7 results on '"M.D. Jeffs"'
Search Results
2. The performance of the ZEUS central tracking detector z-by-timing electronics in a transputer based data acquisition system
- Author
-
S. Quinton, T. Khatri, Greg P Heath, J. Nash, M. Postranecky, D.B. Allen, M Morrissey, P.M. Hallam-Baker, I. McArthur, M.D. Jeffs, P. Morawitz, B. Foster, Neville Harnew, T. J. Llewellyn, P.D. Shield, S. Topp-Jorgensen, R.C. Carter, D.M. Gingrich, J.B. Lane, and F. F. Wilson
- Subjects
Nuclear and High Energy Physics ,Engineering ,ZEUS (particle detector) ,business.industry ,Transputer ,Detector ,Process (computing) ,HERA ,Tracking (particle physics) ,Atomic and Molecular Physics, and Optics ,law.invention ,Data acquisition ,law ,High Energy Physics::Experiment ,Collider ,business ,Computer hardware - Abstract
The Central Tracking Detector of the ZEUS experiment employs a time difference technique to measure the z coordinate of each hit. The method provides fast, three-dimensional space point measurements which are used as input to all levels of the ZEUS trigger. Such a tracking trigger is essential in order to discriminate against events with vertices lying outside the nominal electron-proton interaction region. Since the beam crossing interval of the HERA collider is 96 ns, all data must be pipelined through the front-end readout electronics. Subsequent data aquisition employs a novel technique which utilizes a network of approximately 120 INMOS transputers to process the data in parallel. The z-by-timing method and its data aquisition have been employed successfully in recording and reconstructing tracks from electron-proton interactions in ZEUS. © 1993.
- Published
- 1993
- Full Text
- View/download PDF
3. The electronics readout system for the OPAL vertex drift chamber
- Author
-
M.D. Jeffs, R.M. Matson, D.J. White, T.W. Pritchard, John Hill, Stephen Lloyd, A.A. Carter, J. R. Carter, and R. Milborrow
- Subjects
Physics ,Nuclear and High Energy Physics ,Vertex (computer graphics) ,Physics::Instrumentation and Detectors ,business.industry ,Track (disk drive) ,Detector ,Electron ,Optics ,Quality (physics) ,High Energy Physics::Experiment ,Overall performance ,Electronics ,business ,Instrumentation - Abstract
The Vertex Drift Chamber for the OPAL experiment at LEP provides high quality track coordinates using multihit subnanosecond timing to detect the drifted electrons. This paper explains the electronic techniques that have been devised and implemented for the detector. The overall performance of the system is demonstrated with measurements from the final OPAL chamber.
- Published
- 1990
- Full Text
- View/download PDF
4. Choice of cable for subsea power links
- Author
-
M.D. Jeffs
- Subjects
Engineering ,Armour ,business.industry ,Structural engineering ,law.invention ,Cable gland ,Cable harness ,law ,Power cable ,All-dielectric self-supporting cable ,Fanout cable ,business ,Direct-buried cable ,Subsea ,Marine engineering - Abstract
Summary form only given. Subsea cable technology has advanced to allow the manufacture of both single and three core cables for bulk power transfer between transmission systems in continuous lengths up to 100 km. The mechanical and electrical integrity of these cable systems is enhanced by the ability to manufacture the cable in long lengths, thereby removing discontinuities at jointing positions. Handling of long length cables is complex, requiring manufacturing facilities capable of insulating, sheathing, armouring, storing and off-loading the cable to be located on the same site. A 100 km continuous length of completed, armoured cable for example may weigh in excess of 8000 Tonnes. The installation of subsea cable presents many challenges in mechanical and marine engineering. The cable must withstand the significant mechanical forces which are generated during installation due to its own weight and the action of tidal currents. The installed cable is also at risk from damage by anchors, fishing activity, vessel impact, movement of the cable or seabed terrain. To protect the cable during laying or in service metallic armour wires are applied in one or two layers to the construction as part of the manufacturing process, however, additional protection can be offered by burying the cable in the seabed using a variety of jetting, ploughing or trenching techniques. The paper describes the choice of cable design which exists for subsea power links and the merits of these various designs. The manufacture and installation of long continuous lengths of subsea power cable is discussed with reference to some key installations.
- Published
- 2002
- Full Text
- View/download PDF
5. The Design and Performance of the ZEUS Central Tracking Detector z-by-Timing System
- Author
-
C.J.S. Morgado, S. Topp-Jorgensen, R.C. Carter, P.D. Shield, M.D. Jeffs, J. Nash, S. Quinton, M. Postranecky, M Morrissey, I. McArthur, D.S. Bailey, B. Foster, Neville Harnew, R. Milborrow, J.B. Lane, G. Nixon, M. Lancaster, T. Khatri, Greg P Heath, J.D. McFall, D.A. Phillips, G Westlake, D.J. White, and F. F. Wilson
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,ZEUS (particle detector) ,business.industry ,Track (disk drive) ,Timing system ,Detector ,FOS: Physical sciences ,HERA ,Tracking (particle physics) ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Data acquisition ,Control system ,High Energy Physics::Experiment ,business ,Instrumentation ,Computer hardware - Abstract
The ZEUS Central Tracking Detector utilizes a time difference measurement to provide a fast determination of the z-coordinate of each hit. The z-by-timing measurement is achieved by using a Time-to-Amplitude Converter which has an intrinsic timing resolution of 36 ps, has pipelined readout, and has a multihit capability of 48 ns. In order to maintain the required sub-nanosecond timing accuracy, the technique incorporates an automated self-calibration system. The readout of the z-by-timing data utilizes a fully customized timing control system which runs synchronously with the HERA beam-crossing clock, and a data acquisition system implemented on a network of Transputers. Three dimensional space-points provided by the z-by-timing system are used as input to all three levels of the ZEUS trigger and for offline track reconstruction. The average z-resolution is determined to be 4.4 cm for multi-track events from positron-proton collisions in the ZEUS detector., 49 pages, 32 figures. Accepted for publication in NIM-A
- Published
- 1997
6. The OPAL detector at LEP
- Author
-
P. Igo-Kemenes, G. Maringer, H. Jeremie, N. K. Watson, G. J. VanDalen, P. Vande Vyvre, Eilam Gross, G. T. Zorn, R. E. Hughes-Jones, U. Maur, P. Farthouat, Horst Breuker, P von Walker, Y. Totsuka, R.M. Matson, B Cornet, D. Karlen, S Yamada, S. Zylberajch, R.J. Staley, J. R. Batley, J. Goldberg, P. S. Hinde, B. Nellen, M. Sproston, R. W. Springer, Andris Skuja, A. M. Rossi, J. Zimmer, K Ahmet, A. Buijs, H C Weber, D. M. Strom, M Lamblin, James M. Hill, E. Neuheimer, L. Godfrey, Tohru Takeshita, P. Routenburg, T. Tsukamoto, A. Dieckmann, M Fillion, Tetsuro Mashimo, H. M. Fischer, Sergo, A. Michelini, D Micolon, Tatsuo Kawamoto, O. Schaile, T. Behnke, P. Leblanc, H. Hartmann, I. P. Duerdoth, A Therond, S Jaroslawski, J. R. Carter, R. Yaari, B Gaillard-Grenadier, D. C. Colley, Georges Azuelos, M Marquet, A. Shapira, A. J.P. O'Dowd, E. Mauer, Shlomo Dado, J. M. Roney, E Poli, O. Ganel, N. Zwang, M. J. Goodrick, Joachim Heintze, I. Cohen, A. H. Ball, Aharon Levy, K. W. Bell, N. I. Geddes, H Gao, J. Banks, J. M. Lorah, M. Jimack, John Allison, W. Gorn, L. Mazzone, M. S. Dixit, D. Duchesneau, Frans Meijers, H Wenninger, P Rada, R. Rusniak, Makoto Minowa, W. Mohr, J. C. Hill, K. Riles, P. G. Murphy, S. Schreiber, Gibson, S. Weisz, R L Amstrong, G Canova, J.A. Lidbury, T. Zawistowski, John Hart, G.L. Giles, Gideon Bella, A Penton, T. Kobayashi, Stephen Lloyd, Fabrizio Fabbri, M. Jobes, J.L. Chevalley, M. W. Moss, D. Van den plas, M.M.B. Lasota, G. Duckeck, K. Stephens, M. Weymann, W. R. Gibson, Robert M Brown, R Losserand-Madoux, M. Uldry, P. M. Hattersley, G. Linser, B. C. Shen, John Hobbs, P. Scharff-Hansen, C. K. Hargrove, G. Mikenberg, J. D. Gillies, H. Matsumura, M Z Akraway, T. J. McMahon, R. G. Kellogg, M. Imori, R. Kolpin, D. J. Miller, O. W. Davies, L Baisin, Mark Oreglia, B. P. O'Neill, F.F. Heymann, H. J. Burckhart, J. E. Conboy, M. M. Deninno, M Morpurgo, Ehud Duchovni, W. J. Larson, D. Granite, B. Gandois, B G Duff, G.T.J. Arnison, H. Wang, J. W. Gary, L Briot, P Giudici, R Payne, U Seidler, Kiyotomo Kawagoe, N. C. Wood, R. A. Sansum, Stefano Marcellini, R. Kowalewski, Peter R Hobson, B. Parkinson, Y Gal, J. Waterhouse, W. J. Murray, Gunter Quast, A. M. Smith, C. M. Roach, C. M. Hawkes, A. P. Wagner, K H Souten, G Artusi, H. von der Schmitt, L. Denton, Kelby Anderson, S. Gross, M. J. Losty, F. X. Gentit, B. Lorazo, A Lefrancois, P Gorce, G. Bavaria, R. K. Carnegie, A L Fletcher, Masatoshi Koshiba, C. P. Ward, A Beer, D. J. White, G. Knop, L Biffoni, John Baines, B. J. Saunders, S. W. Gensler, M. Coupland, P Kobe, P. M. Watkins, D Lascols, J. Armitage, F Bourgeois, F Rochner, D. L. Rees, D Rybkowski, P.R. Goldey, M. Regimbald, Harold Nguyen, S. J. Hillier, K. Karner, C. J. Virtue, James Pinfold, B Vuillerme, I. Wingerter, F Pouyat, J. Gascon, T. P. Kokott, Rene Brun, J. A. Wilson, M.D. Jeffs, Chikara Fukunaga, H. J. Meyer, P. Wicht, D. C. Imrie, K Scheuring, M D Rousseau, K Miels, W.W. Miller, W. Glessing, R. P. Middleton, G Schmidlin, Phillip Allport, M. F. Turner, D. R. Ward, F L Desrosier, S. J. Pawley, Claus Kleinwort, L. Köpke, A. Weltin, G. N. Patrick, B. Wünsch, A. C. McPherson, Lorne Levinson, P E Estabrooks, G. P. Siroli, A. Simon, R. Bard, R J Shaw, George Lafferty, I. D'Antone, Norbert Wermes, M. Hansroul, Marcello Mannelli, C. N. P. Gee, Mitsuaki Nozaki, J. Ma, G. J. Barker, W M Evans, W. Schappert, A Eyting, F. K. Loebinger, C. Milstène, Otmar Biebel, J.F. Connolly, M. Couch, M Grossi, F. Lamarche, L. Lessard, M Mast, P. W. Jeffreys, M. Webel, J. Grunhaus, D. Joos, B. W. Kennedy, Britt Anderson, R. Cranfield, R. Humbert, P. Lennert, R. J. Homer, Allen Mincer, M. W. Redmond, J O Peterson, Peter Sherwood, James Pilcher, R Lorenzi, A Renoux, A. A. Macbeth, G. W. Wilson, Gideon Alexander, N. Lupu, Paolo Capiluppi, G Gagnon, A. Rollnik, K. Zankel, D M Sendall, Roger Barlow, D. Hochman, J. T.M. Chrin, M. Hauschild, F Verkerk, S. A. Wotton, R. Milborrow, R. J. Hemingway, P. Jovanovic, H. P. Borner, G Prodon, D. Menszner, Achim Müller, G. M. Dallavalle, P Keyberd, M. Beaulieu, F. S. Merritt, Alessandro Montanari, S. W. O'Neale, W N Stokes, C. Wahl, R Stephenson, H. Yamashita, S. Orito, John H. Schwarz, C. P. Howarth, M Lautscham, A Duperloup, A Charalambous, A. Possoz, H. Takeda, R. D. Heuer, M Cyvoct, F. G. Oakham, B Langset, T. W. Pritchard, L Marradi, D. E. Plane, C. Y. Chang, D. Hatzifotiadou, J. Raab, M. Shoa, O. Runolfsson, Alan Watson, F Massera, D. J.P. Dumas, R Shally, M Ferrari, Dave Charlton, R. W. L. Jones, P. Ashton, E. J. Spreadbury, P. Le Du, A. D. Schaile, H. Kreutzmann, P. Rapp, E. Jin, G. Giacomelli, H. Sanders, T. R. Wyatt, S. R. Hou, Michael Dittmar, G. Yekutieli, A. A. Carter, J.D. Colmer, J. Hagemann, J. Ludwig, T Goiffon, K. Runge, P. Bock, E. E. Elsen, H. Mes, P. Steinberg, J. Kroll, G. Crone, A Sato, M Guillot, H. M. Bosch, Wolfram Dietrich Zeuner, F. Beck, T. J. Smith, P. Mättig, I. J. Bloodworth, D. Voillat, Daniel Lellouch, S A Clark, S Tuffanelli, D. E. Klem, G Pozzo, J. G. Layter, P.S. Rozmarynowski, M Chamot, C. Beard, W. Seidl, R. G. Glasser, J. P. Martin, R. Hammarström, G. Tysarczyk, M. T. French, J. Thiebes, B. Holl, and H El-Mamouni
- Subjects
Physics ,Nuclear and High Energy Physics ,Calorimeter (particle physics) ,Detector ,Hadron ,Solenoid ,Tracking (particle physics) ,Nuclear physics ,Lead glass ,visual_art ,visual_art.visual_art_medium ,Detectors and Experimental Techniques ,Instrumentation ,Muon detector - Published
- 1990
7. The technique of z-coordinate determination using a time-difference measurement for the zeus central tracking detector
- Author
-
P.D. Shield, J. Nash, Neville Harnew, G.L. Salmon, D.J. White, M.D. Jeffs, and A.G. Parham
- Subjects
Physics ,Nuclear and High Energy Physics ,Resistive touchscreen ,ZEUS (particle detector) ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Resolution (electron density) ,Tracking (particle physics) ,Inductor ,Optics ,business ,Instrumentation ,Image resolution ,Beam (structure) - Abstract
A method to determine the z-coordinate of a track using a time-difference measurement has been developed for the ZEUS Central Tracking Detector. It has been demonstrated that a spatial resolution of 50 mm can be obtained under normal chamber operating conditions. This corresponds to a time-difference resolution of 330 ps. A method of minimizing nonlinearities in the time-to-distance response is described. This uses an inductor to form a matching network to achieve resistive termination of the chamber. Test beam measurements from a prototype chamber are presented, demonstrating the effects of the chamber surface field and beam incidence angle on the time-difference resolution.
- Published
- 1989
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.