1. Mathematical foundations of phonons in incommensurate materials
- Author
-
Hott, Michael, Watson, Alexander B., and Luskin, Mitchell
- Subjects
Mathematical Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons ,Mathematics - Analysis of PDEs ,74H45, 74B20, 35Q74, 35B25 - Abstract
In some models, periodic configurations can be shown to be stable under, both, global $\ell^2$ or local perturbations. This is not the case for aperiodic media. The specific class of aperiodic media we are interested, in arise from taking two 2D periodic crystals and stacking them parallel at a relative twist. In periodic media, phonons are generalized eigenvectors for a stability operator acting on $\ell^2$, coming from a mechanical energy. The goal of our analysis is to provide phonons in the given class of aperiodic media with meaning. As rigorously established for the 1D Frenkel-Kontorova model and previously applied by one of the authors, we assume that we can parametrize minimizing lattice deformations w.r.t. local perturbations via continuous stacking-periodic functions, for which we previously derived a continuous energy density functional. Such (continuous) energy densities are analytically and computationally much better accessible compared to discrete energy functionals. In order to pass to an $\ell^2$-based energy functional, we also study the offset energy w.r.t. given lattice deformations, under $\ell^1$-perturbations. Our findings show that, in the case of an undeformed bilayer heterostructure, while the energy density can be shown to be stable under the assumption of stability of individual layers, the offset energy fails to be stable in the case of twisted bilayer graphene. We then establish conditions for stability and instability of the offset energy w.r.t. the relaxed lattice. Finally, we show that, in the case of incommensurate bilayer homostructures, i.e., two equal layers, if we choose minimizing deformations according to the global energy density above, the offset energy is stable in the limit of zero twist angle. Consequently, in this case, one can then define phonons as generalized eigenvectors w.r.t. the stability operator associated with the offset energy., Comment: 50 pages, 8 figures
- Published
- 2024