M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Yu. Vyazovskaya, S. V. Eremeev, Yu. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, Simon Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, E. V. Chulkov, Ministerio de Economía y Competitividad (España), Eusko Jaurlaritza, Tomsk State University, Saint Petersburg State University, Russian Science Foundation, Russian Foundation for Basic Research, Science Development Foundation under the President of the Republic of Azerbaijan, Diputación Foral de Guipúzcoa, German Research Foundation, and Russian Academy of Sciences
Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics, such as the quantum anomalous Hall effect and chiral Majorana fermions. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic and electronic properties of these materials, restricting the observation of important effects to very low temperatures. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBiTe. The antiferromagnetic ordering that MnBiTe shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ topological classification; ℤ = 1 for MnBiTe, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBiTe exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling and axion electrodynamics. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect and chiral Majorana fermions., We acknowledge support by the Basque Departamento de Educacion, UPV/EHU (grant number IT-756-13), the Spanish Ministerio de Economia y Competitividad (MINECO grant number FIS2016-75862-P), and the Academic D.I. Mendeleev Fund Program of Tomsk State University (project number 8.1.01.2018). Support from the Saint Petersburg State University grant for scientific investigations (grant ID 40990069), the Russian Science Foundation (grants number 18-12-00062 for part of the photoemission measurements and 18-12-00169 for part of the calculations of topological invariants and tight-binding bandstructure calculations), the Russian Foundation for Basic Research (grant number 18-52-06009), and the Science Development Foundation under the President of the Republic of Azerbaijan (grant number EİF-BGM-4-RFTF-1/2017-21/04/1-M-02) is also acknowledged. M.M.O. acknowledges support by the Diputación Foral de Gipuzkoa (project number 2018-CIEN-000025-01). I.I.K. and A.M.S. acknowledge partial support from the CERIC-ERIC consortium for the stay at the Elettra synchrotron. The ARPES measurements at HiSOR were performed with the approval of the Proposal Assessing Committee (proposal numbers 18AG020, 18BU005). The support of the German Research Foundation (DFG) is acknowledged by A.U.B.W., A.I. and B.B. within Collaborative Research Center 1143 (SFB 1143, project ID 247310070); by A.Z., A.E. and A.I. within Special Priority Program 1666 Topological Insulators; by H.B. and F.R. within Collaborative Research Center 1170; and by A.Z. and A.I. within the ERANET-Chemistry Program (RU 776/15-1). H.B., A.U.B.W., A.A., V.K., B.B., F.R. and A.I. acknowledge financial support from the DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project ID 39085490). A.E. acknowledges support by the OeAD grant numbers HR 07/2018 and PL 03/2018. This work was also supported by the Fundamental Research Program of the State Academies of Sciences, line of research III.23. A.K. was financially supported by KAKENHI number 17H06138 and 18H03683. I.P.R. acknowledges support by the Ministry of Education and Science of the Russian Federation within the framework of the governmental program Megagrants (state task number 3.8895.2017/P220). E.V.C. acknowledges financial support by the Gobierno Vasco-UPV/EHU project (IT1246-19). S.K. acknowledges financial support from an Overseas Postdoctoral Fellowship, SERB-India (OPDF award number SB/OS/PDF-060/2015-16). J.S.-B.acknowledges financial support from the Impuls-und Vernetzungsfonds der Helmholtz-Gemeinschaft under grant number HRSF-0067 (Helmholtz-Russia Joint Research Group). The calculations were performed in Donostia International Physics Center, in the research park of Saint Petersburg State University Computing Center (http://cc.spbu.ru), and at Tomsk State University