiang Du, Hadar H. Sheffer, Sarah Djebali, Frank Doyle, Nathan Lamarre-Vincent, Chia-Lin Wei, Laura A.L. Dillon, Jennifer Harrow, Robert C. Altshuler, Tyler Alioto, Raymond K. Auerbach, Adam Frankish, Rebekka O. Sprouse, Patrick J. Collins, E. Christopher Partridge, Zheng Liu, Yoichiro Shibata, Elliott H. Margulies, Abigail K. Ebersol, Kimberly A. Showers, Eric D. Green, Krishna M. Roskin, Job Dekker, Barbara N. Pusey, Ekta Khurana, Gilberto DeSalvo, Yijun Ruan, Hao Wang, Jainab Khatun, Henriette O'Geen, Alexej Abyzov, Brian Williams, Ryan M. McDaniell, Maya Kasowski, Manoj Hariharan, Felix Kokocinski, Gloria Despacio-Reyes, Zhancheng Zhang, Subhradip Karmakar, Ewan Birney, Koon-Kiu Yan, Xian Chen, Shinny Vong, Daniel Sobral, Nick Bild, Seul K.C. Kim, Timo Lassmann, Li Wang, Minerva E. Sanchez, Vaughan Roach, Theodore Gibson, Stephen C. J. Parker, Michael F. Lin, Patrick A. Navas, Laurence R. Meyer, Luiz O. F. Penalva, Bradley E. Bernstein, Kevin P. White, Emilie Aït Yahya Graison, Juan M. Vaquerizas, Sushma Iyengar, Kimberly M. Newberry, Akshay Bhinge, Xiaolan Zhang, Kim Bell, Yoshihide Hayashizaki, Lucas Lochovsky, Noam Shoresh, Hagen Tilgner, Philip Cayting, Dorrelyn Patacsil, Timothy E. Reddy, Eric Haugen, Katherine E. Varley, M. van Baren, Nathan D. Trinklein, Bum Kyu Lee, Tristan Frum, Marianne Lindahl-Allen, Timothy Durham, Roderic Guigó, Christopher W. Maier, Micha Sammeth, Debasish Raha, Timothy R. Dreszer, Benedict Paten, Robbyn Issner, Michael R. Brent, Kevin Y. Yip, Kim Blahnik, Jason Ernst, Zhiping Weng, Henry Amrhein, Arend Sidow, Javier Herrero, Hui Gao, Stephen G. Landt, Pouya Kheradpour, Galt P. Barber, Gregory E. Crawford, Toby Hunt, HudsonAlpha Institute for Biotechnology [Huntsville, AL], ENCODE Project Consortium : Myers RM, Stamatoyannopoulos J, Snyder M, Dunham I, Hardison RC, Bernstein BE, Gingeras TR, Kent WJ, Birney E, Wold B, Crawford GE, Bernstein BE, Epstein CB, Shoresh N, Ernst J, Mikkelsen TS, Kheradpour P, Zhang X, Wang L, Issner R, Coyne MJ, Durham T, Ku M, Truong T, Ward LD, Altshuler RC, Lin MF, Kellis M, Gingeras TR, Davis CA, Kapranov P, Dobin A, Zaleski C, Schlesinger F, Batut P, Chakrabortty S, Jha S, Lin W, Drenkow J, Wang H, Bell K, Gao H, Bell I, Dumais E, Dumais J, Antonarakis SE, Ucla C, Borel C, Guigo R, Djebali S, Lagarde J, Kingswood C, Ribeca P, Sammeth M, Alioto T, Merkel A, Tilgner H, Carninci P, Hayashizaki Y, Lassmann T, Takahashi H, Abdelhamid RF, Hannon G, Fejes-Toth K, Preall J, Gordon A, Sotirova V, Reymond A, Howald C, Graison E, Chrast J, Ruan Y, Ruan X, Shahab A, Ting Poh W, Wei CL, Crawford GE, Furey TS, Boyle AP, Sheffield NC, Song L, Shibata Y, Vales T, Winter D, Zhang Z, London D, Wang T, Birney E, Keefe D, Iyer VR, Lee BK, McDaniell RM, Liu Z, Battenhouse A, Bhinge AA, Lieb JD, Grasfeder LL, Showers KA, Giresi PG, Kim SK, Shestak C, Myers RM, Pauli F, Reddy TE, Gertz J, Partridge EC, Jain P, Sprouse RO, Bansal A, Pusey B, Muratet MA, Varley KE, Bowling KM, Newberry KM, Nesmith AS, Dilocker JA, Parker SL, Waite LL, Thibeault K, Roberts K, Absher DM, Wold B, Mortazavi A, Williams B, Marinov G, Trout D, Pepke S, King B, McCue K, Kirilusha A, DeSalvo G, Fisher-Aylor K, Amrhein H, Vielmetter J, Sherlock G, Sidow A, Batzoglou S, Rauch R, Kundaje A, Libbrecht M, Margulies EH, Parker SC, Elnitski L, Green ED, Hubbard T, Harrow J, Searle S, Kokocinski F, Aken B, Frankish A, Hunt T, Despacio-Reyes G, Kay M, Mukherjee G, Bignell A, Saunders G, Boychenko V, Van Baren M, Brown RH, Khurana E, Balasubramanian S, Zhang Z, Lam H, Cayting P, Robilotto R, Lu Z, Guigo R, Derrien T, Tanzer A, Knowles DG, Mariotti M, James Kent W, Haussler D, Harte R, Diekhans M, Kellis M, Lin M, Kheradpour P, Ernst J, Reymond A, Howald C, Graison EA, Chrast J, Tress M, Rodriguez JM, Snyder M, Landt SG, Raha D, Shi M, Euskirchen G, Grubert F, Kasowski M, Lian J, Cayting P, Lacroute P, Xu Y, Monahan H, Patacsil D, Slifer T, Yang X, Charos A, Reed B, Wu L, Auerbach RK, Habegger L, Hariharan M, Rozowsky J, Abyzov A, Weissman SM, Gerstein M, Struhl K, Lamarre-Vincent N, Lindahl-Allen M, Miotto B, Moqtaderi Z, Fleming JD, Newburger P, Farnham PJ, Frietze S, O'Geen H, Xu X, Blahnik KR, Cao AR, Iyengar S, Stamatoyannopoulos JA, Kaul R, Thurman RE, Wang H, Navas PA, Sandstrom R, Sabo PJ, Weaver M, Canfield T, Lee K, Neph S, Roach V, Reynolds A, Johnson A, Rynes E, Giste E, Vong S, Neri J, Frum T, Johnson EM, Nguyen ED, Ebersol AK, Sanchez ME, Sheffer HH, Lotakis D, Haugen E, Humbert R, Kutyavin T, Shafer T, Dekker J, Lajoie BR, Sanyal A, James Kent W, Rosenbloom KR, Dreszer TR, Raney BJ, Barber GP, Meyer LR, Sloan CA, Malladi VS, Cline MS, Learned K, Swing VK, Zweig AS, Rhead B, Fujita PA, Roskin K, Karolchik D, Kuhn RM, Haussler D, Birney E, Dunham I, Wilder SP, Keefe D, Sobral D, Herrero J, Beal K, Lukk M, Brazma A, Vaquerizas JM, Luscombe NM, Bickel PJ, Boley N, Brown JB, Li Q, Huang H, Gerstein M, Habegger L, Sboner A, Rozowsky J, Auerbach RK, Yip KY, Cheng C, Yan KK, Bhardwaj N, Wang J, Lochovsky L, Jee J, Gibson T, Leng J, Du J, Hardison RC, Harris RS, Song G, Miller W, Haussler D, Roskin K, Suh B, Wang T, Paten B, Noble WS, Hoffman MM, Buske OJ, Weng Z, Dong X, Wang J, Xi H, Tenenbaum SA, Doyle F, Penalva LO, Chittur S, Tullius TD, Parker SC, White KP, Karmakar S, Victorsen A, Jameel N, Bild N, Grossman RL, Snyder M, Landt SG, Yang X, Patacsil D, Slifer T, Dekker J, Lajoie BR, Sanyal A, Weng Z, Whitfield TW, Wang J, Collins PJ, Trinklein ND, Partridge EC, Myers RM, Giddings MC, Chen X, Khatun J, Maier C, Yu Y, Gunawardena H, Risk B, Feingold EA, Lowdon RF, Dillon LA, Good PJ, Harrow J, Searle S., Becker, Peter B, Broad Institute of MIT and Harvard, Lincoln Laboratory, Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. Department of Physics, Kellis, Manolis, Epstein, Charles B., Bernstein, Bradley E., Shoresh, Noam, Ernst, Jason, Mikkelsen, Tarjei Sigurd, Kheradpour, Pouya, Zhang, Xiaolan, Wang, Li, Issner, Robbyn, Coyne, Michael J., Durham, Timothy, Ku, Manching, Truong, Thanh, Ward, Lucas D., Altshuler, Robert Charles, Lin, Michael F., ENCODE Project Consortium, Antonarakis, Stylianos, and Miotto, Benoit
- Subjects
RNA, Messenger/genetics ,[SDV]Life Sciences [q-bio] ,Messenger ,Genoma humà ,Genome ,Medical and Health Sciences ,0302 clinical medicine ,Models ,ddc:576.5 ,Biology (General) ,Conserved Sequence ,Genetics ,0303 health sciences ,General Neuroscience ,RNA-Binding Proteins ,Genomics ,Biological Sciences ,Chromatin ,3. Good health ,[SDV] Life Sciences [q-bio] ,DNA-Binding Proteins ,Gene Components ,030220 oncology & carcinogenesis ,DNA methylation ,Encyclopedia ,HIV/AIDS ,Proteïnes de la sang -- Aspectes genètics ,General Agricultural and Biological Sciences ,Databases, Nucleic Acid ,Human ,Research Article ,Quality Control ,Process (engineering) ,QH301-705.5 ,1.1 Normal biological development and functioning ,Computational biology ,Biology ,ENCODE ,General Biochemistry, Genetics and Molecular Biology ,Chromatin/metabolism ,Vaccine Related ,03 medical and health sciences ,Databases ,Genetic ,Underpinning research ,Humans ,RNA, Messenger ,RNA-Binding Proteins/genetics/metabolism ,Vaccine Related (AIDS) ,Gene ,030304 developmental biology ,Internet ,General Immunology and Microbiology ,Nucleic Acid ,Agricultural and Veterinary Sciences ,Base Sequence ,Models, Genetic ,Genome, Human ,Prevention ,Human Genome ,Computational Biology ,DNA Methylation ,ENCODE Project Consortium ,Gene Expression Regulation ,DNA-Binding Proteins/genetics/metabolism ,RNA ,Human genome ,Immunization ,Generic health relevance ,Developmental Biology - Abstract
The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome., National Human Genome Research Institute (U.S.), National Institutes of Health (U.S.)
- Published
- 2011
- Full Text
- View/download PDF
9. Less, but more: new insights from appendicularians on chordate Fgf evolution and the divergence of tunicate lifestyles.
- Author
-
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, and Cañestro C
- Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. Exhaustive analysis of developmental Fgf expression in Oikopleura dioica allow us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians., (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2024
- Full Text
- View/download PDF
10. Tracing Homopolymers in Oikopleura dioica's Mitogenome.
- Author
-
Dierckxsens N, Watanabe K, Tan Y, Masunaga A, Mansfield MJ, Miao J, Luscombe NM, and Plessy C
- Subjects
- Animals, Male, Phylogeny, Urochordata genetics, Genome, Mitochondrial
- Abstract
Oikopleura dioica is a planktonic tunicate (Appendicularia class) found extensively across the marine waters of the globe. The genome of a single male individual collected from Okinawa, Japan was sequenced using the single-molecule PacBio Hi-Fi method and assembled with NOVOLoci. The mitogenome is 39,268 bp long, featuring a large control region of around 22,000 bp. We annotated the proteins atp6, cob, cox1, cox2, cox3, nad1, nad4, and nad5, and found one more open reading frame that did not match any known gene. This study marks the first complete mitogenome assembly for an appendicularian, and reveals that A and T homopolymers cumulatively account for nearly half of its length. This reference sequence will be an asset for environmental DNA and phylogenetic studies., (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2024
- Full Text
- View/download PDF
11. Poised PABP-RNA hubs implement signal-dependent mRNA decay in development.
- Author
-
Modic M, Kuret K, Steinhauser S, Faraway R, van Genderen E, Ruiz de Los Mozos I, Novljan J, Vičič Ž, Lee FCY, Ten Berge D, Luscombe NM, and Ule J
- Subjects
- Animals, Mice, Signal Transduction, Humans, Poly(A)-Binding Proteins metabolism, Poly(A)-Binding Proteins genetics, Gene Expression Regulation, Developmental, Phosphorylation, RNA Stability, 3' Untranslated Regions genetics, RNA, Messenger metabolism, RNA, Messenger genetics, RNA-Binding Proteins metabolism, RNA-Binding Proteins genetics
- Abstract
Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs. Timing of decay is coupled to embryo implantation through ERK-MEK phosphorylation of LIN28A, which repositions pLIN28A to the highly A+U-rich 3' untranslated region (3'UTR) termini of naive pluripotency mRNAs. Interestingly, these A+U-rich 3'UTR termini serve as poly(A)-binding protein (PABP)-binding hubs, poised for signal-induced convergence with LIN28A. The multivalency of AUU motifs determines the efficacy of pLIN28A-PABP convergence, which enhances PABP 3'UTR binding, decreases the protection of poly(A) tails and activates mRNA decay to enable progression toward primed pluripotency. Thus, the signal-induced convergence of LIN28A with PABP-RNA hubs drives the rapid selection of naive mRNAs for decay, enabling the transcriptome remodeling that ensures swift developmental progression., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
12. Extreme genome scrambling in marine planktonic Oikopleura dioica cryptic species.
- Author
-
Plessy C, Mansfield MJ, Bliznina A, Masunaga A, West C, Tan Y, Liu AW, Grašič J, Del Río Pisula MS, Sánchez-Serna G, Fabrega-Torrus M, Ferrández-Roldán A, Roncalli V, Navratilova P, Thompson EM, Onuma T, Nishida H, Cañestro C, and Luscombe NM
- Subjects
- Animals, Evolution, Molecular, Female, Phylogeny, Male, Synteny, Urochordata genetics, Urochordata classification, Genome
- Abstract
Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures., (© 2024 Plessy et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2024
- Full Text
- View/download PDF
13. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells.
- Author
-
Cox LS, Alvarez-Martinez M, Wu X, Gabryšová L, Luisier R, Briscoe J, Luscombe NM, and O'Garra A
- Abstract
Background: CD4
+ Th1 cells producing IFN-γ are required to eradicate intracellular pathogens, however if uncontrolled these cells can cause immunopathology. The cytokine IL-10 is produced by multiple immune cells including Th1 cells during infection and regulates the immune response to minimise collateral host damage. In this study we aimed to elucidate the transcriptional network of genes controlling the expression of Il10 and proinflammatory cytokines, including Ifng in Th1 cells differentiated from mouse naive CD4+ T cells., Methods: We applied computational analysis of gene regulation derived from temporal profiling of gene expression clusters obtained from bulk RNA sequencing (RNA-seq) of flow cytometry sorted naïve CD4+ T cells from mouse spleens differentiated in vitro into Th1 effector cells with IL-12 and IL-27 to produce Ifng and Il10, compared to IL-27 alone which express Il10 only , or IL-12 alone which express Ifng and no Il10, or medium control driven-CD4+ T cells which do not express effector cytokines . Data were integrated with analysis of active genomic regions from these T cells using an assay for transposase-accessible chromatin with sequencing (ATAC)-seq, integrated with literature derived-Chromatin-immunoprecipitation (ChIP)-seq data and the RNA-seq data, to elucidate the transcriptional network of genes controlling expression of Il10 and pro-inflammatory effector genes in Th1 cells. The co-dominant role for the transcription factors, Prdm1 (encoding Blimp-1) and Maf (encoding c-Maf) , in cytokine gene regulation in Th1 cells, was confirmed using T cells obtained from mice with T-cell specific deletion of these transcription factors., Results: We show that the transcription factors Blimp-1 and c-Maf each have unique and common effects on cytokine gene regulation and not only co-operate to induce Il10 gene expression in IL-12 plus IL-27 differentiated mouse Th1 cells, but additionally directly negatively regulate key proinflammatory cytokines including Ifng , thus providing mechanisms for reinforcement of regulated Th1 cell responses., Conclusions: These data show that Blimp-1 and c-Maf positively and negatively regulate a network of both unique and common anti-inflammatory and pro-inflammatory genes to reinforce a Th1 response in mice that will eradicate pathogens with minimum immunopathology., Competing Interests: No competing interests were disclosed., (Copyright: © 2023 Cox LS et al.)- Published
- 2023
- Full Text
- View/download PDF
14. scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border.
- Author
-
Thiery AP, Buzzi AL, Hamrud E, Cheshire C, Luscombe NM, Briscoe J, and Streit A
- Subjects
- Animals, Neural Crest, Chickens, Models, Statistical, Single-Cell Analysis, Gene Expression Regulation, Developmental, Neural Plate, Ectoderm metabolism
- Abstract
The vertebrate 'neural plate border' is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells. Here, we carry out single cell RNA sequencing of chick ectoderm from primitive streak to neurulation stage, to explore cell state diversity and heterogeneity. We characterise the dynamics of gene modules, allowing us to model the order of molecular events which take place as ectodermal fates segregate. Furthermore, we find that genes previously classified as neural plate border 'specifiers' typically exhibit dynamic expression patterns and are enriched in either neural, neural crest or placodal fates, revealing that the neural plate border should be seen as a heterogeneous ectodermal territory and not a discrete transitional transcriptional state. Analysis of neural, neural crest and placodal markers reveals that individual NPB cells co-express competing transcriptional programmes suggesting that their ultimate identify is not yet fixed. This population of 'border located undecided progenitors' (BLUPs) gradually diminishes as cell fate decisions take place. Considering our findings, we propose a probabilistic model for cell fate choice at the neural plate border. Our data suggest that the probability of a progenitor's daughters to contribute to a given ectodermal derivative is related to the balance of competing transcriptional programmes, which in turn are regulated by the spatiotemporal position of a progenitor., Competing Interests: AT, AB, EH, CC, NL, JB, AS No competing interests declared, (© 2023, Thiery et al.)
- Published
- 2023
- Full Text
- View/download PDF
15. nf-core/clipseq - a robust Nextflow pipeline for comprehensive CLIP data analysis.
- Author
-
West C, Capitanchik C, Cheshire C, Luscombe NM, Chakrabarti A, and Ule J
- Abstract
Crosslinking and immunoprecipitation (CLIP) technologies have become a central component of the molecular biologists' toolkit to study protein-RNA interactions and thus to uncover core principles of RNA biology. There has been a proliferation of CLIP-based experimental protocols, as well as computational tools, especially for peak-calling. Consequently, there is an urgent need for a well-documented bioinformatic pipeline that enshrines the principles of robustness, reproducibility, scalability, portability and flexibility while embracing the diversity of experimental and computational CLIP tools. To address this, we present nf-core/clipseq - a robust Nextflow pipeline for quality control and analysis of CLIP sequencing data. It is part of the international nf-core community effort to develop and curate a best-practice, gold-standard set of pipelines for data analysis. The standards enabled by Nextflow and nf-core, including workflow management, version control, continuous integration and containerisation ensure that these key needs are met. Furthermore, multiple tools are implemented ( e.g. for peak-calling), alongside visualisation of quality control metrics to empower the user to make their own informed decisions based on their data. nf-core/clipseq remains under active development, with plans to incorporate newly released tools to ensure that pipeline remains up-to-date and relevant for the community. Engagement with users and developers is encouraged through the nf-core GitHub repository and Slack channel to promote collaboration. It is available at https://nf-co.re/clipseq., Competing Interests: Competing interests: CEMW, CCh, NML, AMC and JU have no conflicts of interest to declare. CCa is employed part-time by the software company Goodwright (https://goodwright.com) to consult on their bioinformatics workflow web platform Flow (flow.bio)., (Copyright: © 2023 West C et al.)
- Published
- 2023
- Full Text
- View/download PDF
16. clipplotr -a comparative visualization and analysis tool for CLIP data.
- Author
-
Chakrabarti AM, Capitanchik C, Ule J, and Luscombe NM
- Subjects
- Genome, RNA-Seq, Genomics, Software
- Abstract
CLIP technologies are now widely used to study RNA-protein interactions and many data sets are now publicly available. An important first step in CLIP data exploration is the visual inspection and assessment of processed genomic data on selected genes or regions and performing comparisons: either across conditions within a particular project, or incorporating publicly available data. However, the output files produced by data processing pipelines or preprocessed files available to download from data repositories are often not suitable for direct comparison and usually need further processing. Furthermore, to derive biological insight it is usually necessary to visualize a CLIP signal alongside other data such as annotations, or orthogonal functional genomic data (e.g., RNA-seq). We have developed a simple, but powerful, command-line tool: clipplotr , which facilitates these visual comparative and integrative analyses with normalization and smoothing options for CLIP data and the ability to show these alongside reference annotation tracks and functional genomic data. These data can be supplied as input to clipplotr in a range of file formats, which will output a publication quality figure. It is written in R and can both run on a laptop computer independently or be integrated into computational workflows on a high-performance cluster. Releases, source code, and documentation are freely available at https://github.com/ulelab/clipplotr., (© 2023 Chakrabarti et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.)
- Published
- 2023
- Full Text
- View/download PDF
17. RNA polymerase II-associated proteins reveal pathways affected in VCP-related amyotrophic lateral sclerosis.
- Author
-
Rafiee MR, Rohban S, Davey K, Ule J, and Luscombe NM
- Subjects
- Humans, Valosin Containing Protein genetics, Valosin Containing Protein metabolism, RNA Polymerase II metabolism, Adenosine Triphosphatases genetics, Adenosine Triphosphatases metabolism, Mutation genetics, Antigens, Neoplasm, RNA-Binding Proteins genetics, Nerve Tissue Proteins genetics, Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis metabolism
- Abstract
Valosin-containing protein (VCP) is a hexameric ATPase associated with diverse cellular activities. Genetic mutations in VCP are associated with several forms of muscular and neuronal degeneration, including amyotrophic lateral sclerosis (ALS). Moreover, VCP mediates UV-induced proteolysis of RNA polymerase II (RNAPII), but little is known about the effects of VCP mutations on the transcriptional machinery. Here, we used silica particle-assisted chromatin enrichment and mass spectrometry to study proteins co-localized with RNAPII in precursor neurons differentiated from VCP-mutant or control induced pluripotent stem cells. Remarkably, we observed diminished RNAPII binding of proteins involved in transcription elongation and mRNA splicing in mutant cells. One of these is SART3, a recycling factor of the splicing machinery, whose knockdown leads to perturbed intron retention in several ALS-associated genes. Additional reduced proteins are RBM45, EIF5A and RNF220, mutations in which are associated with various neurodegenerative disorders and are linked to TDP-43 aggregation. Conversely, we observed increased RNAPII binding of heat shock proteins such as HSPB1. Together, these findings shed light on how transcription and splicing machinery are impaired by VCP mutations, which might contribute to aberrant alternative splicing and proteinopathy in neurodegeneration., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
18. A computationally-enhanced hiCLIP atlas reveals Staufen1-RNA binding features and links 3' UTR structure to RNA metabolism.
- Author
-
Chakrabarti AM, Iosub IA, Lee FCY, Ule J, and Luscombe NM
- Subjects
- 3' Untranslated Regions genetics, RNA, Messenger metabolism, Protein Binding, RNA-Binding Proteins genetics, RNA-Binding Proteins metabolism, Trans-Activators metabolism
- Abstract
The structure of mRNA molecules plays an important role in its interactions with trans-acting factors, notably RNA binding proteins (RBPs), thus contributing to the functional consequences of this interplay. However, current transcriptome-wide experimental methods to chart these interactions are limited by their poor sensitivity. Here we extend the hiCLIP atlas of duplexes bound by Staufen1 (STAU1) ∼10-fold, through careful consideration of experimental assumptions, and the development of bespoke computational methods which we apply to existing data. We present Tosca, a Nextflow computational pipeline for the processing, analysis and visualisation of proximity ligation sequencing data generally. We use our extended duplex atlas to discover insights into the RNA selectivity of STAU1, revealing the importance of structural symmetry and duplex-span-dependent nucleotide composition. Furthermore, we identify heterogeneity in the relationship between transcripts with STAU1-bound 3' UTR duplexes and metabolism of the associated RNAs that we relate to RNA structure: transcripts with short-range proximal 3' UTR duplexes have high degradation rates, but those with long-range duplexes have low rates. Overall, our work enables the integrative analysis of proximity ligation data delivering insights into specific features and effects of RBP-RNA structure interactions., (© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2023
- Full Text
- View/download PDF
19. A gene regulatory network for neural induction.
- Author
-
Trevers KE, Lu HC, Yang Y, Thiery AP, Strobl AC, Anderson C, Pálinkášová B, de Oliveira NMM, de Almeida IM, Khan MAF, Moncaut N, Luscombe NM, Dale L, Streit A, and Stern CD
- Subjects
- Animals, Chickens, Embryonic Development, Organizers, Embryonic, Vertebrates, Gene Regulatory Networks, Nervous System metabolism
- Abstract
During early vertebrate development, signals from a special region of the embryo, the organizer, can redirect the fate of non-neural ectoderm cells to form a complete, patterned nervous system. This is called neural induction and has generally been imagined as a single signalling event, causing a switch of fate. Here, we undertake a comprehensive analysis, in very fine time course, of the events following exposure of competent ectoderm of the chick to the organizer (the tip of the primitive streak, Hensen's node). Using transcriptomics and epigenomics we generate a gene regulatory network comprising 175 transcriptional regulators and 5614 predicted interactions between them, with fine temporal dynamics from initial exposure to the signals to expression of mature neural plate markers. Using in situ hybridization, single-cell RNA-sequencing, and reporter assays, we show that the gene regulatory hierarchy of responses to a grafted organizer closely resembles the events of normal neural plate development. The study is accompanied by an extensive resource, including information about conservation of the predicted enhancers in other vertebrates., Competing Interests: KT, HL, YY, AT, AS, CA, BP, Nd, Id, MK, NM, NL, LD, AS, CS No competing interests declared, (© 2023, Trevers, Lu et al.)
- Published
- 2023
- Full Text
- View/download PDF
20. Annelid functional genomics reveal the origins of bilaterian life cycles.
- Author
-
Martín-Zamora FM, Liang Y, Guynes K, Carrillo-Baltodano AM, Davies BE, Donnellan RD, Tan Y, Moggioli G, Seudre O, Tran M, Mortimer K, Luscombe NM, Hejnol A, Marlétaz F, and Martín-Durán JM
- Subjects
- Animals, Larva anatomy & histology, Larva growth & development, Gene Expression Profiling, Epigenomics, Head anatomy & histology, Head embryology, Head growth & development, Genomics, Life Cycle Stages, Polychaeta anatomy & histology, Polychaeta embryology, Polychaeta genetics, Polychaeta growth & development
- Abstract
Indirect development with an intermediate larva exists in all major animal lineages
1 , which makes larvae central to most scenarios of animal evolution2-11 . Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We performed chromosome-scale genome sequencing in the annelid Owenia fusiformis with transcriptomic and epigenomic profiling during the life cycles of this and two other annelids. We found that trunk development is deferred to pre-metamorphic stages in the feeding larva of O. fusiformis but starts after gastrulation in the non-feeding larva with gradual metamorphosis of Capitella teleta and the direct developing embryo of Dimorphilus gyrociliatus. Accordingly, the embryos of O. fusiformis develop first into an enlarged anterior domain that forms larval tissues and the adult head12 . Notably, this also occurs in the so-called 'head larvae' of other bilaterians13-17 , with which the O. fusiformis larva shows extensive transcriptomic similarities. Together, our findings suggest that the temporal decoupling of head and trunk formation, as maximally observed in head larvae, facilitated larval evolution in Bilateria. This diverges from prevailing scenarios that propose either co-option9,10 or innovation11 of gene regulatory programmes to explain larva and adult origins., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
21. N6 -methyladenosine (m6A) reader Pho92 is recruited co-transcriptionally and couples translation to mRNA decay to promote meiotic fitness in yeast.
- Author
-
Varier RA, Sideri T, Capitanchik C, Manova Z, Calvani E, Rossi A, Edupuganti RR, Ensinck I, Chan VWC, Patel H, Kirkpatrick J, Faull P, Snijders AP, Vermeulen M, Ralser M, Ule J, Luscombe NM, and van Werven FJ
- Subjects
- RNA, Messenger genetics, RNA Stability, Saccharomyces cerevisiae genetics, Exercise
- Abstract
N6- methyladenosine (m6A) RNA modification impacts mRNA fate primarily via reader proteins, which dictate processes in development, stress, and disease. Yet little is known about m6A function in Saccharomyces cerevisiae , which occurs solely during early meiosis. Here, we perform a multifaceted analysis of the m6A reader protein Pho92/Mrb1. Cross-linking immunoprecipitation analysis reveals that Pho92 associates with the 3'end of meiotic mRNAs in both an m6A-dependent and independent manner. Within cells, Pho92 transitions from the nucleus to the cytoplasm, and associates with translating ribosomes. In the nucleus Pho92 associates with target loci through its interaction with transcriptional elongator Paf1C. Functionally, we show that Pho92 promotes and links protein synthesis to mRNA decay. As such, the Pho92-mediated m6A-mRNA decay is contingent on active translation and the CCR4-NOT complex. We propose that the m6A reader Pho92 is loaded co-transcriptionally to facilitate protein synthesis and subsequent decay of m6A modified transcripts, and thereby promotes meiosis., Competing Interests: RV, TS, CC, ZM, EC, AR, RE, IE, VC, HP, JK, PF, AS, MV, MR, JU, NL, Fv No competing interests declared, (© 2022, Varier, Sideri, Capitanchik et al.)
- Published
- 2022
- Full Text
- View/download PDF
22. Automated phenol-chloroform extraction of high molecular weight genomic DNA for use in long-read single-molecule sequencing.
- Author
-
Liu AW, Villar-Briones A, Luscombe NM, and Plessy C
- Subjects
- DNA genetics, Genomics, Humans, Molecular Weight, Phenols, Chloroform, Phenol
- Abstract
Background : Automation has increasingly become more commonplace in the research laboratory workspace. The introduction of articulated robotic arms allows the researcher more flexibility in the tasks a single piece of automated machinery can perform. We set out to incorporate automation in processing of genomic DNA organic extractions to increase throughput and limit researchers to the exposure of organic solvents. Methods : In order to automate the genome sequencing pipeline in our laboratory, we programmed a dual-arm anthropomorphic robot, the Robotic Biology Institute's Maholo LabDroid, to perform organic solvent-based genomic DNA extraction from cell lysates. To the best of our knowledge, this is the first time that automation of phenol-chloroform extraction has been reported. Results: We achieved routine extraction of high molecular weight genomic DNA (>100 kb) from diverse biological samples including algae cultured in sea water, bacteria, whole insects, and human cell lines. The results of pulse-field electrophoresis size analysis and the N50 sequencing metrics of reads obtained from Nanopore MinION runs verified the presence of intact DNA suitable for direct sequencing. Conclusions : We present the workflow that can be used to program similar robots and discuss the problems and solutions we encountered in developing the workflow. The protocol can be adapted to analogous methods such as RNA extraction, and there is ongoing work to incorporate further post-extraction steps such as library construction. This work shows the potential for automated robotic workflows to free molecular biological researchers from manual interventions in routine experimental work. A time-lapse movie of the entire automated run is included in this report., Competing Interests: No competing interests were disclosed., (Copyright: © 2022 Liu AW et al.)
- Published
- 2022
- Full Text
- View/download PDF
23. Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive states.
- Author
-
Ziff OJ, Clarke BE, Taha DM, Crerar H, Luscombe NM, and Patani R
- Subjects
- Animals, Astrocytes metabolism, Disease Models, Animal, Humans, Mice, Mice, Transgenic, Motor Neurons metabolism, Mutation, Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis metabolism, Induced Pluripotent Stem Cells
- Abstract
Astrocytes contribute to motor neuron death in amyotrophic lateral sclerosis (ALS), but whether they adopt deleterious features consistent with inflammatory reactive states remains incompletely resolved. To identify inflammatory reactive features in ALS human induced pluripotent stem cell (hiPSC)-derived astrocytes, we examined transcriptomics, proteomics, and glutamate uptake in VCP -mutant astrocytes. We complemented this by examining other ALS mutations and models using a systematic meta-analysis of all publicly-available ALS astrocyte sequencing data, which included hiPSC-derived astrocytes carrying SOD1 , C9orf72 , and FUS gene mutations as well as mouse ALS astrocyte models with SOD1
G93A mutation, Tardbp deletion, and Tmem259 (also known as membralin) deletion. ALS astrocytes were characterized by up-regulation of genes involved in the extracellular matrix, endoplasmic reticulum stress, and the immune response and down-regulation of synaptic integrity, glutamate uptake, and other neuronal support processes. We identify activation of the TGFB, Wnt, and hypoxia signaling pathways in both hiPSC and mouse ALS astrocytes. ALS changes positively correlate with TNF, IL1A, and complement pathway component C1q-treated inflammatory reactive astrocytes, with significant overlap of differentially expressed genes. By contrasting ALS changes with models of protective reactive astrocytes, including middle cerebral artery occlusion and spinal cord injury, we uncover a cluster of genes changing in opposing directions, which may represent down-regulated homeostatic genes and up-regulated deleterious genes in ALS astrocytes. These observations indicate that ALS astrocytes augment inflammatory processes while concomitantly suppressing neuronal supporting mechanisms, thus resembling inflammatory reactive states and offering potential therapeutic targets., (© 2022 Ziff et al.; Published by Cold Spring Harbor Laboratory Press.)- Published
- 2022
- Full Text
- View/download PDF
24. Chromatin-contact atlas reveals disorder-mediated protein interactions and moonlighting chromatin-associated RBPs.
- Author
-
Rafiee MR, Zagalak JA, Sidorov S, Steinhauser S, Davey K, Ule J, and Luscombe NM
- Subjects
- Animals, Binding Sites genetics, Cells, Cultured, Chromatin genetics, Intrinsically Disordered Proteins genetics, Mass Spectrometry methods, Mice, Protein Binding, Protein Interaction Maps genetics, Proteome genetics, Proteome metabolism, Proteomics methods, RNA-Binding Proteins genetics, Reproducibility of Results, Chromatin metabolism, Intrinsically Disordered Proteins metabolism, Mouse Embryonic Stem Cells metabolism, RNA-Binding Proteins metabolism
- Abstract
RNA-binding proteins (RBPs) play diverse roles in regulating co-transcriptional RNA-processing and chromatin functions, but our knowledge of the repertoire of chromatin-associated RBPs (caRBPs) and their interactions with chromatin remains limited. Here, we developed SPACE (Silica Particle Assisted Chromatin Enrichment) to isolate global and regional chromatin components with high specificity and sensitivity, and SPACEmap to identify the chromatin-contact regions in proteins. Applied to mouse embryonic stem cells, SPACE identified 1459 chromatin-associated proteins, ∼48% of which are annotated as RBPs, indicating their dual roles in chromatin and RNA-binding. Additionally, SPACEmap stringently verified chromatin-binding of 403 RBPs and identified their chromatin-contact regions. Notably, SPACEmap showed that about 40% of the caRBPs bind chromatin by intrinsically disordered regions (IDRs). Studying SPACE and total proteome dynamics from mES cells grown in 2iL and serum medium indicates significant correlation (R = 0.62). One of the most dynamic caRBPs is Dazl, which we find co-localized with PRC2 at transcription start sites of genes that are distinct from Dazl mRNA binding. Dazl and other PRC2-colocalised caRBPs are rich in intrinsically disordered regions (IDRs), which could contribute to the formation and regulation of phase-separated PRC condensates. Together, our approach provides an unprecedented insight into IDR-mediated interactions and caRBPs with moonlighting functions in native chromatin., (© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2021
- Full Text
- View/download PDF
25. RNA modifications detection by comparative Nanopore direct RNA sequencing.
- Author
-
Leger A, Amaral PP, Pandolfini L, Capitanchik C, Capraro F, Miano V, Migliori V, Toolan-Kerr P, Sideri T, Enright AJ, Tzelepis K, van Werven FJ, Luscombe NM, Barbieri I, Ule J, Fitzgerald T, Birney E, Leonardi T, and Kouzarides T
- Subjects
- Base Sequence, Computational Biology, Gene Expression Profiling, Genetic Techniques, High-Throughput Nucleotide Sequencing, Humans, RNA isolation & purification, RNA Processing, Post-Transcriptional, Software, Transcriptome, Nanopore Sequencing methods, Nanopores, RNA metabolism, Sequence Analysis, RNA methods
- Abstract
RNA molecules undergo a vast array of chemical post-transcriptional modifications (PTMs) that can affect their structure and interaction properties. In recent years, a growing number of PTMs have been successfully mapped to the transcriptome using experimental approaches relying on high-throughput sequencing. Oxford Nanopore direct-RNA sequencing has been shown to be sensitive to RNA modifications. We developed and validated Nanocompore, a robust analytical framework that identifies modifications from these data. Our strategy compares an RNA sample of interest against a non-modified control sample, not requiring a training set and allowing the use of replicates. We show that Nanocompore can detect different RNA modifications with position accuracy in vitro, and we apply it to profile m
6 A in vivo in yeast and human RNAs, as well as in targeted non-coding RNAs. We confirm our results with orthogonal methods and provide novel insights on the co-occurrence of multiple modified residues on individual RNA molecules., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
26. RGS4 RNA Secondary Structure Mediates Staufen2 RNP Assembly in Neurons.
- Author
-
Fernández-Moya SM, Ehses J, Bauer KE, Schieweck R, Chakrabarti AM, Lee FCY, Illig C, Luscombe NM, Harner M, Ule J, and Kiebler MA
- Subjects
- 3' Untranslated Regions, Animals, Cells, Cultured, Cytoplasmic Ribonucleoprotein Granules metabolism, Female, Neurons cytology, Nucleic Acid Conformation, RNA Interference, RNA, Messenger metabolism, RNA, Small Interfering metabolism, RNA-Binding Proteins antagonists & inhibitors, RNA-Binding Proteins genetics, Rats, Rats, Sprague-Dawley, Cytoplasmic Ribonucleoprotein Granules chemistry, Neurons metabolism, RGS Proteins genetics, RNA, Messenger chemistry, RNA-Binding Proteins metabolism
- Abstract
RNA-binding proteins (RBPs) act as posttranscriptional regulators controlling the fate of target mRNAs. Unraveling how RNAs are recognized by RBPs and in turn are assembled into neuronal RNA granules is therefore key to understanding the underlying mechanism. While RNA sequence elements have been extensively characterized, the functional impact of RNA secondary structures is only recently being explored. Here, we show that Staufen2 binds complex, long-ranged RNA hairpins in the 3'-untranslated region (UTR) of its targets. These structures are involved in the assembly of Staufen2 into RNA granules. Furthermore, we provide direct evidence that a defined Rgs4 RNA duplex regulates Staufen2-dependent RNA localization to distal dendrites. Importantly, disrupting the RNA hairpin impairs the observed effects. Finally, we show that these secondary structures differently affect protein expression in neurons. In conclusion, our data reveal the importance of RNA secondary structure in regulating RNA granule assembly, localization and eventually translation. It is therefore tempting to speculate that secondary structures represent an important code for cells to control the intracellular fate of their mRNAs.
- Published
- 2021
- Full Text
- View/download PDF
27. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire.
- Author
-
Hallegger M, Chakrabarti AM, Lee FCY, Lee BL, Amalietti AG, Odeh HM, Copley KE, Rubien JD, Portz B, Kuret K, Huppertz I, Rau F, Patani R, Fawzi NL, Shorter J, Luscombe NM, and Ule J
- Subjects
- 3' Untranslated Regions genetics, Base Sequence, Cell Nucleus metabolism, HEK293 Cells, HeLa Cells, Homeostasis, Humans, Mutation genetics, Nucleotide Motifs genetics, Phase Transition, Point Mutation genetics, Poly A metabolism, Protein Binding, Protein Multimerization, RNA, Messenger genetics, RNA, Messenger metabolism, Sequence Deletion, DNA-Binding Proteins metabolism, RNA metabolism, RNA-Binding Proteins metabolism
- Abstract
Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution., Competing Interests: Declaration of interests J.S. is a consultant for Dewpoint Therapeutics, Maze Therapeutics, and Vivid Sciences. B.P. is an employee of Dewpoint Therapeutics., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
28. Aberrant cytoplasmic intron retention is a blueprint for RNA binding protein mislocalization in VCP-related amyotrophic lateral sclerosis.
- Author
-
Tyzack GE, Neeves J, Crerar H, Klein P, Ziff O, Taha DM, Luisier R, Luscombe NM, and Patani R
- Subjects
- Humans, Mutation, Valosin Containing Protein genetics, Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis metabolism, Amyotrophic Lateral Sclerosis pathology, Cytoplasm metabolism, Introns, RNA-Binding Proteins metabolism
- Abstract
We recently described aberrantly increased cytoplasmic SFPQ intron-retaining transcripts (IRTs) and concurrent SFPQ protein mislocalization as new hallmarks of amyotrophic lateral sclerosis (ALS). However, the generalizability and potential roles of cytoplasmic IRTs in health and disease remain unclear. Here, using time-resolved deep sequencing of nuclear and cytoplasmic fractions of human induced pluripotent stem cells undergoing motor neurogenesis, we reveal that ALS-causing VCP gene mutations lead to compartment-specific aberrant accumulation of IRTs. Specifically, we identify >100 IRTs with increased cytoplasmic abundance in ALS samples. Furthermore, these aberrant cytoplasmic IRTs possess sequence-specific attributes and differential predicted binding affinity to RNA binding proteins. Remarkably, TDP-43, SFPQ and FUS-RNA binding proteins known for nuclear-to-cytoplasmic mislocalization in ALS-abundantly and specifically bind to this aberrant cytoplasmic pool of IRTs. Our data are therefore consistent with a novel role for cytoplasmic IRTs in regulating compartment-specific protein abundance. This study provides new molecular insight into potential pathomechanisms underlying ALS and highlights aberrant cytoplasmic IRTs as potential therapeutic targets., (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2021
- Full Text
- View/download PDF
29. Ultraplex: A rapid, flexible, all-in-one fastq demultiplexer.
- Author
-
Wilkins OG, Capitanchik C, Luscombe NM, and Ule J
- Abstract
Background: The first step of virtually all next generation sequencing analysis involves the splitting of the raw sequencing data into separate files using sample-specific barcodes, a process known as "demultiplexing". However, we found that existing software for this purpose was either too inflexible or too computationally intensive for fast, streamlined processing of raw, single end fastq files containing combinatorial barcodes. Results: Here, we introduce a fast and uniquely flexible demultiplexer, named Ultraplex, which splits a raw FASTQ file containing barcodes either at a single end or at both 5' and 3' ends of reads, trims the sequencing adaptors and low-quality bases, and moves unique molecular identifiers (UMIs) into the read header, allowing subsequent removal of PCR duplicates. Ultraplex is able to perform such single or combinatorial demultiplexing on both single- and paired-end sequencing data, and can process an entire Illumina HiSeq lane, consisting of nearly 500 million reads, in less than 20 minutes. Conclusions: Ultraplex greatly reduces computational burden and pipeline complexity for the demultiplexing of complex sequencing libraries, such as those produced by various CLIP and ribosome profiling protocols, and is also very user friendly, enabling streamlined, robust data processing. Ultraplex is available on PyPi and Conda and via Github., Competing Interests: No competing interests were disclosed., (Copyright: © 2021 Wilkins OG et al.)
- Published
- 2021
- Full Text
- View/download PDF
30. Author Correction: RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions.
- Author
-
Bonetti A, Agostini F, Suzuki AM, Hashimoto K, Pascarella G, Gimenez J, Roos L, Nash AJ, Ghilotti M, Cameron CJF, Valentine M, Medvedeva YA, Noguchi S, Agirre E, Kashi K, Samudyata, Luginbühl J, Cazzoli R, Agrawal S, Luscombe NM, Blanchette M, Kasukawa T, de Hoon M, Arner E, Lenhard B, Plessy C, Castelo-Branco G, Orlando V, and Carninci P
- Published
- 2021
- Full Text
- View/download PDF
31. Intergenic RNA mainly derives from nascent transcripts of known genes.
- Author
-
Agostini F, Zagalak J, Attig J, Ule J, and Luscombe NM
- Subjects
- Cell Line, Chromatin genetics, Endonucleases metabolism, Humans, RNA, Messenger metabolism, Transcription, Genetic, DNA, Intergenic genetics, Genes, RNA, Messenger genetics
- Abstract
Background: Eukaryotic genomes undergo pervasive transcription, leading to the production of many types of stable and unstable RNAs. Transcription is not restricted to regions with annotated gene features but includes almost any genomic context. Currently, the source and function of most RNAs originating from intergenic regions in the human genome remain unclear., Results: We hypothesize that many intergenic RNAs can be ascribed to the presence of as-yet unannotated genes or the "fuzzy" transcription of known genes that extends beyond the annotated boundaries. To elucidate the contributions of these two sources, we assemble a dataset of more than 2.5 billion publicly available RNA-seq reads across 5 human cell lines and multiple cellular compartments to annotate transcriptional units in the human genome. About 80% of transcripts from unannotated intergenic regions can be attributed to the fuzzy transcription of existing genes; the remaining transcripts originate mainly from putative long non-coding RNA loci that are rarely spliced. We validate the transcriptional activity of these intergenic RNAs using independent measurements, including transcriptional start sites, chromatin signatures, and genomic occupancies of RNA polymerase II in various phosphorylation states. We also analyze the nuclear localization and sensitivities of intergenic transcripts to nucleases to illustrate that they tend to be rapidly degraded either on-chromatin by XRN2 or off-chromatin by the exosome., Conclusions: We provide a curated atlas of intergenic RNAs that distinguishes between alternative processing of well-annotated genes from independent transcriptional units based on the combined analysis of chromatin signatures, nuclear RNA localization, and degradation pathways.
- Published
- 2021
- Full Text
- View/download PDF
32. Publisher Correction: A systems view of spliceosomal assembly and branchpoints with iCLIP.
- Author
-
Briese M, Haberman N, Sibley CR, Faraway R, Elser AS, Chakrabarti AM, Wang Z, König J, Perera D, Wickramasinghe VO, Venkitaraman AR, Luscombe NM, Saieva L, Pellizzoni L, Smith CWJ, Curk T, and Ule J
- Published
- 2021
- Full Text
- View/download PDF
33. Reactive astrocytes in ALS display diminished intron retention.
- Author
-
Ziff OJ, Taha DM, Crerar H, Clarke BE, Chakrabarti AM, Kelly G, Neeves J, Tyzack GE, Luscombe NM, and Patani R
- Subjects
- Animals, Astrocytes drug effects, Calcium Channels genetics, Cell Nucleus genetics, Cells, Cultured, Cytokines pharmacology, Cytoplasm genetics, Cytoplasm metabolism, DNA-Binding Proteins genetics, Gene Expression, Humans, Mice, Mutation, Superoxide Dismutase-1 genetics, Translocation, Genetic, Valosin Containing Protein genetics, Alternative Splicing, Amyotrophic Lateral Sclerosis genetics, Astrocytes metabolism, Introns
- Abstract
Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes., (© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2021
- Full Text
- View/download PDF
34. Clinically Relevant Vulnerabilities of Deep Machine Learning Systems for Skin Cancer Diagnosis.
- Author
-
Du-Harpur X, Arthurs C, Ganier C, Woolf R, Laftah Z, Lakhan M, Salam A, Wan B, Watt FM, Luscombe NM, and Lynch MD
- Subjects
- Color, Diagnosis, Differential, Humans, Image Interpretation, Computer-Assisted methods, Melanoma pathology, Nevus, Pigmented pathology, Skin diagnostic imaging, Skin pathology, Skin Neoplasms pathology, Deep Learning, Dermoscopy methods, Melanoma diagnosis, Nevus, Pigmented diagnosis, Skin Neoplasms diagnosis
- Published
- 2021
- Full Text
- View/download PDF
35. Telomere-to-telomere assembly of the genome of an individual Oikopleura dioica from Okinawa using Nanopore-based sequencing.
- Author
-
Bliznina A, Masunaga A, Mansfield MJ, Tan Y, Liu AW, West C, Rustagi T, Chien HC, Kumar S, Pichon J, Plessy C, and Luscombe NM
- Subjects
- Animals, Genome, Male, Telomere genetics, Nanopore Sequencing, Nanopores, Urochordata genetics
- Abstract
Background: The larvacean Oikopleura dioica is an abundant tunicate plankton with the smallest (65-70 Mbp) non-parasitic, non-extremophile animal genome identified to date. Currently, there are two genomes available for the Bergen (OdB3) and Osaka (OSKA2016) O. dioica laboratory strains. Both assemblies have full genome coverage and high sequence accuracy. However, a chromosome-scale assembly has not yet been achieved., Results: Here, we present a chromosome-scale genome assembly (OKI2018_I69) of the Okinawan O. dioica produced using long-read Nanopore and short-read Illumina sequencing data from a single male, combined with Hi-C chromosomal conformation capture data for scaffolding. The OKI2018_I69 assembly has a total length of 64.3 Mbp distributed among 19 scaffolds. 99% of the assembly is contained within five megabase-scale scaffolds. We found telomeres on both ends of the two largest scaffolds, which represent assemblies of two fully contiguous autosomal chromosomes. Each of the other three large scaffolds have telomeres at one end only and we propose that they correspond to sex chromosomes split into a pseudo-autosomal region and X-specific or Y-specific regions. Indeed, these five scaffolds mostly correspond to equivalent linkage groups in OdB3, suggesting overall agreement in chromosomal organization between the two populations. At a more detailed level, the OKI2018_I69 assembly possesses similar genomic features in gene content and repetitive elements reported for OdB3. The Hi-C map suggests few reciprocal interactions between chromosome arms. At the sequence level, multiple genomic features such as GC content and repetitive elements are distributed differently along the short and long arms of the same chromosome., Conclusions: We show that a hybrid approach of integrating multiple sequencing technologies with chromosome conformation information results in an accurate de novo chromosome-scale assembly of O. dioica's highly polymorphic genome. This genome assembly opens up the possibility of cross-genome comparison between O. dioica populations, as well as of studies of chromosomal evolution in this lineage.
- Published
- 2021
- Full Text
- View/download PDF
36. psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation.
- Author
-
Strittmatter LM, Capitanchik C, Newman AJ, Hallegger M, Norman CM, Fica SM, Oubridge C, Luscombe NM, Ule J, and Nagai K
- Subjects
- Adenosine Triphosphatases chemistry, Adenosine Triphosphatases genetics, Adenosine Triphosphatases metabolism, Autoantigens chemistry, Autoantigens metabolism, Cryoelectron Microscopy, DEAD-box RNA Helicases chemistry, DEAD-box RNA Helicases metabolism, Models, Molecular, RNA Precursors chemistry, RNA Splicing Factors genetics, RNA Splicing Factors metabolism, RNA, Fungal metabolism, Recombinant Proteins, Ribonucleoprotein, U5 Small Nuclear chemistry, Ribonucleoprotein, U5 Small Nuclear genetics, Ribonucleoprotein, U5 Small Nuclear metabolism, Ribonucleoproteins, Small Nuclear chemistry, Ribonucleoproteins, Small Nuclear metabolism, Saccharomyces cerevisiae Proteins chemistry, Saccharomyces cerevisiae Proteins genetics, Spliceosomes chemistry, Exons, RNA Helicases chemistry, RNA Helicases metabolism, RNA Precursors metabolism, RNA Splicing, Saccharomyces cerevisiae Proteins metabolism, Spliceosomes metabolism
- Abstract
RNA helicases remodel the spliceosome to enable pre-mRNA splicing, but their binding and mechanism of action remain poorly understood. To define helicase-RNA contacts in specific spliceosomal states, we develop purified spliceosome iCLIP (psiCLIP), which reveals dynamic helicase-RNA contacts during splicing catalysis. The helicase Prp16 binds along the entire available single-stranded RNA region between the branchpoint and 3'-splice site, while Prp22 binds diffusely downstream of the branchpoint before exon ligation, but then switches to more narrow binding in the downstream exon after exon ligation, arguing against a mechanism of processive translocation. Depletion of the exon-ligation factor Prp18 destabilizes Prp22 binding to the pre-mRNA, suggesting that proofreading by Prp22 may sense the stability of the spliceosome during exon ligation. Thus, psiCLIP complements structural studies by providing key insights into the binding and proofreading activity of spliceosomal RNA helicases.
- Published
- 2021
- Full Text
- View/download PDF
37. Cytoplasmic cleavage of IMPA1 3' UTR is necessary for maintaining axon integrity.
- Author
-
Andreassi C, Luisier R, Crerar H, Darsinou M, Blokzijl-Franke S, Lenn T, Luscombe NM, Cuda G, Gaspari M, Saiardi A, and Riccio A
- Subjects
- Animals, Argonaute Proteins genetics, Argonaute Proteins metabolism, ELAV-Like Protein 4 genetics, ELAV-Like Protein 4 metabolism, Female, Gene Expression Regulation, Enzymologic, Male, PC12 Cells, Phosphoric Monoester Hydrolases genetics, Poly(A)-Binding Proteins genetics, Poly(A)-Binding Proteins metabolism, Polyadenylation, Protein Biosynthesis, Protein Isoforms, RNA, Messenger genetics, Rats, Rats, Sprague-Dawley, Superior Cervical Ganglion cytology, Trans-Activators genetics, Trans-Activators metabolism, 3' Untranslated Regions, Axons enzymology, Cell Body enzymology, Phosphoric Monoester Hydrolases metabolism, RNA, Messenger metabolism, Superior Cervical Ganglion enzymology, Transcription, Genetic
- Abstract
The 3' untranslated regions (3' UTRs) of messenger RNAs (mRNAs) are non-coding sequences involved in many aspects of mRNA metabolism, including intracellular localization and translation. Incorrect processing and delivery of mRNA cause severe developmental defects and have been implicated in many neurological disorders. Here, we use deep sequencing to show that in sympathetic neuron axons, the 3' UTRs of many transcripts undergo cleavage, generating isoforms that express the coding sequence with a short 3' UTR and stable 3' UTR-derived fragments of unknown function. Cleavage of the long 3' UTR of Inositol Monophosphatase 1 (IMPA1) mediated by a protein complex containing the endonuclease argonaute 2 (Ago2) generates a translatable isoform that is necessary for maintaining the integrity of sympathetic neuron axons. Thus, our study provides a mechanism of mRNA metabolism that simultaneously regulates local protein synthesis and generates an additional class of 3' UTR-derived RNAs., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
38. Author Correction: High-resolution analysis of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts.
- Author
-
Chia M, Li C, Marques S, Pelechano V, Luscombe NM, and van Werven FJ
- Published
- 2021
- Full Text
- View/download PDF
39. Transcription levels of a noncoding RNA orchestrate opposing regulatory and cell fate outcomes in yeast.
- Author
-
Moretto F, Wood NE, Chia M, Li C, Luscombe NM, and van Werven FJ
- Subjects
- RNA, Untranslated genetics, Saccharomyces cerevisiae metabolism, Saccharomyces cerevisiae Proteins metabolism, Transcription Factors metabolism
- Abstract
Transcription through noncoding regions of the genome is pervasive. How these transcription events regulate gene expression remains poorly understood. Here, we report that, in S. cerevisiae, the levels of transcription through a noncoding region, IRT2, located upstream in the promoter of the inducer of meiosis, IME1, regulate opposing chromatin and transcription states. At low levels, the act of IRT2 transcription promotes histone exchange, delivering acetylated histone H3 lysine 56 to chromatin locally. The subsequent open chromatin state directs transcription factor recruitment and induces downstream transcription to repress the IME1 promoter and meiotic entry. Conversely, increasing transcription turns IRT2 into a repressor by promoting transcription-coupled chromatin assembly. The two opposing functions of IRT2 transcription shape a regulatory circuit, which ensures a robust cell-type-specific control of IME1 expression and yeast meiosis. Our data illustrate how intergenic transcription levels are key to controlling local chromatin state, gene expression, and cell fate outcomes., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
40. High-resolution analysis of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts.
- Author
-
Chia M, Li C, Marques S, Pelechano V, Luscombe NM, and van Werven FJ
- Subjects
- Chromatin, Promoter Regions, Genetic, Protein Isoforms genetics, RNA, Messenger, Transcription Factors, Transcriptome, Gene Expression Regulation, Fungal, Saccharomyces cerevisiae genetics
- Abstract
Background: The start and end sites of messenger RNAs (TSSs and TESs) are highly regulated, often in a cell-type-specific manner. Yet the contribution of transcript diversity in regulating gene expression remains largely elusive. We perform an integrative analysis of multiple highly synchronized cell-fate transitions and quantitative genomic techniques in Saccharomyces cerevisiae to identify regulatory functions associated with transcribing alternative isoforms., Results: Cell-fate transitions feature widespread elevated expression of alternative TSS and, to a lesser degree, TES usage. These dynamically regulated alternative TSSs are located mostly upstream of canonical TSSs, but also within gene bodies possibly encoding for protein isoforms. Increased upstream alternative TSS usage is linked to various effects on canonical TSS levels, which range from co-activation to repression. We identified two key features linked to these outcomes: an interplay between alternative and canonical promoter strengths, and distance between alternative and canonical TSSs. These two regulatory properties give a plausible explanation of how locally transcribed alternative TSSs control gene transcription. Additionally, we find that specific chromatin modifiers Set2, Set3, and FACT play an important role in mediating gene repression via alternative TSSs, further supporting that the act of upstream transcription drives the local changes in gene transcription., Conclusions: The integrative analysis of multiple cell-fate transitions suggests the presence of a regulatory control system of alternative TSSs that is important for dynamic tuning of gene expression. Our work provides a framework for understanding how TSS heterogeneity governs eukaryotic gene expression, particularly during cell-fate changes.
- Published
- 2021
- Full Text
- View/download PDF
41. Pervasive chromosomal instability and karyotype order in tumour evolution.
- Author
-
Watkins TBK, Lim EL, Petkovic M, Elizalde S, Birkbak NJ, Wilson GA, Moore DA, Grönroos E, Rowan A, Dewhurst SM, Demeulemeester J, Dentro SC, Horswell S, Au L, Haase K, Escudero M, Rosenthal R, Bakir MA, Xu H, Litchfield K, Lu WT, Mourikis TP, Dietzen M, Spain L, Cresswell GD, Biswas D, Lamy P, Nordentoft I, Harbst K, Castro-Giner F, Yates LR, Caramia F, Jaulin F, Vicier C, Tomlinson IPM, Brastianos PK, Cho RJ, Bastian BC, Dyrskjøt L, Jönsson GB, Savas P, Loi S, Campbell PJ, Andre F, Luscombe NM, Steeghs N, Tjan-Heijnen VCG, Szallasi Z, Turajlic S, Jamal-Hanjani M, Van Loo P, Bakhoum SF, Schwarz RF, McGranahan N, and Swanton C
- Subjects
- Chromosomes, Human, Pair 11 genetics, Chromosomes, Human, Pair 8 genetics, Clone Cells metabolism, Clone Cells pathology, Cyclin E genetics, DNA Copy Number Variations genetics, Female, Humans, Loss of Heterozygosity genetics, Male, Mutagenesis, Neoplasm Metastasis pathology, Neoplasms pathology, Oncogene Proteins genetics, Chromosomal Instability genetics, Evolution, Molecular, Karyotype, Neoplasm Metastasis genetics, Neoplasms genetics
- Abstract
Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes
1,2 . The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4 . Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.- Published
- 2020
- Full Text
- View/download PDF
42. What is AI? Applications of artificial intelligence to dermatology.
- Author
-
Du-Harpur X, Watt FM, Luscombe NM, and Lynch MD
- Subjects
- Algorithms, Humans, Machine Learning, Neural Networks, Computer, Artificial Intelligence, Dermatology
- Abstract
In the past, the skills required to make an accurate dermatological diagnosis have required exposure to thousands of patients over many years. However, in recent years, artificial intelligence (AI) has made enormous advances, particularly in the area of image classification. This has led computer scientists to apply these techniques to develop algorithms that are able to recognize skin lesions, particularly melanoma. Since 2017, there have been numerous studies assessing the accuracy of algorithms, with some reporting that the accuracy matches or surpasses that of a dermatologist. While the principles underlying these methods are relatively straightforward, it can be challenging for the practising dermatologist to make sense of a plethora of unfamiliar terms in this domain. Here we explain the concepts of AI, machine learning, neural networks and deep learning, and explore the principles of how these tasks are accomplished. We critically evaluate the studies that have assessed the efficacy of these methods and discuss limitations and potential ethical issues. The burden of skin cancer is growing within the Western world, with major implications for both population skin health and the provision of dermatology services. AI has the potential to assist in the diagnosis of skin lesions and may have particular value at the interface between primary and secondary care. The emerging technology represents an exciting opportunity for dermatologists, who are the individuals best informed to explore the utility of this powerful novel diagnostic tool, and facilitate its safe and ethical implementation within healthcare systems., (© 2020 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.)
- Published
- 2020
- Full Text
- View/download PDF
43. Author Correction: A systems view of spliceosomal assembly and branchpoints with iCLIP.
- Author
-
Briese M, Haberman N, Sibley CR, Faraway R, Elser AS, Chakrabarti AM, Wang Z, König J, Perera D, Wickramasinghe VO, Venkitaraman AR, Luscombe NM, Saieva L, Pellizzoni L, Smith CWJ, Curk T, and Ule J
- Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Published
- 2020
- Full Text
- View/download PDF
44. A genome database for a Japanese population of the larvacean Oikopleura dioica.
- Author
-
Wang K, Tomura R, Chen W, Kiyooka M, Ishizaki H, Aizu T, Minakuchi Y, Seki M, Suzuki Y, Omotezako T, Suyama R, Masunaga A, Plessy C, Luscombe NM, Dantec C, Lemaire P, Itoh T, Toyoda A, Nishida H, and Onuma TA
- Subjects
- Animals, Japan, Transcriptome, Databases, Genetic, Models, Genetic, Urochordata genetics
- Abstract
The larvacean Oikopleura dioica is a planktonic chordate and is a tunicate that belongs to the closest relatives to vertebrates. Its simple and transparent body, invariant embryonic cell lineages, and short life cycle of 5 days make it a promising model organism for the study of developmental biology. The genome browser OikoBase was established in 2013 using Norwegian O. dioica. However, genome information for other populations is not available, even though many researchers have studied local populations. In the present study, we sequenced using Illumina and PacBio RSII technologies the genome of O. dioica from a southwestern Japanese population that was cultured in our laboratory for 3 years. The genome of Japanese O. dioica was assembled into 576 scaffold sequences with a total length and N50 length of 56.6 and 1.5 Mb, respectively. A total of 18,743 gene models (transcript models) were predicted in the genome assembly, named OSKA2016. In addition, 19,277 non-redundant transcripts were assembled using RNA-seq data. The OSKA2016 has global sequence similarity of only 86.5% when compared with the OikoBase, highlighting the sequence difference between the two far distant O. dioica populations on the globe. The genome assembly, transcript assembly, and transcript models were incorporated into ANISEED (https://www.aniseed.cnrs.fr/) for genome browsing and BLAST searches. Mapping of reads obtained from male- or female-specific genome libraries yielded male-specific scaffolds in the OSKA2016 and revealed that over 2.6 Mb of sequence were included in the male-specific Y-region. The genome and transcriptome resources from two distinct populations will be useful datasets for developmental biology, evolutionary biology, and molecular ecology using this model organism., (© 2020 Japanese Society of Developmental Biologists.)
- Published
- 2020
- Full Text
- View/download PDF
45. Paraspeckle components NONO and PSPC1 are not mislocalized from motor neuron nuclei in sporadic ALS.
- Author
-
Tyzack GE, Manferrari G, Newcombe J, Luscombe NM, Luisier R, and Patani R
- Subjects
- Cell Nucleus metabolism, Female, Humans, Male, Amyotrophic Lateral Sclerosis metabolism, DNA-Binding Proteins metabolism, Motor Neurons metabolism, RNA-Binding Proteins metabolism
- Published
- 2020
- Full Text
- View/download PDF
46. Centromere-specific antibody-mediated karyotyping of Okinawan Oikopleura dioica suggests the presence of three chromosomes.
- Author
-
Liu AW, Tan Y, Masunaga A, Plessy C, and Luscombe NM
- Subjects
- Animals, Antibodies, Monoclonal, Female, Japan, Karyotyping, Male, Staining and Labeling, Centromere immunology, Chromosomes genetics, Urochordata genetics
- Abstract
Oikopleura dioica is a ubiquitous marine tunicate of biological interest due to features that include dioecious reproduction, short life cycle, and vertebrate-like dorsal notochord while possessing a relatively compact genome. The use of tunicates as model organisms, particularly with these characteristics, offers the advantage of facilitating studies in evolutionary development and furthering understanding of enduring attributes found in the more complex vertebrates. At present, we are undertaking an initiative to sequence the genomes of Oikopleura individuals in populations found among the seas surrounding the Ryukyu Islands in southern Japan. To facilitate and validate genome assemblies, karyotyping was employed to count individual animals' chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. New imaging data of embryos and oocytes stained with two different antibodies were obtained; interpretation of these data lead us to conclude that the Okinawan Oikopleura dioica has three pairs of chromosomes, akin to previous results from genomic assemblies in Atlantic populations. The imaging data have been deposited to the open-access EBI BioImage Archive for reuse while additionally providing representative images of two commercially available anti-H3S28P antibodies' staining properties for use in epifluorescent and confocal based fluorescent microscopy., Competing Interests: No competing interests were disclosed., (Copyright: © 2020 Liu AW et al.)
- Published
- 2020
- Full Text
- View/download PDF
47. H3S28P Antibody Staining of Okinawan Oikopleura dioica Suggests the Presence of Three Chromosomes.
- Author
-
Liu AW, Tan Y, Masunaga A, Bliznina A, West C, Plessy C, and Luscombe NM
- Subjects
- Animals, Antibodies, Monoclonal, Female, Japan, Karyotyping, Male, Staining and Labeling, Centromere immunology, Chromosomes genetics, Urochordata genetics
- Abstract
Oikopleura dioica is a ubiquitous marine zooplankton of biological interest owing to features that include dioecious reproduction, a short life cycle, conserved chordate body plan, and a compact genome. It is an important tunicate model for evolutionary and developmental research, as well as investigations into marine ecosystems. The genome of north Atlantic O. dioica comprises three chromosomes. However, comparisons with the genomes of O. dioica sampled from mainland and southern Japan revealed extensive sequence differences. Moreover, historical studies have reported widely varying chromosome counts. We recently initiated a project to study the genomes of O. dioica individuals collected from the coastline of the Ryukyu (Okinawa) Islands in southern Japan. Given the potentially large extent of genomic diversity, we employed karyological techniques to count individual animals' chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. Epifluorescence and confocal images were obtained of embryos and oocytes stained with two commercial anti-H3S28P antibodies (Abcam ab10543 and Thermo Fisher 07-145). The data lead us to conclude that diploid cells from Okinawan O. dioica contain three pairs of chromosomes, in line with the north Atlantic populations. The finding facilitates the telomere-to-telomere assembly of Okinawan O. dioica genome sequences and gives insight into the genomic diversity of O. dioica from different geographical locations. The data deposited in the EBI BioImage Archive provide representative images of the antibodies' staining properties for use in epifluorescent and confocal based fluorescent microscopy., Competing Interests: No competing interests were disclosed., (Copyright: © 2021 Liu AW et al.)
- Published
- 2020
- Full Text
- View/download PDF
48. Streamlined Sampling and Cultivation of the Pelagic Cosmopolitan Larvacean, Oikopleura dioica.
- Author
-
Masunaga A, Liu AW, Tan Y, Scott A, and Luscombe NM
- Subjects
- Animals, Female, Male, Aquaculture methods, Urochordata
- Abstract
Oikopleura dioica is a planktonic chordate with exceptional filter-feeding ability, rapid generation time, conserved early development, and a compact genome. For these reasons, it is considered a useful model organism for marine ecological studies, evolutionary developmental biology, and genomics. As research often requires a steady supply of animal resources, it is useful to establish a reliable, low-maintenance culture system. Here we describe a step-by-step method for establishing an O. dioica culture. We describe how to select potential sampling sites, collection methods, target animal identification, and the set-up of the culturing system. We provide troubleshooting advice based on our own experiences. We also highlight critical factors that help sustain a robust culture system. Although the culture protocol provided here is optimized for O. dioica, we hope our sampling technique and culture setup will inspire new ideas for maintaining other fragile pelagic invertebrates.
- Published
- 2020
- Full Text
- View/download PDF
49. How Do You Identify m 6 A Methylation in Transcriptomes at High Resolution? A Comparison of Recent Datasets.
- Author
-
Capitanchik C, Toolan-Kerr P, Luscombe NM, and Ule J
- Abstract
A flurry of methods has been developed in recent years to identify N6-methyladenosine (m
6 A) sites across transcriptomes at high resolution. This raises the need to understand both the common features and those that are unique to each method. Here, we complement the analyses presented in the original papers by reviewing their various technical aspects and comparing the overlap between m6 A-methylated messenger RNAs (mRNAs) identified by each. Specifically, we examine eight different methods that identify m6 A sites in human cells with high resolution: two antibody-based crosslinking and immunoprecipitation (CLIP) approaches, two using endoribonuclease MazF, one based on deamination, two using Nanopore direct RNA sequencing, and finally, one based on computational predictions. We contrast the respective datasets and discuss the challenges in interpreting the overlap between them, including a prominent expression bias in detected genes. This overview will help guide researchers in making informed choices about using the available data and assist with the design of future experiments to expand our understanding of m6 A and its regulation., (Copyright © 2020 Capitanchik, Toolan-Kerr, Luscombe and Ule.)- Published
- 2020
- Full Text
- View/download PDF
50. Finding cell-specific expression patterns in the early Ciona embryo with single-cell RNA-seq.
- Author
-
Ilsley GR, Suyama R, Noda T, Satoh N, and Luscombe NM
- Subjects
- Animals, Cell Lineage, Embryo, Nonmammalian cytology, Exome Sequencing, Ciona intestinalis embryology, Ciona intestinalis genetics, Embryo, Nonmammalian metabolism, Gene Expression Profiling, Gene Expression Regulation, Developmental, RNA-Seq methods, Single-Cell Analysis methods
- Abstract
Single-cell RNA-seq has been established as a reliable and accessible technique enabling new types of analyses, such as identifying cell types and studying spatial and temporal gene expression variation and change at single-cell resolution. Recently, single-cell RNA-seq has been applied to developing embryos, which offers great potential for finding and characterising genes controlling the course of development along with their expression patterns. In this study, we applied single-cell RNA-seq to the 16-cell stage of the Ciona embryo, a marine chordate and performed a computational search for cell-specific gene expression patterns. We recovered many known expression patterns from our single-cell RNA-seq data and despite extensive previous screens, we succeeded in finding new cell-specific patterns, which we validated by in situ and single-cell qPCR.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.