15 results on '"Mélanie Hillion"'
Search Results
2. Effects of a skin neuropeptide (substance p) on cutaneous microflora.
- Author
-
Lily Mijouin, Mélanie Hillion, Yasmina Ramdani, Thomas Jaouen, Cécile Duclairoir-Poc, Marie-Laure Follet-Gueye, Elian Lati, Florent Yvergnaux, Azzedine Driouich, Luc Lefeuvre, Christine Farmer, Laurent Misery, and Marc G J Feuilloley
- Subjects
Medicine ,Science - Abstract
BACKGROUND: Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP), a peptide released by nerve endings in the skin on bacterial virulence. METHODOLOGY/PRINCIPAL FINDINGS: Bacillus cereus, a member of the skin transient microflora, was used as a model. Exposure to SP strongly stimulated the cytotoxicity of B. cereus (+553±3% with SP 10(-6) M) and this effect was rapid (
- Published
- 2013
- Full Text
- View/download PDF
3. Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing
- Author
-
Sadika, Dkhili, Miguel, Ribeiro, Salma, Ghariani, Houssem Ben, Yahia, Mélanie, Hillion, Patricia, Poeta, Karim Ben, Slama, Michel, Hébraud, and Gilberto, Igrejas
- Subjects
Proteomics ,Escherichia coli ,Humans ,Bacteriophages ,Escherichia coli Infections ,Anti-Bacterial Agents - Abstract
With the emergence of multiresistant bacteria, the use of bacteriophages is gaining renewed interest as potential antimicrobial agents. The aim of this study was to analyze the structure of three lytic bacteriophages infecting
- Published
- 2021
4. D3.3 REPORT ON MASS SPECTROMETRY-BASED METHODS FOR THE DETECTION OF CPE AND VIRULENCE FACTORS FROM C. PERFRINGENS
- Author
-
Mélanie Hillion, Didier Viala, Christophe Chambon, Jacques-Antoine HENNEKINNE, Yacine NIA, Michel Hébraud, Yacine NIA, and Jacques-Antoine HENNEKINNE
- Subjects
Clostridium enterotoxin, LC-MS - Abstract
REPORT ON MASS SPECTROMETRY-BASED METHODS FOR THE DETECTION OF CPE AND VIRULENCE FACTORS FROM C. PERFRINGENS
- Published
- 2021
- Full Text
- View/download PDF
5. Natural Variation of Hazelnut Allergenicity: Is There Any Potential for Selecting Hypoallergenic Varieties?
- Author
-
Gilberto Igrejas, Sandra Cabo, Ana Paula Silva, Berta Gonçalves, Mélanie Hillion, Michel Hébraud, Joana Costa, Isabel Mafra, Miguel Ribeiro, Universidade de Trás-os-Montes e Alto Douro (UTAD), Universidade do Trás-os-Montes e Alto Douro, LAQV-REQUIMTE, Universidade NOVA de Lisboa, Departamento de Quimica (REQUIMTE), Universidade de Lisboa (ULISBOA)-Centro de Quimica Fina e Biotecnologia, Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB), University of Trás-os-Montes and Alto Douro [Portugal] (UTAD), INRAE, Plateforme d’Exploration du Métabolisme, Composante Protéomique (PFEMcp), 63122 Saint-Genès Champanelle, Microbiologie Environnement Digestif Santé (MEDIS), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Associate Laboratory for Green Chemistry-LAQV - Fundacao para a Ciencia e Tecnologia (FCT) UIDB 50006/2020national project AlleRiskAssess PTDC/BAA-AGR/31720/2017NORTE-01-0145-FEDER-00001national project HazelOmics (LAQV-REQUIMTE) INTERACT project-'Integrative Research in Environment, Agro-Chains and Technology' NORTE-01-0145-FEDER-000017European Union (EU), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Universidade de Lisboa = University of Lisbon (ULISBOA)-Centro de Quimica Fina e Biotecnologia, Plateforme Exploration du Métabolisme (PFEM), Institut National de la Recherche Agronomique (INRA)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-MetaboHUB-Clermont, and MetaboHUB-MetaboHUB
- Subjects
0301 basic medicine ,Male ,Proteomics ,medicine.medical_treatment ,0302 clinical medicine ,immunoblot ,Exclusion diet ,Food science ,Desensitization (medicine) ,Plant Proteins ,2. Zero hunger ,Nutrition and Dietetics ,genetic diversity ,respiratory system ,Middle Aged ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,nutrition ,Hazelnut allergy ,Child, Preschool ,proteogenomics ,Female ,Nut Hypersensitivity ,lcsh:Nutrition. Foods and food supply ,Food Hypersensitivity ,Adult ,Adolescent ,lcsh:TX341-641 ,Biology ,Natural variation ,hazelnut-allergic patients’ sera ,Article ,03 medical and health sciences ,Young Adult ,Corylus ,Food allergy ,medicine ,Humans ,hazelnut allergy ,Aged ,Genetic diversity ,Genetic Variation ,Hypoallergenic ,Allergens ,Antigens, Plant ,Immunoglobulin E ,medicine.disease ,hazelnut-allergic patients' sera ,respiratory tract diseases ,030104 developmental biology ,Human nutrition ,030228 respiratory system ,Food Science - Abstract
International audience; Hazelnuts (Corylus avellanaL.) have an important role in human nutrition and health. However, they are a common cause of food allergy. Due to hazelnut varietal diversity, variety-dependent differences in the IgE-binding properties may be suspected, which could allow therapeutic strategies based on the use of hypoallergenic varieties to induce desensitization. In a proteogenomic approach, we aimed to evaluate the allergenic potential of a genetically diverse set of hazelnuts (n = 13 varieties). Minor differences were found at the level of genes encoding important allergens, namely Cor a 8, Cor a 9, and Cor a 14. Nevertheless, IgE-reactivity was similar for all varieties using sera from seven allergic individuals. The predominant IgE-reactive proteins were Cor a 9 (100%) and Cor a 1.04 (60%), with the former being the most frequently identified by a two-dimensional gel electrophoresis (2-DE)-based proteomic approach. Therefore, it seems that the conventional exclusion diet will hold its ground for the time being.
- Published
- 2020
- Full Text
- View/download PDF
6. Comparative Secretome Analyses of Human and Zoonotic
- Author
-
Tobias, Busche, Mélanie, Hillion, Vu, Van Loi, David, Berg, Birgit, Walther, Torsten, Semmler, Birgit, Strommenger, Wolfgang, Witte, Christiane, Cuny, Alexander, Mellmann, Mark A, Holmes, Jörn, Kalinowski, Lorenz, Adrian, Jörg, Bernhardt, and Haike, Antelmann
- Subjects
Staphylococcus aureus ,Genotype ,Proteome ,Cell Survival ,Swine ,Virulence Factors ,MRSA ,Microbiology ,Tandem Mass Spectrometry ,Zoonoses ,Databases, Genetic ,Animals ,Humans ,Horses ,clonal complexes ,Phylogeny ,Proteogenomics ,Secretome ,Virulence ,Whole Genome Sequencing ,Research ,Staphylococcal Infections ,Genomic Structural Variation ,Pathogens ,virulence factor secretion ,Chromatography, Liquid - Abstract
The proteogenomes and secretomes of dominant human and zoonotic S. aureus lineages CC8, CC22 and CC398 were compared revealing genomic and regulatory differences in the secretion of 869 proteins. In the core secretome, 101 secreted or cell surface anchored virulence factors contribute with 82.4% to total secretome abundance. CC398 isolates showed higher secretion of α- and ß-hemolysins and lower secretion of surface proteins resulting in strong hemolysis and decreased biofilm formation because of lower SigB activity compared to human-specific CC8 and CC22., Graphical Abstract Highlights Proteogenomics and secretome comparison of human and zoonotic Staphylococcus aureus lineages.869 secreted proteins identified in eight S. aureus isolates of CC8, CC22 and CC398.CC398 lower secretion of surface proteins and higher secretion of hemolysins and exoenzymes.Regulatory differences in the secretomes could be linked to lower SigB activity in CC398., The spread of methicillin-resistant Staphylococcus aureus (MRSA) in the community, hospitals and in livestock is mediated by highly diverse virulence factors that include secreted toxins, superantigens, enzymes and surface-associated adhesins allowing host adaptation and colonization. Here, we combined proteogenomics, secretome and phenotype analyses to compare the secreted virulence factors in selected S. aureus isolates of the dominant human- and livestock-associated genetic lineages CC8, CC22, and CC398. The proteogenomic comparison revealed 2181 core genes and 1306 accessory genes in 18 S. aureus isolates reflecting the high genome diversity. Using secretome analysis, we identified 869 secreted proteins with 538 commons in eight isolates of CC8, CC22, and CC398. These include 64 predicted extracellular and 37 cell surface proteins that account for 82.4% of total secretome abundance. Among the top 10 most abundantly secreted virulence factors are the major autolysins (Atl, IsaA, Sle1, SAUPAN006375000), lipases and lipoteichoic acid hydrolases (Lip, Geh, LtaS), cytolytic toxins (Hla, Hlb, PSMβ1) and proteases (SspB). The CC398 isolates showed lower secretion of cell wall proteins, but higher secretion of α- and β-hemolysins (Hla, Hlb) which correlated with an increased Agr activity and strong hemolysis. CC398 strains were further characterized by lower biofilm formation and staphyloxanthin levels because of decreased SigB activity. Overall, comparative secretome analyses revealed CC8- or CC22-specific enterotoxin and Spl protease secretion as well as Agr- and SigB-controlled differences in exotoxin and surface protein secretion between human-specific and zoonotic lineages of S. aureus.
- Published
- 2018
7. The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence
- Author
-
Pascal Cosette, Alain Dufour, Alexandre Crépin, Sylvie Chevalier, Pierre Cornelis, Julie Hardouin, Thibaut Rosay, Julien Vieillard, Perrine Bortolotti, Thomas Clamens, Joerg Overhage, Benoit Guery, Fergal O'Gara, Takfarinas Kentache, Anke Neidig, Teddy Grandjean, Marc G. J. Feuilloley, Marlies J. Mooij, Emeline Bouffartigues, Mélanie Hillion, Olivier Lesouhaitier, Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Laboratoire de Biotechnologie et Chimie Marines (LBCM), Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Recherche translationelle relations hôte-pathogènes, Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Université Lille 2 - Faculté de Médecine, Karlsruhe Institute of Technology (KIT), University College Cork (UCC), Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA), Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie Organique Fine (IRCOF), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Plate-forme de Protéomique PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Biologie et physiologie des états septiques, IFR114-Université de Lille, Droit et Santé, This work was supported by grants from the Communauté d’Agglomération d’Evreux, the Conseil Général de l′Eure, European Union (FEDER), the French Association 'Vaincre la Mucoviscidose' and the Partenariats Hubert Curien (PHC Ulysses). Financial support by the BioInterfaces (BIF) Program of the Karlsruhe Institute of Technology (KIT) in the Helmholtz Association is gratefully acknowledged., We wish to thank Magalie Barreau and Olivier Maillot for technical assistance. T. Clamens and T. Rosay are recipients of a doctoral fellowship from the French Ministry of Research (MRE)., Vriendenkring VUB, Microbiology, Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Faculté de Médecine Henri Warembourg - Université de Lille, Institut de Chimie Organique Fine (IRCOF), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-High-tech Research Infrastructures for Life Sciences (HeRacLeS), Normandie Université (NU)-Normandie Université (NU)-Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Bazire, Alexis
- Subjects
Male ,0301 basic medicine ,Virulence regulation ,MESH: Pseudomonas Infections/microbiology ,Proteome ,health care facilities, manpower, and services ,MESH: Dictyostelium/microbiology ,MESH: Virulence ,medicine.disease_cause ,MESH: Quorum Sensing ,Pilus ,chemistry.chemical_compound ,MESH: Caenorhabditis elegans/microbiology ,MESH: Amidohydrolases/metabolism ,AmiE overproduction ,Dictyostelium ,MESH: Animals ,Lung ,health care economics and organizations ,MESH: Pseudomonas aeruginosa/enzymology ,Multidisciplinary ,Virulence ,Quorum Sensing ,MESH: Proteome ,Pseudomonas aeruginosa ,Female ,Life sciences ,biology ,MESH: Virulence Factors ,Virulence Factors ,030106 microbiology ,Homoserine ,MESH: Biofilms ,Biology ,Microbiology ,Article ,Amidohydrolases ,Amidase ,03 medical and health sciences ,Pyocyanin ,MESH: Mice, Inbred C57BL ,ddc:570 ,Journal Article ,medicine ,Animals ,Pseudomonas Infections ,cardiovascular diseases ,Caenorhabditis elegans ,MESH: Lung/microbiology ,MESH: Pseudomonas aeruginosa/pathogenicity ,Biofilm ,Bacteriology ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,MESH: Male ,MESH: Pseudomonas Infections/enzymology ,Mice, Inbred C57BL ,Quorum sensing ,chemistry ,Biofilms ,FOS: Biological sciences ,Pseudomonas aeruginosa virulence ,[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,MESH: Female - Abstract
We have previously shown that the eukaryotic C-type natriuretic peptide hormone (CNP) regulates Pseudomonas aeruginosa virulence and biofilm formation after binding on the AmiC sensor, triggering the amiE transcription. Herein, the involvement of the aliphatic amidase AmiE in P. aeruginosa virulence regulation has been investigated. The proteome analysis of an AmiE over-producing strain (AmiE+) revealed an expression change for 138 proteins, including some that are involved in motility, synthesis of quorum sensing compounds and virulence regulation. We observed that the AmiE+ strain produced less biofilm compared to the wild type, and over-produced rhamnolipids. In the same line, AmiE is involved in P. aeruginosa motilities (swarming and twitching) and production of the quorum sensing molecules N-acyl homoserine lactones and Pseudomonas Quinolone Signal (PQS). We observed that AmiE overproduction reduced levels of HCN and pyocyanin causing a decreased virulence in different hosts (i.e. Dictyostelium discoideum and Caenorhabditis elegans). This phenotype was further confirmed in a mouse model of acute lung infection, in which AmiE overproduction resulted in an almost fully virulence decrease. Taken together, our data suggest that, in addition to its role in bacterial secondary metabolism, AmiE is involved in P. aeruginosa virulence regulation by modulating pilus synthesis and cell-to-cell communication.
- Published
- 2017
- Full Text
- View/download PDF
8. Evaluation of dermal extracellular matrix and epidermal-dermal junction modifications using matrix-assisted laser desorption/ionization mass spectrometric imaging, in vivo reflectance confocal microscopy, echography, and histology: effect of age and peptide applications
- Author
-
Philippe Mondon, Olivier Peschard, Emmanuel Doridot, Mélanie Hillion, Thibault Marchand, Nada Andre, Cédric Pionneau, Marc G. J. Feuilloley, Solenne Chardonnet, Sederma, Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), UMS omique (OMIQUE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Pierre et Marie Curie - Paris 6 - UFR de Médecine Pierre et Marie Curie (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC), Unité Mixte de Service Production et Analyse de données en Sciences de la vie et en Santé (PASS), and Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Adult ,Aging ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Decorin ,evaluation methods ,Analytical chemistry ,Peptide ,Enzyme-Linked Immunosorbent Assay ,Dermatology ,confocal microscopy ,law.invention ,Extracellular matrix ,030207 dermatology & venereal diseases ,03 medical and health sciences ,0302 clinical medicine ,Dermis ,In vivo ,Confocal microscopy ,law ,measuring methods ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,medicine ,Humans ,spectrophotometry ,030304 developmental biology ,Aged ,Ultrasonography ,chemistry.chemical_classification ,0303 health sciences ,Extracellular Matrix Proteins ,Membrane Glycoproteins ,Microscopy, Confocal ,Epidermis (botany) ,Chemistry ,cosmetic efficacy ,Middle Aged ,Immunohistochemistry ,Extracellular Matrix ,Matrix-assisted laser desorption/ionization ,medicine.anatomical_structure ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,Biophysics ,Female ,Collagen ,Epidermis ,skin structure - Abstract
International audience; This study was conducted to establish a new methodology for evaluating elements of dermal extracellular matrix (ECM), of epidermal-dermal junction (EDJ), and effects of molecules which can modulate their synthesis. This methodology is based on matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI). In vivo reflectance confocal microscopy (in vivo RCM) and echography were also used. Using immunohistochemistry methods on explants, age-related modification data were obtained for selected dermal ECM and EDJ proteins (collagen I, collagen IV, collagen VII, collagen XVII, nidogen I, decorin/decorunt) and used as reference for MALDI-MSI studies. A methodology was developed with MALDI-MSI to map epidermis and dermis proteins. Then MALDI-MSI was used to study age modifications. In vivo RCM and high-frequency ultrasounds were used to evaluate ECM and EDJ undulation modifications caused by aging. Anti-aging molecule evaluations were performed with a blend of palmitoyl oligopeptide and palmitoyl tetrapeptide-7. Immunohistochemistry studies demonstrated that the selected proteins were found to be less abundant in aged group explants vs. young group except for decorin. MALDI-MSI studies correlated the results obtained for decorin. In vivo RCM measurements indicated a decrease of EDJ undulation depth with age and ECM modifications in the upper part of dermis. Echography demonstrated that the peptide blend reduced subepidermal low-echogenic band thickness and improved its density. In vivo RCM studies indicated that the peptides improved the ECM structure vs. placebo. This preliminary MALDI-MSI study raised some technical difficulties that were overcome. Further studies will be conducted to identify more proteins and to demonstrate the interest of this method for cosmetic evaluations.
- Published
- 2015
- Full Text
- View/download PDF
9. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli
- Author
-
Marc G. J. Feuilloley, Chloé Merle, Luc Lefeuvre, Lily Mijouin, Magalie Bénard, Azeddine Driouich, Yasmina Ramdani, Thomas Jaouen, Mélanie Hillion, Marie-Laure Follet-Gueye, Elian Lati, Giuseppe Percoco, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Plate-Forme de Recherche en Imagerie Cellulaire de Haute-Normandie (PRIMACEN), Normandie Université (NU)-Normandie Université (NU)-Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM), and Laboratoires dermatologiques d'URIAGE
- Subjects
Keratinocytes ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Biopsy ,Human skin ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Biochemistry ,Polymerase Chain Reaction ,030207 dermatology & venereal diseases ,0302 clinical medicine ,Staphylococcus epidermidis ,[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB] ,Defensin ,ComputingMilieux_MISCELLANEOUS ,[SDV.BDD.GAM]Life Sciences [q-bio]/Development Biology/Gametogenesis ,Laser capture microdissection ,0303 health sciences ,integumentary system ,[SDV.BBM.MN]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular Networks [q-bio.MN] ,Middle Aged ,Immunohistochemistry ,3. Good health ,Cytokines ,Female ,Adult ,Antimicrobial peptides ,Dermatology ,Biology ,In Vitro Techniques ,Pseudomonas fluorescens ,Microbiology ,Proinflammatory cytokine ,03 medical and health sciences ,Young Adult ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Humans ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Molecular Biology ,030304 developmental biology ,Aged ,Inflammation ,Innate immune system ,Epidermis (botany) ,Gene Expression Profiling ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Gene Expression Regulation, Bacterial ,biology.organism_classification ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breeding ,[CHIM.POLY]Chemical Sciences/Polymers ,Epidermis ,Antimicrobial Cationic Peptides - Abstract
The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human b defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1a and (IL)-1-b, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology.
- Published
- 2013
- Full Text
- View/download PDF
10. Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity
- Author
-
Cécile Duclairoir-Poc, Audrey Dagorn, Sylvie Chevalier, Laure Taupin, Marc G. J. Feuilloley, Nicole Orange, Annelise Chapalain, Lily Mijouin, Mélanie Hillion, Laboratoire de Microbiologie du Froid – Signaux et Micro-Environnement (LMDF-SME), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Pathogenèse des légionelles- Legionella pathogenesis (LegioPath), Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM), Laboratoire de Biotechnologie et Chimie Marines (LBCM), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CHEVALIER, Sylvie, Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lipopolysaccharides ,MESH: Cell Death ,MESH: gamma-Aminobutyric Acid ,lcsh:Chemistry ,Diffusion ,Lipid A ,chemistry.chemical_compound ,MESH: Animals ,lcsh:QH301-705.5 ,MESH: GABA-A Receptor Antagonists ,MESH: Receptors, GABA-A ,gamma-Aminobutyric Acid ,Spectroscopy ,0303 health sciences ,Pyoverdine ,Cell Death ,biology ,host-microbial interactions ,cytotoxicity ,virulence ,bacterial adhesion ,lipopolysaccharide ,biofilms ,pyoverdine ,Muscimol ,GABAA receptor ,MESH: Diffusion ,General Medicine ,Computer Science Applications ,Biochemistry ,MESH: Oligopeptides ,MESH: Neuroglia ,Neuroglia ,Oligopeptides ,medicine.drug ,MESH: Rats ,Surface Properties ,Pseudomonas fluorescens ,MESH: Biofilms ,Bicuculline ,Article ,Catalysis ,Microbiology ,Inorganic Chemistry ,MESH: Pseudomonas fluorescens ,03 medical and health sciences ,Caseinase ,MESH: Bicuculline ,medicine ,Animals ,Humans ,GABA-A Receptor Agonists ,GABA-A Receptor Antagonists ,MESH: Bacterial Adhesion ,MESH: GABA-A Receptor Agonists ,Physical and Theoretical Chemistry ,Molecular Biology ,030304 developmental biology ,MESH: Surface Properties ,MESH: Humans ,030306 microbiology ,Organic Chemistry ,Biofilm ,Receptors, GABA-A ,biology.organism_classification ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Rats ,lcsh:Biology (General) ,lcsh:QD1-999 ,chemistry ,nervous system ,MESH: Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,biology.protein ,[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,MESH: Lipopolysaccharides ,MESH: Muscimol - Abstract
International audience; Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10-5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains.
- Published
- 2013
- Full Text
- View/download PDF
11. Gamma-aminobutyric acid acts as a specific virulence regulator in Pseudomonas aeruginosa
- Author
-
Sylvie Chevalier, Laure Taupin, Marc G. J. Feuilloley, Annelise Chapalain, Mélanie Hillion, Julien Vieillard, Olivier Lesouhaitier, Cécile Duclairoir Poc, Audrey Dagorn, Franck Le Derf, Laboratoire de Microbiologie du Froid – Signaux et Micro-Environnement (LMDF-SME), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Institut Armand Frappier (INRS-IAF), Institut National de la Recherche Scientifique [Québec] (INRS)-Réseau International des Instituts Pasteur (RIIP), Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA), Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie Organique Fine (IRCOF), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biotechnologie et Chimie Marines (LBCM), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Proteome ,Virulence Factors ,Bacterial Toxins ,Virulence ,Biology ,medicine.disease_cause ,Microbiology ,gamma-Aminobutyric acid ,03 medical and health sciences ,medicine ,Pseudomonas exotoxin ,Animals ,Secretion ,Caenorhabditis elegans ,gamma-Aminobutyric Acid ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,030306 microbiology ,Pseudomonas aeruginosa ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Biofilm ,Gene Expression Regulation, Bacterial ,Survival Analysis ,Elongation factor ,Quorum sensing ,nervous system ,Biochemistry ,Locomotion ,medicine.drug - Abstract
Gamma-aminobutyric acid (GABA) is widespread in the environment and can be used by animal and plants as a communication molecule. Pseudomonas species, in particular fluorescent ones, synthesize GABA and express GABA-binding proteins. In this study, we investigated the effects of GABA on the virulence of Pseudomonas aeruginosa. While exposure to GABA (10 µM) did not modify either the growth kinetics or the motility of the bacterium, its cytotoxicity and virulence were strongly increased. The Caenorhabditis elegans ‘fast killing test’ model revealed that GABA acts essentially through an increase in diffusible toxin(s). GABA also modulates the biofilm formation activity and adhesion properties of PAO1. GABA has no effect on cell surface polarity, biosurfactant secretion or on the lipopolysaccharide structure. The production of several exo-enzymes, pyoverdin and exotoxin A is not modified by GABA but we observed an increase in cyanogenesis which, by itself, could explain the effect of GABA on P. aeruginosa virulence. This mechanism appears to be regulated by quorum sensing. A proteomic analysis revealed that the effect of GABA on cyanogenesis is correlated with a reduction of oxygen accessibility and an over-expression of oxygen-scavenging proteins. GABA also promotes specific changes in the expression of thermostable and unstable elongation factors Tuf/Ts involved in the interaction of the bacterium with the host proteins. Taken together, these results suggest that GABA is a physiological regulator of P. aeruginosa virulence.
- Published
- 2013
- Full Text
- View/download PDF
12. Virulence of the Pseudomonas fluorescens clinical strain MFN1032 towards Dictyostelium discoideumand macrophages in relation with type III secretion system
- Author
-
Lily Mijouin, Xavier Latour, Victorien Decoin, Mélanie Hillion, Annabelle Merieau, Marc G J Feuilloley, Daniel Sperandio, Nicole Orange, Pathogenèse des légionelles- Legionella pathogenesis (LegioPath), Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Microbiology (medical) ,Virulence Factors ,Cell-associated hemolytic activity ,Operon ,Pseudomonas fluorescens clinical strains ,Mutant ,lcsh:QR1-502 ,Virulence ,Pseudomonas fluorescens ,Microbiology ,lcsh:Microbiology ,Dictyostelium discoideum ,Cell Line ,Type three secretion system ,Mice ,03 medical and health sciences ,Animals ,Dictyostelium ,Bacterial Secretion Systems ,030304 developmental biology ,0303 health sciences ,Cell Death ,biology ,030306 microbiology ,Macrophages ,Pseudomonas ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,biology.organism_classification ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Type III secretion system ,Macrophage necrosis ,Research Article - Abstract
Background Pseudomonas fluorescens biovar I MFN1032 is a clinical isolate able to grow at 37°C. This strain displays secretion-mediated hemolytic activity involving phospholipase C and cyclolipopeptides, and a cell-associated hemolytic activity distinct from the secreted hemolytic activity. Cell-associated hemolysis is independent of biosurfactant production and remains in a gacA mutant. Disruption of the hrpU-like operon (the basal part of type III secretion system from rhizospheric strains) suppresses this activity. We hypothesized that this phenotype could reflect evolution of an ancestral mechanism involved in the survival of this species in its natural niche. In this study, we evaluated the hrpU-like operon’s contribution to other virulence mechanisms using a panel of Pseudomonas strains from various sources. Results We found that MFN1032 inhibited the growth of the amoebae Dictyostelium discoideum and that this inhibition involved the hrpU-like operon and was absent in a gacA mutant. MFN1032 was capable of causing macrophage lysis, if the hrpU-like operon was intact, and this cytotoxicity remained in a gacA mutant. Cell-associated hemolytic activity and macrophage necrosis were found in other P. fluorescens clinical isolates, but not in biocontrol P. fluorescens strains harbouring hrpU-like operon. The growth of Dictyostelium discoideum was inhibited to a different extent by P. fluorescens strains without correlation between this inhibition and hrpU-like operon sequences. Conclusions In P. fluorescens MFN1032, the basal part of type III secretion system plays a role in D. discoideum growth inhibition and macrophage necrosis. The inhibition of D. discoideum growth is dependent on the GacS/GacA system, while cell-associated hemolytic activity and macrophage lysis are not. Virulence against eukaryotic cells based on the hrpU-like operon may be more than just a stochastic evolution of a conserved system dedicated to survival in competition with natural predators such as amoebae. It may also mean that there are some important modifications of other type III secretion system components, which remain unknown. Cell-associated hemolysis might be a good indicator of the virulence of Pseudomonas fluorescens strain.
- Published
- 2012
- Full Text
- View/download PDF
13. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)
- Author
-
Javier Egea, Isabel Fabregat, Yves M. Frapart, Pietro Ghezzi, Agnes Görlach, Thomas Kietzmann, Kateryna Kubaichuk, Ulla G. Knaus, Manuela G. Lopez, Gloria Olaso-Gonzalez, Andreas Petry, Rainer Schulz, Jose Vina, Paul Winyard, Kahina Abbas, Opeyemi S. Ademowo, Catarina B. Afonso, Ioanna Andreadou, Haike Antelmann, Fernando Antunes, Mutay Aslan, Markus M. Bachschmid, Rui M. Barbosa, Vsevolod Belousov, Carsten Berndt, David Bernlohr, Esther Bertrán, Alberto Bindoli, Serge P. Bottari, Paula M. Brito, Guia Carrara, Ana I. Casas, Afroditi Chatzi, Niki Chondrogianni, Marcus Conrad, Marcus S. Cooke, João G. Costa, Antonio Cuadrado, Pham My-Chan Dang, Barbara De Smet, Bilge Debelec–Butuner, Irundika H.K. Dias, Joe Dan Dunn, Amanda J. Edson, Mariam El Assar, Jamel El-Benna, Péter Ferdinandy, Ana S. Fernandes, Kari E. Fladmark, Ulrich Förstermann, Rashid Giniatullin, Zoltán Giricz, Anikó Görbe, Helen Griffiths, Vaclav Hampl, Alina Hanf, Jan Herget, Pablo Hernansanz-Agustín, Melanie Hillion, Jingjing Huang, Serap Ilikay, Pidder Jansen-Dürr, Vincent Jaquet, Jaap A. Joles, Balaraman Kalyanaraman, Danylo Kaminskyy, Mahsa Karbaschi, Marina Kleanthous, Lars-Oliver Klotz, Bato Korac, Kemal Sami Korkmaz, Rafal Koziel, Damir Kračun, Karl-Heinz Krause, Vladimír Křen, Thomas Krieg, João Laranjinha, Antigone Lazou, Huige Li, Antonio Martínez-Ruiz, Reiko Matsui, Gethin J. McBean, Stuart P. Meredith, Joris Messens, Verónica Miguel, Yuliya Mikhed, Irina Milisav, Lidija Milković, Antonio Miranda-Vizuete, Miloš Mojović, María Monsalve, Pierre-Alexis Mouthuy, John Mulvey, Thomas Münzel, Vladimir Muzykantov, Isabel T.N. Nguyen, Matthias Oelze, Nuno G. Oliveira, Carlos M. Palmeira, Nikoletta Papaevgeniou, Aleksandra Pavićević, Brandán Pedre, Fabienne Peyrot, Marios Phylactides, Gratiela G. Pircalabioru, Andrew R. Pitt, Henrik E. Poulsen, Ignacio Prieto, Maria Pia Rigobello, Natalia Robledinos-Antón, Leocadio Rodríguez-Mañas, Anabela P. Rolo, Francis Rousset, Tatjana Ruskovska, Nuno Saraiva, Shlomo Sasson, Katrin Schröder, Khrystyna Semen, Tamara Seredenina, Anastasia Shakirzyanova, Geoffrey L. Smith, Thierry Soldati, Bebiana C. Sousa, Corinne M. Spickett, Ana Stancic, Marie José Stasia, Holger Steinbrenner, Višnja Stepanić, Sebastian Steven, Kostas Tokatlidis, Erkan Tuncay, Belma Turan, Fulvio Ursini, Jan Vacek, Olga Vajnerova, Kateřina Valentová, Frank Van Breusegem, Lokman Varisli, Elizabeth A. Veal, A. Suha Yalçın, Olha Yelisyeyeva, Neven Žarković, Martina Zatloukalová, Jacek Zielonka, Rhian M. Touyz, Andreas Papapetropoulos, Tilman Grune, Santiago Lamas, Harald H.H.W. Schmidt, Fabio Di Lisa, and Andreas Daiber
- Subjects
Reactive oxygen species ,Reactive nitrogen species ,Redox signaling ,Oxidative stress ,Antioxidants ,Redox therapeutics ,Medicine (General) ,R5-920 ,Biology (General) ,QH301-705.5 - Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
- Published
- 2017
- Full Text
- View/download PDF
14. The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress
- Author
-
Melanie Hillion, Marcel Imber, Brandán Pedre, Jörg Bernhardt, Malek Saleh, Vu Van Loi, Sandra Maaß, Dörte Becher, Leonardo Astolfi Rosado, Lorenz Adrian, Christoph Weise, Rüdiger Hell, Markus Wirtz, Joris Messens, and Haike Antelmann
- Subjects
Medicine ,Science - Abstract
Abstract Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes and functions in post-translational thiol-modification by protein S-mycothiolation as emerging thiol-protection and redox-regulatory mechanism. Here, we have used shotgun-proteomics to identify 26 S-mycothiolated proteins in the pathogen Corynebacterium diphtheriae DSM43989 under hypochlorite stress that are involved in energy metabolism, amino acid and nucleotide biosynthesis, antioxidant functions and translation. The glyceraldehyde-3-phosphate dehydrogenase (GapDH) represents the most abundant S-mycothiolated protein that was modified at its active site Cys153 in vivo. Exposure of purified GapDH to H2O2 and NaOCl resulted in irreversible inactivation due to overoxidation of the active site in vitro. Treatment of GapDH with H2O2 or NaOCl in the presence of MSH resulted in S-mycothiolation and reversible GapDH inactivation in vitro which was faster compared to the overoxidation pathway. Reactivation of S-mycothiolated GapDH could be catalyzed by both, the Trx and the Mrx1 pathways in vitro, but demycothiolation by Mrx1 was faster compared to Trx. In summary, we show here that S-mycothiolation can function in redox-regulation and protection of the GapDH active site against overoxidation in C. diphtheriae which can be reversed by both, the Mrx1 and Trx pathways.
- Published
- 2017
- Full Text
- View/download PDF
15. Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress
- Author
-
Melanie Hillion, Jörg Bernhardt, Tobias Busche, Martina Rossius, Sandra Maaß, Dörte Becher, Mamta Rawat, Markus Wirtz, Rüdiger Hell, Christian Rückert, Jörn Kalinowski, and Haike Antelmann
- Subjects
Medicine ,Science - Abstract
Abstract Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes. Here, we used shotgun proteomics, OxICAT and RNA-seq transcriptomics to analyse protein S-mycothiolation, reversible thiol-oxidations and their impact on gene expression in Mycobacterium smegmatis under hypochlorite stress. In total, 58 S-mycothiolated proteins were identified under NaOCl stress that are involved in energy metabolism, fatty acid and mycolic acid biosynthesis, protein translation, redox regulation and detoxification. Protein S-mycothiolation was accompanied by MSH depletion in the thiol-metabolome. Quantification of the redox state of 1098 Cys residues using OxICAT revealed that 381 Cys residues (33.6%) showed >10% increased oxidations under NaOCl stress, which overlapped with 40 S-mycothiolated Cys-peptides. The absence of MSH resulted in a higher basal oxidation level of 338 Cys residues (41.1%). The RseA and RshA anti-sigma factors and the Zur and NrdR repressors were identified as NaOCl-sensitive proteins and their oxidation resulted in an up-regulation of the SigH, SigE, Zur and NrdR regulons in the RNA-seq transcriptome. In conclusion, we show here that NaOCl stress causes widespread thiol-oxidation including protein S-mycothiolation resulting in induction of antioxidant defense mechanisms in M. smegmatis. Our results further reveal that MSH is important to maintain the reduced state of protein thiols.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.