20 results on '"MASS TAG"'
Search Results
2. Immuno‐Desorption Electrospray Ionization Mass Spectrometry Imaging Identifies Functional Macromolecules by Using Microdroplet‐Cleavable Mass Tags.
- Author
-
Song, Xiaowei, Zang, Qingce, Li, Chao, Zhou, Tianhao, and Zare, Richard N.
- Subjects
- *
DESORPTION ionization mass spectrometry , *MACROMOLECULES , *ELECTROSPRAY ionization mass spectrometry , *BORONIC esters - Abstract
We present immunoassay‐based desorption electrospray ionization mass spectrometry imaging (immuno‐DESI‐MSI) to visualize functional macromolecules such as drug targets and cascade signaling factors. A set of boronic acid mass tags (BMTs) were synthesized to label antibodies as MSI probes. The boronic ester bond is employed to cross‐link the BMT with the galactosamine‐modified antibody. The BMT can be released from its tethered antibody by ultrafast cleavage of the boronic ester bond caused by the acidic condition of sprayed DESI microdroplets containing water. The fluorescent moiety enables the BMT to work in both optical and MS imaging modes. The positively charged quaternary ammonium group enhances the ionization efficiency. The introduction of the boron element also makes mass tags readily identified because of its unique isotope pattern. Immuno‐DESI‐MSI provides an appealing strategy to spatially map macromolecules beyond what can be observed by conventional DESI‐MSI, provided antibodies are available to the targeted molecules of interest. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Mass-tagged self-assembled nanoprobe reveals the transport of PD-L1 from cancer cells to tumor-educated platelets.
- Author
-
Zhu, Jianhua, Zhang, Wenjun, Wang, Zhongcheng, Wang, Yan, Li, Jiapu, Wang, Yunjing, Xu, Feifei, and Chen, Yun
- Subjects
- *
IMMUNE checkpoint proteins , *NON-small-cell lung carcinoma , *CANCER cells , *PROGRAMMED death-ligand 1 , *SAMPLING (Process) - Abstract
The expression level of immune checkpoint proteins detected by tissue biopsy is currently used as a predictive biomarker for immune checkpoint blockade (ICB) therapy. However, tissue biopsy is susceptible to invasive sample collection procedures, significant sampling heterogeneity, and the difficulty of repeated sampling. Therefore, liquid biopsy of blood samples is becoming an alternative choice for immune checkpoint protein detection. Among various vesicles in blood, platelets can obtain cancer information to form a specific group called tumor-educated platelets (TEPs). The platelet-derived proteins in TEPs may have a predictive potential in ICB therapy. In this study, a photo-cleavable mass-tagged self-assembled (SAMT) nanoprobe with signal amplification was developed for the quantitative detection of PD-L1. The SAMT probe was assembled by photo-cleavable mass tags, PD-L1 aptamer, and amphiphilic polymer. After binding with PD-L1 on the platelet, the probe can release mass tags with UV light exposure. The amount of the mass tag, representing that of PD-L1, was subsequently determined by mass spectrometry. The assay sensitivity can be greatly improved by up to four orders of magnitude, achieving a detection limit of 10 fM. This assay was subsequently applied to cancer cells and platelet samples from non-small cell lung cancer (NSCLC) patients. The patients with higher tumor stages, higher degrees of lymph node invasion, and better ICB response had higher PD-L1 levels on platelets. Further investigation revealed that PD-L1 on the platelets was transported from cancer cells, providing evidence for the existence of TEPs. The SAMT probe can amplify the signal of the target molecule into that of multiple mass tags, achieving ultrasensitive ICB protein quantitative detection in platelets. Moreover, the employed SAMT assay not only revealed PD-L1 transport from cancer cells to platelets but also confirmed the presence of TEPs. [Display omitted] • Develop a mass-tagged self-assembled nanoprobe for sensitive quantification of PD-L1. • Achieve signal amplification by self-assembly for four orders of magnitude. • Encapsulate mass tags in nanoprobe for accurate quantification. • Reveal PD-L1 transport from cancer cells to platelets and confirm the presence of TEPs. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Aptamer-functionalized magnetic blade spray coupled with a nucleic acid dye-based mass tag strategy for miniature mass spectrometry analysis of endoglin.
- Author
-
Li, Linsen, Zeng, Yulong, Yang, Ge, Liu, Hao, Zhu, Chao, Zhang, Ying, Qu, Feng, and Ma, Qiang
- Subjects
- *
NUCLEIC acids , *COMPLEX matrices , *CAPILLARY electrophoresis , *MATRIX effect , *MASS spectrometry , *MASS spectrometers - Abstract
Ambient ionization mass spectrometry (AIMS) allows rapid analysis of targets, while its overall selectivity is somewhat limited due to the lack of chromatographic separation. Recently, magnetic blade spray (MBS) has enhanced AIMS by incorporating immunomagnetic beads instead of the traditional coated blade spray (CBS) coating, thereby improving selectivity and sensitivity by targeted analyte detection and reducing background interference. In this study, an aptamer-functionalized and nucleic acid dye (GelRed)-loaded MS probe (AGMP) was developed and employed with MBS-based miniature mass spectrometer. Specifically, AGMP was assembled using aptamer-functionalized magnetic nanoparticles loaded with GelRed as mass tags for highly sensitive analysis of endoglin (CD105). For the preparation of AGMP, the CD105 binding aptamer of End-A2 was first selected through three rounds of capillary electrophoresis (CE)-SELEX with an optimal affinity of 62.3 pM. After optimizing the critical parameters that affected adsorption, desorption, and ionization efficiency, this method displayed satisfactory sensitivity with detection and quantitation limits of 0.2 and 1 ng/mL, respectively, as well as reliable recoveries of 90.1–106.8 % with relative standard deviations of 1.6–5.4 %. Besides, the method effectively mitigated the matrix effects with a slope deviation of 10.03 %, and exhibited good selectivity and environmental friendliness. Furthermore, this AGMP-based MBS strategy was successfully applied for CD105 detection in serum samples, demonstrating its potential for sensitive and on-site biomolecule analysis in complex matrices. An aptamer-functionalized and nucleic acid dye (GelRed)-loaded MS probe (AGMP) coupled with magnetic blade spry was proposed for CD105 detection in serum matrix using a miniature mass spectrometer, which exhibited satisfactory recovery, good selectivity and environmental friendliness. [Display omitted] • An aptamer-functionalized MS probe (AGMP) loaded with GelRed dye was developed. • Aptamer against CD105 protein with a high affinity of 62.3 pM was successfully selected after three rounds of CE-SELEX. • The method's analytical performance was validated for real serum samples analysis using a miniature mass spectrometer. • The proposed method could effectively mitigate the matrix effects and exhibited good environmental friendliness. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF
5. Plasmonic metal nanoparticles as efficient mass tags for ion signal amplification and ultrasensitive detection of protein markers.
- Author
-
Cheng, Yu-Hong, Cheung, Yam-Fung, Siu-Chung Tam, Toby, Lok, Chun-Nam, Sun, Hongzhe, and Ng, Kwan-Ming
- Subjects
- *
BIOMARKERS , *IMMUNOASSAY , *SILVER nanoparticles , *SURFACE plasmon resonance , *IMMUNOGLOBULINS - Abstract
Abstract The development of sensitive and specific analytical methods is critical for the discovery of molecular biomarkers, which assists disease diagnosis and understanding biological processes. Herein, a highly sensitive method is developed using antibody-conjugated plasmonic metal nanoparticles for the detection of targeted biomarkers down to low attomole level via coupling of immunoassay techniques with laser ionization mass spectrometry (LI-MS). The conjugated antibodies target specific antigens, while the metal nanoparticles act as mass tags and ion reservoirs for the signal amplification. With the characteristic localized surface plasmon resonance (LSPR) properties, gold (AuNPs) and silver nanoparticles (AgNPs) undergo explosive ionization upon laser irradiation to generate abundant characteristic mass reporter ions for strong MS signal amplification. With the antibody-conjugated NPs, detection of trace proteins in various biological samples with complex matrix environment, including urine, cell lysates, and animal tissues was demonstrated. Graphical abstract Image 1 Highlights • Efficient utilization of LSPR property of noble metal nanoparticle for generating abundant mass reporter ions. • Plasmonic metal nanoparticle as ion reservoir for MS signal amplification. • Specific and sensitive detection of high-mass protein in complex biological sample. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
6. The O-GlcNAc Modification of Recombinant Tau Protein and Characterization of the O-GlcNAc Pattern for Functional Study.
- Author
-
El Hajjar L, Bridot C, Nguyen M, Cantrelle FX, Landrieu I, and Smet-Nocca C
- Subjects
- Mice, Animals, beta-N-Acetylhexosaminidases genetics, beta-N-Acetylhexosaminidases metabolism, Protein Processing, Post-Translational, Recombinant Proteins genetics, Recombinant Proteins metabolism, N-Acetylglucosaminyltransferases genetics, N-Acetylglucosaminyltransferases metabolism, Acetylglucosamine metabolism, Serine metabolism, Threonine metabolism, tau Proteins metabolism, Tauopathies genetics, Tauopathies metabolism
- Abstract
The neuronal microtubule-associated tau protein is characterized in vivo by a large number of post-translational modifications along the entire primary sequence that modulates its function. The primary modification of tau is phosphorylation of serine/threonine or tyrosine residues that is involved in the regulation of microtubule binding and polymerization. In neurodegenerative disorders referred to as tauopathies including Alzheimer's disease, tau is abnormally hyperphosphorylated and forms fibrillar inclusions in neurons progressing throughout different brain area during the course of the disease. The O-β-linked N-acetylglucosamine (O-GlcNAc) is another reversible post-translational modification of serine/threonine residues that is installed and removed by the unique O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA), respectively. This modification was described as a potential modulator of tau phosphorylation and functions in the physiopathology. Moreover, reducing protein O-GlcNAc levels in the brain upon treatment of tauopathy mouse models with an OGA inhibitor reveals a beneficial effect on tau pathology and neurodegeneration. However, whether the role of tau O-GlcNAcylation is responsible of the protective effect against tau toxicity remains to be determined. The production of O-GlcNAc modified recombinant tau protein is a valuable tool for the investigations of the impact of O-GlcNAcylation on tau functions, modulation of interactions with partners and crosstalk with other post-translational modifications, including but not restricted to phosphorylation. We describe here the in vitro O-GlcNAcylation of tau with recombinant OGT for which we provide an expression and purification protocol. The use of the O-GlcNAc tau protein in functional studies requires the analytical characterization of the O-GlcNAc pattern. Here, we describe a method for the O-GlcNAc modification of tau protein with recombinant OGT and the analytical characterization of the resulting O-GlcNAc pattern by a combination of methods for the overall characterization of tau O-GlcNAcylation by chemoenzymatic labeling and mass spectrometry, as well as the quantitative, site-specific pattern by NMR spectroscopy., (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
7. Direct screening of malonylginsenosides from nine Ginseng extracts by an untargeted profiling strategy incorporating in-source collision-induced dissociation, mass tag, and neutral loss scan on a hybrid linear ion-trap/Orbitrap mass spectrometer coupled to ultra-high performance liquid chromatography
- Author
-
Shi, Xiaojian, Yang, Wenzhi, Huang, Yong, Hou, Jinjun, Qiu, Shi, Yao, Changliang, Feng, Zijin, Wei, Wenlong, Wu, Wanying, and Guo, Dean
- Subjects
- *
GINSENG , *COLLISION induced dissociation , *HIGH performance liquid chromatography , *ELECTROSPRAY ionization mass spectrometry , *DRUG metabolism - Abstract
Highlights • A malonylginsenoside screening strategy is proposed by developing a PNL approach. • It combines ISCID-MS1, mass tag-CID/MS2, and NL-HCD/MS3 by LTQ-Orbitrap MS. • The developed PNL approach can improve the coverage and reduce false positives. • 178 malonylginsenosides are characterized from nine Ginseng extracts. • This strategy has the potential to direct characterization of modified metabolites. Abstract Specific analytical approaches that enable untargeted profiling of modified metabolites are in great need. An untargeted profiling strategy, by integrating in-source collision-induced dissociation (ISCID)-MS1, mass tag-MS2, and neutral loss scan-MS3, is established on a linear ion-trap/Orbitrap mass spectrometer coupled to ultra-high performance liquid chromatography. This strategy is applied to screen malonylginsenosides from three reputable Panax species (P. ginseng , P. quinquefolius , and P. notoginseng). In light of the preferred neutral elimination of CO 2 and entire malonyl substituent (C 3 H 2 O 3) in the negative electrospray ionization mode, a pseudo-neutral loss scan (PNL) method was established by applying ISCID energy 40 V in MS1, mass tag 43.9898 Da oriented CID-MS2 at normalized collision energy (NCE) 30%, and neutral loss 43.9898 Da-triggered high-energy C -trap dissociation-MS3 at NCE 70%. The PNL approach achieved a high coverage of targeted malonylginsenosides but introduced less false positives. It displayed comparable performance to a precursor ions list-driven targeted approach we have reported in the profiling and characterization of malonylginsenosides, but could avoid complex data processing. Totally 178 malonylginsenosides were characterized from the roots, leaves, and flower buds of P. ginseng , P. quinquefolius , and P. notoginseng , and most of them possess potentially new structures. The compositions of malonylginsenosides identified from these three Panax species are similar, and only malonylginsenoside Rb2 and some minor may have potential chemotaxonomic significance. In conclusion, we provide a potent analytical strategy for the direct and efficient screening of modified metabolites, which may have broad applications in the fields of metabolomics, drug metabolism, and natural product research. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
8. Tellurium‐based mass cytometry barcode for live and fixed cells.
- Author
-
Willis, Lisa M., Park, Hanuel, Watson, Michael W. L., Majonis, Daniel, Watson, Jessica L., and Nitz, Mark
- Abstract
Abstract: Mass cytometry is a revolutionary technology that allows for the simultaneous quantification of >40 different biomarkers with cellular resolution. The biomarkers are detected using metal‐labeled antibodies as well as small‐molecule probes of cell size, viability, and biochemical status. Barcoding is an important component of sample preparation because it reduces processing time, eliminates sample‐to‐sample variation, discriminates cell doublets, reduces the amount of antibody needed, and conserves sample. We developed a thiol‐reactive tellurium‐based barcode, TeMal. TeMal is nontoxic at working concentrations, compatible with metal‐labeled antibodies, and can readily be applied to live or fixed cells, making it advantageous and complementary compared to existing barcoding reagents. We have demonstrated the utility of TeMal by barcoding microscale samples in situ to facilitate analysis of cells from an automated cell culture system using mass cytometry. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
9. Oligonucleotides bearing pentaerythritol-derived mass tags
- Author
-
Kiviniemi Anu, Heinonen Petri, and Lönnberg Harri
- Subjects
oligonucleotide conjugate ,pentaerythritol ,mass tag ,hybridization ,phosphoramidite ,ether ,Chemistry ,QD1-999 - Published
- 2007
- Full Text
- View/download PDF
10. Mass tag-based mass spectrometric immunoassay and its bioanalysis applications.
- Author
-
Liu, Mingxia, Miao, Daiyu, Qin, Shaojie, Liu, Huwei, and Bai, Yu
- Subjects
- *
BIOMOLECULES , *SIGNAL detection , *MASS spectrometry , *BIOMACROMOLECULES , *SUPPLY & demand , *SENSITIVITY & specificity (Statistics) , *IMMUNOASSAY - Abstract
The sensitive and accurate determination of macromolecular biomarkers is in high demand for clinical diagnosis. Mass spectrometric immunoassay (MSIA) combines the advantages of immunoassay with mass spectrometry (MS) detection, which offers excellent specificity and sensitivity in bioanalysis and attracts more and more research attentions. Compared with the direct MS analysis, mass tag-based MSIA overcomes the limitation of the low ionization efficiency of biomacromolecules through the transformation of detection signal from biomacromolecule to the mass tag, and provides the possibility of highly sensitive detection. In this review, the comprehensive and essential developments of MSIA are summarized and categorized from the perspective of mass tags and their bioanalytical applications. The mass tags are introduced in three categories: inorganic molecules, organic molecules, and biomolecules and the applications of mass tag-based MSIA in bioanalysis are systematically reviewed. Finally, challenges of mass tag-based MSIA are summarized and the perspectives are proposed for their further developments and bioanalytical applications. • The overview of mass spectrometric immunoassay from the insight of mass tags and bioanalytical applications. • The summary of the development of different types of mass tags. • The applications of mass tag-based mass spectrometric immunoassay in bioanalysis. • The challenges and perspectives of mass tag-based mass spectrometric immunoassay. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
11. Cationic Xylene Tag for Increasing Sensitivity in Mass Spectrometry.
- Author
-
Wang, Poguang, Zhang, Qi, Yao, Yuanyuan, and Giese, Roger
- Subjects
- *
DERIVATIZATION , *CATIONS , *MASS spectrometry , *DNA adducts , *METABOLOMICS , *XYLYLENE , *BROMIDE ions - Abstract
N-(2-(Bromomethyl)benzyl)- N, N-diethylethanaminium bromide, that we designate as CAX-B (cationic xylyl-bromide), is presented as a derivatization reagent for increasing sensitivity in mass spectrometry. Because of its aryl bromomethyl moiety, CAX-B readily labels compounds having an active hydrogen. In part, a CAX-tagged analyte (CAX-analyte) can be very sensitive especially in a tandem mass spectrometer (both ESI and MALDI). This is because of facile formation of an analyte-characteristic first product ion (as a xylyl-based cation) from favorable loss of triethylamine as a neutral from the precursor ion. This loss is enhanced both by resonance stabilization of the xylyl cation, and by anchimeric assistance from the ortho hetero atom of the attached analyte. High intensity of a first product ion opens up the opportunity for a CAX-analyte to be additionally sensitive when it is prone to a secondary neutral loss from the analyte part. For example, we have derivatized and detected 160 amol of thymidine by CAX-tagging/LC-MALDI-TOF/TOF-MS in this way, where the two neutral losses are triethylamine and deoxyribose. Other analytes detected at the amol level as CAX derivatives (as diluted standards) include estradiol and some nucleobases. The tendency for analytes with multiple active hydrogens to label just once with CAX (an advantage) is illustrated by the conversion of bisphenol A to a single product even when excess CAX-B is present. A family of analogous reagents with a variety of reactivity groups is anticipated as a consequence of replacing the bromine atom of CAX-B with various functional groups. [Figure not available: see fulltext.] [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
12. Steric Hindrance On-Off Mass-Tagged Probe Set Enables Detection of Protein Homodimer in Living Cells.
- Author
-
Li X, Zhu J, Shi X, Wang Z, Chen X, Zhang X, and Chen Y
- Subjects
- Humans, MCF-7 Cells
- Abstract
The major challenge in the detection of protein homodimers is that the identical monomers in a homodimer are indistinguishable using most conventional methods and cannot be sequentially recognized. In this study, a steric hindrance on-off mass-tagged probe set strategy was developed for the quantification of HER2 homodimer in living cells. The probe set contained a hindrance probe and a detection probe. The hindrance probe had a DNA dendrimer as a hindrance group to achieve the steric hindrance on-off function and thus the assignment of monomer identity. The detection probe contained a mass tag released for mass spectrometric quantification. Using the steric hindrance on-off mass-tagged probe set, the level of HER2 homodimer in various breast cancer cell lines was quantified. This is the first report to determine the quantity of protein homodimers, and the steric hindrance on-off probe set developed herein can facilitate the illustration of protein function in cancer.
- Published
- 2022
- Full Text
- View/download PDF
13. Enantioselective metabolomics by liquid chromatography-mass spectrometry.
- Author
-
Calderón, Carlos and Lämmerhofer, Michael
- Subjects
- *
LIQUID chromatography-mass spectrometry , *METABOLOMICS , *MATRIX effect , *HYDROXY acids , *CROWN ethers , *MICROBIOLOGICAL assay - Abstract
Metabolomics strives to capture the entirety of the metabolites in a biological system by comprehensive analysis, often by liquid chromatography hyphenated to mass spectrometry. A particular challenge thereby is the differentiation of structural isomers. Common achiral targeted and untargeted assays do not distinguish between enantiomers. This may lead to information loss. An increasing number of publications demonstrate that the enantiomeric ratio of certain metabolites can be meaningful biomarkers of certain diseases emphasizing the importance of introducing enantioselective analytical procedures in metabolomics. In this work, the state-of-the-art in the field of LC-MS based metabolomics is summarized with focus on developments in the recent decade. Methodologies, tagging strategies, workflows and general concepts are outlined. Selected biological applications in which enantioselective metabolomics has documented its usefulness are briefly discussed. In general, targeted enantioselective metabolomics assays are often based on a direct approach using chiral stationary phases (CSP) with polysaccharide derivatives, macrocyclic antibiotics, chiral crown ethers, chiral ion exchangers, donor-acceptor phases as chiral selectors. Rarely, these targeted assays focus on more than 20 analytes and usually are restricted to a certain metabolite class. In a variety of cases, pre-column derivatization of metabolites has been performed, especially for amino acids, to improve separation and detection sensitivity. Triple quadrupole instruments are the detection methods of first choice in targeted assays. Here, issues like matrix effect, absence of blank matrix impair accuracy of results. In selected applications, multiple heart cutting 2D-LC (RP followed by chiral separation) has been pursued to overcome this problem and alleviate bias due to interferences. Non-targeted assays, on the other hand, are based on indirect approach involving tagging with a chiral derivatizing agent (CDA). Besides classical CDAs numerous innovative reagents and workflows have been proposed and are discussed. Thereby, a critical issue for the accuracy is often neglected, viz. the validation of the enantiomeric impurity in the CDA. The majority of applications focus on amino acids, hydroxy acids, oxidized fatty acids and oxylipins. Some potential clinical applications are highlighted. • A literature survey on indirect and direct approaches in enantioselective metabolomics is given. • The state-of-the-art in chiral derivatizing agents is summarized covering classical and innovative CDAs. • Caveats and risks of bias in indirect enantioselective metabolomics are critically discussed. • Chiral stationary phases and their applications employed in chiral metabolomics are outlined. • Achiral derivatization and mass tagging concepts are summarized. • Untargeted enantioselective metabolomics workflows are critically reviewed. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
14. A novel neutral loss/product ion scan-incorporated integral approach for the untargeted characterization and comparison of the carboxyl-free ginsenosides from Panax ginseng, Panax quinquefolius, and Panax notoginseng.
- Author
-
Yang, Wen-zhi, Shi, Xiao-jian, Yao, Chang-liang, Huang, Yong, Hou, Jin-jun, Han, Su-mei, Feng, Zi-jin, Wei, Wen-long, Wu, Wan-ying, and Guo, De-an
- Subjects
- *
AMERICAN ginseng , *GINSENG , *DAUGHTER ions , *GINSENOSIDES , *PANAX , *FORMIC acid - Abstract
• A novel substructure-oriented untargeted profiling strategy was established. • It involved ISF-MS1, mass tag/CID-MS2, and product ion scan/CID-MS3. • Sorted characterization of carboxyl-free ginsenosides was achieved. • 216 carboxyl-free ginsenosides were identified from three Panax species. • 21 ginsenosides had the potential chemotaxonomic significance. Differentiated composition in precursor ions for different subclasses of ginsenosides in the negative electrospray-ionization mode has been reported, which lays a foundation for the sorted and untargeted identification of ginsenosides. Carboxyl-free ginsenosides simultaneously from Panax ginseng , P. quinquefoliu s, and P. notoginseng , were comprehensively characterized and statistically compared. A neutral loss/product ion scan (NL-PIS) incorporated untargeted profiling approach, coupled to ultra-high performance liquid chromatography, was developed on a linear ion-trap/Orbitrap mass spectrometer for characterizing carboxyl-free ginsenosides. It incorporated in-source fragmentation (ISF) full scan-MS1, mass tag-MS2, and product ion scan-MS3. Sixty batches of ginseng samples were analyzed by metabolomics workflows for the discovery of ginsenoside markers. Using formic acid (FA) as the additive, carboxyl-free ginsenosides (protopanaxadiol-type, protopanaxatriol-type, and octillol-type) gave predominant FA-adducts, while rich deprotonated molecules were observed for carboxyl-containing ginsenosides (oleanolic acid-type and malonylated) when source-induced dissociation (SID) was set at 0 V. Based on the NL transition [M+FA‒H]− > [M−H]− and the characteristic sapogenin product ions, a NL-PIS approach was established. It took advantage of the efficient full-information acquisition of ISF-MS1 (SID: 50 V), the high specificity of mass tag (NL: 46.0055 Da)-induced MS2 fragmentation, and the substructure fragmentation of product ion scan-MS3. We could characterize 216 carboxyl-free ginsenosides, and 21 thereof were potentially diagnostic for the species differentiation. Conclusively, sorted and untargeted characterization of the carboxyl-free ginsenosides was achieved by the established NL-PIS approach. In contrast to the conventional NL or PIS-based survey scan strategies, the high-accuracy MSn data obtained can enable more reliable identification of ginsenosides. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
15. Oligonucleotides bearing pentaerythritol-derived mass tags
- Author
-
Anu Kiviniemi, Harri Lönnberg, and Petri Heinonen
- Subjects
Phosphoramidite ,Oligonucleotide ,Chemistry ,oligonucleotide conjugate ,RNA ,General Chemistry ,Oligonucleotide synthesis ,Mass spectrometry ,Combinatorial chemistry ,Pentaerythritol ,ether ,chemistry.chemical_compound ,pentaerythritol ,Materials Chemistry ,mass tag ,phosphoramidite ,Nucleoside ,hybridization ,QD1-999 ,Conjugate - Abstract
Five different di-O-alkylated pentaerythritol phosphoramidite building blocks (2a–e) were synthesized and introduced into oligonucleotides to obtain mass-tagged probes (6a–f) useful in RNA transcription profiling. These non-nucleosidic mass tags allow categorization of oligonucleotide probes having identical nucleoside content and, hence, identification of the probe hybridized to RNA by mass spectrometry analysis. Hybridization properties of the oligonucleotide conjugates were elucidated by melting temperature measurements.
- Published
- 2007
16. Strategies for Miniaturized Biomarker Detection
- Author
-
Adler, Belinda
- Subjects
MALDI MS ,lab-on-a-chip ,sample preparation ,Medical Engineering ,aptamer ,miniturization ,immunoaffinity ,PSA ,proteomics ,antibody ,ISET ,biomarker ,mass tag ,SPE ,microarray ,mass spectrometry - Abstract
The aim of this thesis is development and application of different miniaturized strategies for detection of biomarkers. The biomarker PSA (prostate specific antigen), which is prostate cancer specific, has been the main focus of the thesis. The papers present two miniaturized strategies for biomarker detection, developed at the department, an antibody microarray and the ISET platform. The antibody microarray, based on a micro- and nanoporous silicon surface, which increases the sensitivity of the assay, was utilized to quantitatively measure the prostate cancer biomarker PSA. The microarray was also developed to measure the two forms of PSA: total PSA and free PSA, which together gives a better indication of the prostate cancer disease. The second platform for proteomic analysis, the in-house developed platform ISET, which is a sample preparation platform for MALDI mass spectrometry, was first redesigned to be able to handle more viscous samples and larger volumes. Subsequent to the new configuration of the ISET platform, three new applications were developed and published within the framework of this thesis; digestion and detection of the biomarker PSA, protein validation of recombinant protein production, and aptamers as affinity ligand rather than antibody to reduce the background from the affinity probe when performing digestion of the captured protein. The ISET sample preparation was also automated using liquid handling robotics for faster analysis in for example screening procedures. In addition to the microarray, the porous silicon surface was utilized to capture PSA and analyse through the use of reporter mass tags ionized in the mass spectrometry. Prostatacancer är en av de vanligaste förekommande cancerformerna. Många äldre män har cancerceller i sin prostata, men som tur är behöver inte all cancer behandlas eftersom den inte växer. I USA får ungefär 27% av alla män prostatacancer och cirka 10% dör av det. Vi har utvecklat en ny miniatyriserad metod för att påvisa prostatacancer (Paper I). Genom att titta på PSA (prostata specifikt antigen) i blod från en patient kan vi med samma tillförlitlighet som sjukhusen säga om patienten har prostatacancer eller inte. PSA är en molekyl som vid cancer finns i större mängd i blodet. Men bara för att man har mer PSA i blodet behöver det inte betyda att man har prostata cancer. Tanken med vår metod är att den i framtiden ska kunna mäta olika molekyler, även kallat biomarkörer, i blodet för att ge en bättre bild av sjukdomstillståndet, till exempel påvisa den aggressiva formen av prostatacancer. För att fånga upp intressanta molekyler i blodet använder vi antikroppar som naturligt tillhör kroppens immunförsvar, där de lokaliserar inkräktare såsom bakterier och virus. Antikropparna sätts fast på en yta som är porös och lätt kan binda många antikroppar på en liten yta. Ytans egenskaper gör att metoden lättare kan hitta mindre mängder biomarkörer i blodet för att bättre kunna fastställa sjukdomstillståndet, dvs. ökad känslighet i mätmetoden. Den nya metoden är utvecklad för prostatacancer men kan med modifiering användas till andra sjukdomar i framtiden. Vi har även vidareutvecklat en annan metod (Paper II), kallad ISET, som likt den förra metoden kan bestämma sjukdomstillstånd men även leta efter nya biomarkörer i blodet som kan påvisa sjukdomstillstånd. ISET-metoden letar även den upp en specifik molekyl med hjälp av t.ex. antikroppar, bland miljontals andra. När målmolekylen är fångad tvättar man i ISET:en bort det man inte vill titta på och klipper sedan sönder molekylen i mindre bitar, vilket är nödvändigt för att kunna analysera den. Man klipper på speciella ställen så man vet vilka storlekar man letar efter. Därefter skjuter man med en laser på ISET:en så att molekylbitarna flyger iväg i analysinstrumentet (masspektrometern). De minsta fragmenten flyger snabbast, och med hjälp av det bestäms exakt hur stora molekylbitarna är. När man tittar på molekylbitarna som kommit fram kan man avgöra om den molekylen man letade efter som man klippt sönder fanns i det ursprungliga provet. ISET:en hanterar små volymer av prov. Från mindre än en droppe blod kan man få reda på om molekylen man söker finns i provet. För att underlätta är ISET:en gjord i ett format som robotar kan hantera. Vi har visat att genom att använda ISET:en i en robot, har vi förminskat tiden från 30 minuter per prov till 5 minuter per prov (Paper IV). Vi har använt ISET:en för att hitta en speciell biomarkör i ett prov med miljoner andra molekyler, dvs. till att hitta PSA (Paper III), men även för att kontrollera ett producerat protein, så att det har fått rätt struktur (Paper IV). Olika molekyler kan användas för att fånga ut det önskade proteinet. I Paper VI jämför vi två olika molekyler, antikroppar och aptamerer. Det visar sig att i ISET:en är det bra att använda aptamerer, eftersom de inte klipps sönder inför masspektrometer analysen. Vi har även använt masspektrometern utan ISET:en för att titta på PSA i blodprover (Paper V). Den första antikroppsbaserade metoden på porösa ytor (Paper I) kan hitta en mindre mängd molekyler i ett prov än ISET:en, men ISET:en kan med större säkerhet säga att vi har hittat rätt molekyl vilket gör att de kompletterar varandra väl som olika miniatyriserade strategier för att finna biomarkörer.
- Published
- 2014
17. b-tagging in DELPHI at LEP
- Author
-
Clara Troncon, E. K. Johansson, A. Oyanguren, M. Bracko, P. Biffi, Andre Sopczak, N. I. Zimin, D. Moraes, L. Bugge, P. Lutz, P. D. Johansson, L. Berntzon, S-O. Holmgren, Wolfgang Adam, T. Tabarelli, W. Liebig, P. Bruckman, H. Foeth, Dietrich Liko, Klaus Hamacher, Tord Ekelof, P. Verdier, J. P. Palacios, R. Sekulin, P. Bambade, A. De Angelis, P. Collins, M. Stanitzki, T. Moa, Valeriy Pozdniakov, B. Golob, P.S.L. Booth, L. Jungermann, L. Lyons, Daniel Treille, Daniel Bloch, Martijn Mulders, Martino Margoni, E. Fokitis, Ahmimed Ouraou, Per Jönsson, J. M. Heuser, J. Ridky, T. Albrecht, C. Parkes, F. Hauler, O. Tushchenko, M. Rivero, M. Blom, J. Dalmau, A. Markou, Rupert Leitner, M. Zupan, Maria Elena Pol, J. D'Hondt, K. Hultqvist, Rafael Marco, S. Katsanevas, A. Tomaradze, M. Nikolenko, Oliver Passon, D. Y. Bardin, M. Karlsson, A. Onofre, Tiziano Rovelli, A. Malek, A. Sokolov, Phillip Allport, A. N. Sisakian, G. Della Ricca, Paolo Morettini, A. Sadovsky, G. Borisov, M. Feindt, L. Ramler, P. Rebecchi, J.H. Bibby, I. A. Tyapkin, V. Ruhlmann-Kleider, Javier Cuevas, Jalal Abdallah, Daniel Wicke, Göran Jarlskog, Patrick Jarry, Guillelmo Gomez-Ceballos, J. Masik, Christine Kourkoumelis, Krzysztof Nawrocki, T. Spassov, L. Mundim, T. da Silva, Agnieszka Oblakowska-Mucha, Ch. Jarlskog, D. Ryabtchikov, Stavros Maltezos, R. Orava, L. Pieri, José Salt, W. D. Apel, M. Tobin, G. Eigen, N. Pukhaeva, B. Bouquet, Daniel Jeans, F. Fulda-Quenzer, G. Valenti, S. Todorovova, T. Allmendinger, J. Guy, R. Monge, Paulo J. S. Gonçalves, V. Obraztsov, Luc Pape, J. Kurowska, S. Tzamarias, F. Carena, G. Wilkinson, D. Fassouliotis, D. Vilanova, P. Van Dam, Tim Adye, Roberto Chierici, U. Mueller, P. B. Renton, A. Norman, Klaus Moenig, Fabrizio Parodi, C. Martinez-Rivero, P. Branchini, E. Graziani, J. M. Brunet, F. Pierre, Vincent Hedberg, M. A. Houlden, F. Tegenfeldt, M. A. Winter, Marco Battaglia, A. C. Taffard, Evangelos Gazis, Ph. Charpentier, B. Crawley, Marcin Kucharczyk, B. Marechal, W. Da Silva, W. A. Mitaroff, A. Petrolini, B. De Lotto, Rosy Nicolaidou, Marta Calvi, A. Behrmann, Markus Elsing, G. Kernel, F. Richard, P. V. Chliapnikov, M. Hennecke, I. Stavitski, Borut Paul Kerševan, V. Perepelitsa, C. Matteuzzi, Mattias Ellert, P. Niezurawski, M. Begalli, S. Almehed, Jesus Marco, Paul Baillon, Alexander Lincoln Read, Barry King, M. Szeptycka, Marc Besancon, M. Nassiakou, Ugo Amaldi, A. Tonazzo, F. Ledroit, A. G. Olshevski, J. A. Hernando, Th D. Papadopoulou, J. Timmermans, W. De Boer, Corinne Berat, Olga Botner, R. Gokieli, N. Tinti, J. Fernandez, A. Ballestrero, K. Muenich, Sofia Andringa, H. Herr, Carmen García, L. G. Tkatchev, G. Smadja, Josef Strauss, V. Chabaud, P. Buschmann, B. Muryn, E. Brodet, P. Jalocha, M. Espirito Santo, A. Nygren, M. Berggren, M. Mazzucato, T. Myklebust, R. Contri, A. Van Lysebetten, A. Andreazza, Demetrios Loukas, Nicola Amapane, G. Polok, G. Vegni, P.D. Jonsson, Manolis Dris, Ernesto Migliore, Richard Brenner, Gareth J. Barker, A. Zalewska, Alberto Benvenuti, W. T. Meyer, Fabrizio Ferro, I. van Vulpen, E. I. Rosenberg, T. Alderweireld, Tomasz Szumlak, Antonio Ferrer, F. Veloso, V. Verzi, R. Keranen, Francisco Matorras, A. Savoy-Navarro, F. Couchot, B. Tome, P. Antilogus, J. Rehn, N. Anjos, T. Geralis, Juan Fuster, Nikolaos P. Mastroyiannopoulos, H. Wahlen, U. Schwickerath, K. H. Becks, J. Van Eldik, Jacques Lemonne, A. J. Washbrook, Andrei Nomerotski, S. Haug, P. Abreu, A. Kiiskinen, Sandra Amato, T. Podobnik, Tiziano Camporesi, G. Cosme, Petar Adzic, Piotr Zalewski, R. Reinhardt, C. Weiser, Andrea Perrotta, V.A. Uvarov, R. Mc Nulty, M. Tyndel, P. Tyapkin, J. N. Jackson, J. Rames, Chiara Mariotti, P. Kokkinias, V. Poireau, Francesca Romana Cavallo, C. De Clercq, W. J. Murray, O.M. Kouznetsov, V. Lepeltier, M. Siebel, Paolo Checchia, Ph. Gavillet, Petr Travnicek, J. MacNaughton, M. Moch, K. Grzelak, Allan Hallgren, S. U. Chung, Antonio Baroncelli, J. Piedra, Y. Arnoud, Paolo Ronchese, N. J. Kjaer, E. Anashkin, Nektarios Benekos, G. Tristram, A. M. Segar, M. Chapkin, H. Palka, J. W. Lamsa, Vaclav Vrba, Hans Dijkstra, J-C. Marin, R. Alemany-Fernandez, G. Leder, T. J. V. Bowcock, B. Åsman, L. Salmi, D. Crennell, F. Mandl, P. J. Holt, G. Myatt, N. F. Castro, J. M. Lopez, Z. Krumstein, S. Paiano, A. De Min, U. Flagmeyer, J. J. Gomez Y Cadenas, N. De Maria, Anna Lipniacka, Wojciech Kucewicz, C. Joram, J. Drees, D. Bertrand, Jiri Chudoba, R. Barbier, D. Zavranik, Massimo Caccia, L. Leinonen, K. Cieslik, Fabio Cossutti, M. Pimenta, P. Weilhammer, Francesco Navarria, Pablo Tortosa, A. Zintchenko, J. Montenegro, Igor Boyko, William Trischuk, Krzysztof Doroba, T. Lesiak, A. Passeri, Chiara Meroni, Peter Kluit, F. Mazzucato, U. Mjoernmark, Diego Rodriguez, L. Di Ciaccio, S. Ask, J. H. Wickens, Marco Paganoni, M. Baubillier, Achille Stocchi, V. Canale, L. Vitale, F. Martinez-Vidal, Georgios Fanourakis, Jørgen Beck Hansen, J.Gh. Lopes, C. Haag, N. Van Remortel, R. Sosnowski, J. E. Augustin, Marco Costa, M. Trochimczuk, M. J. Bates, Oxana Smirnova, M. Bonesini, E. Piotto, M. Witek, G. Grosdidier, F. Kapusta, B. Stugu, M. L. Turluer, M. Gandelman, D. Reid, Luis Peralta, Alessandra Romero, A. Pullia, Nathalie Besson, Marek Szczekowski, K. Osterberg, Keith Hamilton, A. Di Simone, P. Poropat, E. C. Katsoufis, Maarten Boonekamp, L. De Paula, Andre Augustinus, P. Roudeau, B. Dalmagne, Ulrich Parzefall, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches Subatomiques (IReS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Cancéropôle du Grand Est-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), DELPHI, Cossutti, F., DELLA RICCA, Giuseppe, Poropat, Paolo, Vitale, Lorenzo, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Collège de France (CdF (institution))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Delphi (IHEF, IoP, FNWI), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), J. ABDALLAH, P. ABREU, W. ADAM, P. ADZIC, T. ALBRECHT, T. ALDERWEIRELD, R. ALEMANY-FERNANDEZ, T. ALLMENDINGER, P.P. ALLPORT, U. AMALDI, N. AMAPANE, S. AMATO, E. ANASHKIN, A. ANDREAZZA, S. ANDRINGA, N. ANJOS, P. ANTILOGUS, W.D. APEL, Y. ARNOUD, S. ASK, B. ASMAN, J.E. AUGUSTIN, A. AUGUSTINUS, P. BAILLON, A. BALLESTRERO, P. BAMBADE, R. BARBIER, D. BARDIN, G.J. BARKER, A. BARONCELLI, M. BATTAGLIA, M. BAUBILLIER, K.H. BECKS, M. BEGALLI, A. BEHRMANN, E. BEN-HAIM, N. BENEKOS, A. BENVENUTI, C. BERAT, M. BERGGREN, L. BERNTZON, D. BERTRAND, M. BESANCON, N. BESSON, D. BLOCH, M. BLOM, M. BLUJ, M. BONESINI, M. BOONEKAMP, P.S.L. BOOTH, G. BORISOV, O. BOTNER, B. BOUQUET, T.J.V. BOWCOCK, I. BOYKO, M. BRACKO, R. BRENNER, E. BRODET, P. BRUCKMAN, J.M. BRUNET, L. BUGGE, P. BUSCHMANN, M. CALVI, T. CAMPORESI, V. CANALE, F. CARENA, N. CASTRO, F. CAVALLO, M. CHAPKIN, P. CHARPENTIER, P. CHECCHIA, R. CHIERICI, P. CHLIAPNIKOV, J. CHUDOBA, S.U. CHUNG, K. CIESLIK, P. COLLINS, R. CONTRI, G. COSME, F. COSSUTTI, M.J. COSTA, B. CRAWLEY, D. CRENNELL, J. CUEVAS, J. D'HONDT, J. DALMAU, T. DA SILVA, W. DA SILVA, G. DELLA RICCA, A. DE ANGELIS, W. DE BOER, C. DE CLERCQ, B. DE LOTTO, N. DE MARIA, A. DE MIN, L. DE PAULA, L. DI CIACCIO, A. DI SIMONE, K. DOROBA, J. DREES, M. DRIS, G. EIGEN, T. EKELOF, M. ELLERT, M. ELSING, M.C. ESPIRITO SANTO, G. FANOURAKIS, D. FASSOULIOTIS, M. FEINDT, J. FERNANDEZ, A. FERRER, F. FERRO, U. FLAGMEYER, H. FOETH, E. FOKITIS, F. FULDA-QUENZER, J. FUSTER, M. GANDELMAN, C. GARCIA, P. GAVILLET, E. GAZIS, R. GOKIELI, B. GOLOB, G. GOMEZ-CEBALLOS, P. GONCALVES, E. GRAZIANI, G. GROSDIDIER, K. GRZELAK, J. GUY, C. HAAG, A. HALLGREN, K. HAMACHER, K. HAMILTON, J. HANSEN, S. HAUG, F. HAULER, V. HEDBERG, M. HENNECKE, H. HERR, J. HOFFMAN, S.O. HOLMGREN, P.J. HOLT, M.A. HOULDEN, K. HULTQVIST, J.N. JACKSON, G. JARLSKOG, P. JARRY, D. JEANS, E.K. JOHANSSON, P.D. JOHANSSON, P. JONSSON, C. JORAM, L. JUNGERMANN, FREDERIC KAPUSTA, S. KATSANEVAS, E. KATSOUFIS, G. KERNEL, B.P. KERSEVAN, A. KIISKINEN, B.T. KING, N.J. KJAER, P. KLUIT, P. KOKKINIAS, C. KOURKOUMELIS, O. KOUZNETSOV, Z. KRUMSTEIN, M. KUCHARCZYK, J. LAMSA, G. LEDER, F. LEDROIT, L. LEINONEN, R. LEITNER, J. LEMONNE, V. LEPELTIER, T. LESIAK, W. LIEBIG, D. LIKO, A. LIPNIACKA, J.H. LOPES, J.M. LOPEZ, D. LOUKAS, P. LUTZ, L. LYONS, J. MACNAUGHTON, A. MALEK, S. MALTEZOS, F. MANDL, J. MARCO, R. MARCO, B. MARECHAL, M. MARGONI, J.C. MARIN, C. MARIOTTI, A. MARKOU, C. MARTINEZ-RIVERO, J. MASIK, N. MASTROYIANNOPOULOS, F. MATORRAS, C. MATTEUZZI, F. MAZZUCATO, M. MAZZUCATO, R. MCNULTY, C. MERONI, W.T. MEYER, E. MIGLIORE, W. MITAROFF, U. MJOERNMARK, T. MOA, M. MOCH, K. MOENIG, R. MONGE, J. MONTENEGRO, D. MORAES, S. MORENO, P. MORETTINI, U. MUELLER, K. MUENICH, M. MULDERS, L. MUNDIM, W. MURRAY, B. MURYN, G. MYATT, T. MYKLEBUST, M. NASSIAKOU, F. NAVARRIA, K. NAWROCKI, R. NICOLAIDOU, M. NIKOLENKO, A. OBLAKOWSKA-MUCHA, V. OBRAZTSOV, A. OLSHEVSKI, A. ONOFRE, R. ORAVA, K. OSTERBERG, A. OURAOU, A. OYANGUREN, M. PAGANONI, S. PAIANO, J.P. PALACIOS, H. PALKA, T.D. PAPADOPOULOU, L. PAPE, C. PARKES, F. PARODI, U. PARZEFALL, A. PASSERI, O. PASSON, L. PERALTA, V. PEREPELITSA, A. PERROTTA, A. PETROLINI, J. PIEDRA, L. PIERI, F. PIERRE, M. PIMENTA, E. PIOTTO, T. PODOBNIK, V. POIREAU, M.E. POL, G. POLOK, P. POROPATY, V. POZDNIAKOV, N. PUKHAEVA, A. PULLIA, J. RAMES, L. RAMLER, ALEXANDER L. READ, P. REBECCHI, J. REHN, D. REID, R. REINHARDT, P. RENTON, F. RICHARD, J. RIDKY, M. RIVERO, D. RODRIGUEZ, A. ROMERO, P. RONCHESE, E. ROSENBERG, P. ROUDEAU, T. ROVELLI, V. RUHLMANN-KLEIDER, D. RYABTCHIKOV, A. SADOVSKY, L. SALMI, J. SALT, A. SAVOY-NAVARRO, U. SCHWICKERATH, A. SEGAR, R. SEKULIN, M. SIEBEL, A. SISAKIAN, G. SMADJA, O. SMIRNOVA, A. SOKOLOV, A. SOPCZAK, R. SOSNOWSKI, T. SPASSOV, M. STANITZKI, A. STOCCHI, J. STRAUSS, B. STUGU, M. SZCZEKOWSKI, M. SZEPTYCKA, T. SZUMLAK, T. TABARELLI, A.C. TAFFARD, F. TEGENFELDT, J. TIMMERMANS, L. TKATCHEV, M. TOBIN, S. TODOROVOVA, B. TOME, A. TONAZZO, P. TORTOSA, P. TRAVNICEK, D. TREILLE, G. TRISTRAM, M. TROCHIMCZUK, C. TRONCON, M.L. TURLUER, I.A. TYAPKIN, P. TYAPKIN, S. TZAMARIAS, V. UVAROV, G. VALENTI, P. VAN DAM, J. VAN ELDIK, A. VAN LYSEBETTEN, N. VAN REMORTEL, I. VAN VULPEN, G. VEGNI, F. VELOSO, W. VENUS, F. VERBEURE, P. VERDIER, V. VERZI, D. VILANOVA, L. VITALE, V. VRBA, H. WAHLEN, A.J. WASHBROOK, C. WEISER, D. WICKE, J. WICKENS, G. WILKINSON, M. WINTER, M. WITEK, O. YUSHCHENKO, A. ZALEWSKA, P. ZALEWSKI, D. ZAVRTANIK, V. ZHURAVLOV, N.I. ZIMIN, A. ZINTCHENKO, M. ZUPAN, Département Recherches Subatomiques (DRS-IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), DELPHI Collaboration, Abreu, P, Adam, W, Adye, T, Adzic, P, Albrecht, T, Alderweireld, T, Alemany Fernandez, R, Allmendinger, T, Allport, P, Almehed, S, Amaldi, U, Amapane, N, Amato, S, Anashkin, E, Andreazza, A, Andringa, S, Anjos, N, Antilogus, P, Apel, W, Arnoud, Y, Ask, S, Asman, B, Augustin, J, Augustinus, A, Baillon, P, Ballestrero, A, Bambade, P, Barbier, R, Bardin, D, Barker, G, Baroncelli, A, Bates, M, Battaglia, M, Baubillier, M, Becks, K, Begalli, M, Behrmann, A, Benekos, N, Benvenuti, A, Berat, C, Berggren, M, Berntzon, L, Bertrand, D, Besancon, M, Besson, N, Bibby, J, Biffi, P, Bloch, D, Blom, M, Bonesini, M, Boonekamp, M, Booth, P, Borisov, G, Botner, O, Bouquet, B, Bowcock, T, Boyko, I, Bracko, M, Branchini, P, Brenner, R, Brodet, E, Bruckman, P, Brunet, J, Bugge, L, Buschmann, P, Caccia, M, Calvi, M, Camporesi, T, Canale, V, Carena, F, Castro, N, Cavallo, F, Chabaud, V, Chapkin, M, Charpentier, P, Checchia, P, Chierici, R, Chliapnikov, P, Chudoba, J, Chung, S, Cieslik, K, Collins, P, Contri, R, Cosme, G, Cossutti, F, Costa, M, Couchot, F, Crawley, B, Crennell, D, Cuevas, J, D'Almagne, B, D'Hondt, J, Dalmau, J, da Silva, T, da Silva, W, della Ricca, G, de Angelis, A, de Boer, W, de Clercq, C, de Lotto, B, De Maria, N, De Min, A, de Paula, L, di Ciaccio, L, Dijkstra, H, di Simone, A, Doroba, K, Drees, J, Dris, M, Eigen, G, Ekelof, T, Ellert, M, Elsing, M, Espirito Santo, M, Fanourakis, G, Fassouliotis, D, Feindt, M, Fernandez, J, Ferrer, A, Ferro, F, Flagmeyer, U, Foeth, H, Fokitis, E, Fulda Quenzer, F, Fuster, J, Gandelman, M, Garcia, C, Gavillet, P, Gazis, E, Geralis, T, Gokieli, R, Golob, B, Gomez Cadenas, J, Gomez Ceballos, G, Goncalves, P, Graziani, E, Grosdidier, G, Grzelak, K, Guy, J, Haag, C, Hallgren, A, Hamacher, K, Hamilton, K, Hansen, J, Haug, S, Hauler, F, Hedberg, V, Hennecke, M, Hernando, J, Herr, H, Heuser, J, Holmgren, S, Holt, P, Houlden, M, Hultqvist, K, Jackson, J, Jalocha, P, Jarlskog, C, Jarlskog, G, Jarry, P, Jeans, D, Johansson, E, Johansson, P, Jonsson, P, Joram, C, Jungermann, L, Kapusta, F, Karlsson, M, Katsanevas, S, Katsoufis, E, Keranen, R, Kernel, G, Kersevan, B, Kiiskinen, A, King, B, Kjaer, N, Kluit, P, Kokkinias, P, Kourkoumelis, C, Kouznetsov, O, Krumstein, Z, Kucharczyk, M, Kucewicz, W, Kurowska, J, Lamsa, J, Leder, G, Ledroit, F, Leinonen, L, Leitner, R, Lemonne, J, Lepeltier, V, Lesiak, T, Liebig, W, Liko, D, Lipniacka, A, Lopes, J, Lopez, J, Loukas, D, Lutz, P, Lyons, L, Macnaughton, J, Malek, A, Maltezos, S, Mandl, F, Marco, J, Marco, R, Marechal, B, Margoni, M, Marin, J, Mariotti, C, Markou, A, Martinez Rivero, C, Martinez Vidal, F, Masik, J, Mastroyiannopoulos, N, Matorras, F, Matteuzzi, C, Mazzucato, F, Mazzucato, M, Mc Nulty, R, Meroni, C, Meyer, W, Migliore, E, Mitaroff, W, Mjoernmark, U, Moa, T, Moch, M, Moenig, K, Monge, R, Montenegro, J, Moraes, D, Moreno, S, Morettini, P, Mueller, U, Muenich, K, Mulders, M, Mundim, L, Murray, W, Muryn, B, Myatt, G, Myklebust, T, Nassiakou, M, Navarria, F, Nawrocki, K, Nicolaidou, R, Niezurawski, P, Nikolenko, M, Nomerotski, A, Norman, A, Nygren, A, Oblakowska Mucha, A, Obraztsov, V, Olshevski, A, Onofre, A, Orava, R, Osterberg, K, Ouraou, A, Oyanguren, A, Paganoni, M, Paiano, S, Palacios, J, Palka, H, Papadopoulou, T, Pape, L, Parkes, C, Parodi, F, Parzefall, U, Passeri, A, Passon, O, Peralta, L, Perepelitsa, V, Perrotta, A, Petrolini, A, Piedra, J, Pieri, L, Pierre, F, Pimenta, M, Piotto, E, Podobnik, T, Poireau, V, Pol, M, Polok, G, Poropat, P, Pozdniakov, V, Pukhaeva, N, Pullia, A, Rames, J, Ramler, L, Read, A, Rebecchi, P, Rehn, J, Reid, D, Reinhardt, R, Renton, P, Richard, F, Ridky, J, Rivero, M, Rodriguez, D, Romero, A, Ronchese, P, Rosenberg, E, Roudeau, P, Rovelli, T, Ruhlmann Kleider, V, Ryabtchikov, D, Sadovsky, A, Salmi, L, Salt, J, Savoy Navarro, A, Schwickerath, U, Segar, A, Sekulin, R, Siebel, M, Sisakian, A, Smadja, G, Smirnova, O, Sokolov, A, Sopczak, A, Sosnowski, R, Spassov, T, Stanitzki, M, Stavitski, I, Stocchi, A, Strauss, J, Stugu, B, Szczekowski, M, Szeptycka, M, Szumlak, T, TABARELLI DE FATIS, T, Taffard, A, Tegenfeldt, F, Timmermans, J, Tinti, N, Tkatchev, L, Tobin, M, Todorovova, S, Tomaradze, A, Tome, B, Tonazzo, A, Tortosa, P, Travnicek, P, Treille, D, Trischuk, W, Tristram, G, Trochimczuk, M, Troncon, C, Turluer, M, Tyapkin, I, Tyapkin, P, Tyndel, M, Tzamarias, S, Uvarov, V, Valenti, G, van Dam, P, van Eldik, J, van Lysebetten, A, van Remortel, N, van Vulpen, I, Vegni, G, Veloso, F, Venus, W, Verbeure, F, Verdier, P, Verzi, V, Vilanova, D, Vitale, L, Vrba, V, Wahlen, H, Washbrook, A, Weilhammer, P, Weiser, C, Wicke, D, Wickens, J, Wilkinson, G, Winter, M, Witek, M, Yushchenko, O, Zalewska, A, Zalewski, P, Zavrtanik, D, Zimin, N, Zintchenko, A, Zupan, M, Student Lab and Education, (Astro)-Particles Physics, Faculty of Sciences, and Finance
- Subjects
Particle physics ,SDG 16 - Peace ,Physics and Astronomy (miscellaneous) ,Library science ,FOS: Physical sciences ,computer.software_genre ,01 natural sciences ,High Energy Physics - Experiment ,TRACKER ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,MICROVERTEX DETECTOR ,MASS TAG ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,010303 astronomy & astrophysics ,Engineering (miscellaneous) ,QC ,computer.programming_language ,DELPHI ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,SDG 16 - Peace, Justice and Strong Institutions ,Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) ,LEP ,b-tagging ,LARGE ELECTRON POSITRON COLLIDER ,Justice and Strong Institutions ,Vertex (geometry) ,Background suppression ,B-QUARK ,PARTICLE PHYSICS ,High Energy Physics::Experiment ,Data mining ,Vertex detector ,computer ,TAGGING ,Particle Physics - Experiment ,Delphi - Abstract
The standard method used for tagging b-hadrons in the DELPHI experiment at the CERN LEP Collider is discussed in detail. The main ingredient of b-tagging is the impact parameters of tracks, which relies mostly on the vertex detector. Additional information, such as the mass of particles associated to a secondary vertex, significantly improves the selection efficiency and the background suppression. The paper describes various discriminating variables used for the tagging and the procedure of their combination. In addition, applications of b-tagging to some physics analyses, which depend crucially on the performance and reliability of b-tagging, are described briefly., Comment: 54 pages, 26 figures, Accepted by Eur. Phys. J. C
- Published
- 2004
- Full Text
- View/download PDF
18. A precise measurement of the partial decay width ratio R-b(0) = Gamma(b(b)over-bar)/Gamma(had)
- Author
-
Abreu, P, Adam, W, Adye, T, Adzic, P, Albrecht, Z, Alderweireld, T, Alekseev, GD, Alemany, R, Allmendinger, T, Allport, PP, Almehed, S, Amaldi, U, Amato, S, Anassontzis, EG, Andersson, P, Andreazza, A, Andringa, S, Antilogus, P, Apel, WD, Arnoud, Y, Asman, B, Augustin, JE, Augustinus, A, Baillon, P, Bambade, P, Barao, F, Barbiellini, G, Barbier, R, Bardin, DY, Barker, G, Baroncelli, A, Battaglia, M, Baubillier, M, Becks, KH, Begalli, M, Beilliere, P, Belokopytov, Y, Belous, K, Benvenuti, AC, Berat, C, Berggren, M, Bertini, D, Bertrand, D, Besancon, M, Bianchi, F, Bigi, M, Bilenky, MS, Bizouard, MA, Bloch, D, Blom, HM, Bonesini, M, Bonivento, W, Boonekamp, M, Booth, PSL, Borgland, AW, Borisov, G, Bosio, C, Botner, O, Boudinov, E, Bouquet, B, Bourdarios, C, Bowcock, TJV, Boyko, I, Bozovic, I, Bozzo, M, Branchini, P, Brenke, T, Brenner, RA, Bruckman, P, Brunet, JM, Bugge, L, Buran, T, Burgsmueller, T, Buschmann, P, Cabrera, S, Caccia, M, Calvi, M, Camporesi, T, Canale, V, Carena, F, Carroll, L, Caso, C, Gimenez, MVC, Cattai, A, Cavallo, FR, Chabaud, V, Chapkin, M, Charpentier, P, Chaussard, L, Checchia, P, Chelkov, GA, Chierici, R, Chliapnikov, P, Chochula, P, Chorowicz, V, Chudoba, J, Cieslik, K, Collins, P, Contri, R, Cortina, E, Cosme, G, Cossutti, F, Cowell, JH, Crawley, HB, Crennell, D, Crepe, S, Crosetti, G, Maestro, JC, Czellar, S, Damgaard, G, Davenport, M, Da Silva, W, Deghorain, A, Della Ricca, G, Delpierre, P, Demaria, N, De Angelis, A, De Boer, W, De Brabandere, S, De Clercq, C, De Lotto, B, De Min, A, De Paula, L, Dijkstra, H, Di Ciaccio, L, Dolbeau, J, Doroba, K, Dracos, M, Drees, J, Dris, M, Duperrin, A, Durand, JD, Eigen, G, Ekelof, T, Ekspong, G, Ellert, M, Elsing, M, Engel, JP, Erzen, B, Santo, ME, Falk, E, Fanourakis, G, Fassouliotis, D, Fayot, J, Feindt, M, Fenyuk, A, Ferrari, P, Ferrer, A, Ferrer-Ribas, E, Fichet, S, Firestone, A, Flagmeyer, U, Foeth, H, Fokitis, E, Fontanelli, F, Franek, B, Frodesen, AG, Fruhwirth, R, Fulda-Quenzer, F, Fuster, J, Galloni, A, Gamba, D, Gamblin, S, Gandelman, M, Garcia, C, Gaspar, C, Gaspar, M, Gasparini, U, Gavillet, P, Gazis, EN, Gele, D, Ghodbane, N, Gil, I, Glege, F, Gokieli, R, Golob, B, Gomez-Ceballos, G, Goncalves, P, Caballero, IG, Gopal, G, Gorn, L, Gorski, M, Gouz, Y, Gracco, V, Grahl, J, Graziani, E, Green, C, Grimm, HJ, Gris, P, Grosdidier, G, Grzelak, K, Gunther, M, Guy, J, Hahn, F, Hahn, S, Haider, S, Hallgren, A, Hamacher, K, Hansen, J, Harris, FJ, Hedberg, V, Heising, S, Hernandez, JJ, Herquet, P, Herr, H, Hessing, TL, Heuser, JM, Higon, E, Holmgren, SO, Holt, PJ, Hoorelbeke, S, Houlden, M, Huet, K, Hughes, GJ, Hultqvist, K, Jackson, JN, Jacobsson, R, Jalocha, P, Janik, R, Jarlskog, C, Jarlskog, G, Jarry, P, Jean-Marie, B, Johansson, EK, Jonsson, P, Joram, C, Juillot, P, Kapusta, F, Karafasoulis, K, Katsanevas, S, Katsoufis, EC, Keranen, R, Kersevan, BP, Khomenko, BA, Khovanski, NN, Kiiskinen, A, King, B, Kinvig, A, Kjaer, NJ, Klapp, O, Klein, H, Kluit, P, Kokkinias, P, Koratzinos, M, Kostioukhine, V, Kourkoumelis, C, Kouznetsov, O, Krammer, M, Kriznic, E, Krstic, J, Krumstein, Z, Kubinec, P, Kurowska, J, Kurvinen, K, Lamsa, JW, Lane, DW, Langefeld, P, Lapin, V, Laugier, JP, Lauhakangas, R, Leder, G, Ledroit, F, Lefebure, V, Leinonen, L, Leisos, A, Leitner, R, Lenzen, G, Lepeltier, V, Lesiak, T, Lethuillier, M, Libby, J, Liko, D, Lipniacka, A, Lippi, I, Loerstad, B, Loken, JG, Lopes, JH, Lopez, JM, Lopez-Fernandez, R, Loukas, D, Lutz, P, Lyons, L, MacNaughton, J, Mahon, JR, Maio, A, Malek, A, Malmgren, TGM, Malychev, V, Mandl, F, Marco, J, Marco, R, Marechal, B, Margoni, M, Marin, JC, Mariotti, C, Markou, A, Martinez-Rivero, C, Martinez-Vidal, F, Garcia, SMI, Masik, J, Mastroyiannopoulos, N, Matorras, F, Matteuzzi, C, Matthiae, G, Mazzucato, F, Mazzucato, M, Mc Cubbin, M, Mc Kay, R, Mc Nulty, R, Mc Pherson, G, Meroni, C, Meyer, WT, Migliore, E, Mirabito, L, Mitaroff, WA, Mjoernmark, U, Moa, T, Moch, M, Moeller, R, Moenig, K, Monge, MR, Moreau, X, Morettini, P, Morton, G, Mueller, U, Muenich, K, Mulders, M, Mulet-Marquis, C, Muresan, R, Murray, WJ, Muryn, B, Myatt, G, Myklebust, T, Naraghi, F, Navarria, FL, Navas, S, Nawrocki, K, Negri, P, Neufeld, N, Neumeister, N, Nicolaidou, R, Nielsen, BS, Nikolenko, M, Nomokonov, V, Normand, A, Nygren, A, Obraztsov, V, Olshevski, AG, Onofre, A, Orava, R, Orazi, G, Osterberg, K, Ouraou, A, Paganoni, M, Paiano, S, Pain, R, Paiva, R, Palacios, J, Palka, H, Papadopoulou, TD, Papageorgiou, K, Pape, L, Parkes, C, Parodi, F, Parzefall, U, Passeri, A, Passon, O, Pegoraro, M, Peralta, L, Pernicka, M, Perrotta, A, Petridou, C, Petrolini, A, Phillips, HT, Pierre, F, Pimenta, M, Piotto, E, Podobnik, T, Pol, ME, Polok, G, Poropat, P, Pozdniakov, V, Privitera, P, Pukhaeva, N, Pullia, A, Radojicic, D, Ragazzi, S, Rahmani, H, Rakoczy, D, Ratoff, PN, Read, AL, Rebecchi, P, Redaelli, NG, Regler, M, Reid, D, Reinhardt, R, Renton, PB, Resvanis, LK, Richard, F, Ridky, J, Rinaudo, G, Rohne, O, Romero, A, Ronchese, P, Rosenberg, EI, Rosinsky, P, Roudeau, P, Rovelli, T, Royon, C, Ruhlmann-Kleider, V, Ruiz, A, Saarikko, H, Sacquin, Y, Sadovsky, A, Sajot, G, Salt, J, Sampsonidis, D, Sannino, M, Schneider, H, Schwemling, P, Schwickerath, U, Schyns, MAE, Scuri, F, Seager, P, Sedykh, Y, Segar, AM, Sekulin, R, Shellard, RC, Sheridan, A, Siebel, M, Simard, L, Simonetto, F, Sisakian, AN, Smadja, G, Smirnov, N, Smirnova, O, Smith, GR, Sopczak, A, Sosnowski, R, Spassov, T, Spiriti, E, Sponholz, P, Squarcia, S, Stampfer, D, Stanescu, C, Stanic, S, Stevenson, K, Stocchi, A, Strauss, J, Strub, R, Stugu, B, Szczekowski, M, Szeptycka, M, Tabarelli, T, Tegenfeldt, F, Terranova, F, Thomas, J, Timmermans, J, Tinti, N, Tkatchev, LG, Todorova, S, Tomaradze, A, Tome, B, Tonazzo, A, Tortora, L, Transtromer, G, Treille, D, Tristram, G, Trochimczuk, M, Troncon, C, Tsirou, A, Turluer, ML, Tyapkin, IA, Tzamarias, S, Ueberschaer, B, Ullaland, O, Uvarov, V, Valenti, G, Vallazza, E, Van Apeldoorn, GW, Van Dam, P, Van Doninck, WK, Van Eldik, J, Van Lysebetten, A, Van Vulpen, I, Vassilopoulos, N, Vegni, G, Ventura, L, Venus, W, Verbeure, F, Verlato, M, Vertogradov, LS, Verzi, V, Vilanova, D, Vitale, L, Vlasov, E, Vodopyanov, AS, Vollmer, C, Voulgaris, G, Vrba, V, Wahlen, H, Walck, C, Weiser, C, Wicke, D, Wickens, JH, Wilkinson, GR, Winter, M, Witek, M, Wolf, G, Yi, J, Yushchenko, O, Zaitsev, A, Zalewska, A, Zalewski, P, Zavrtanik, D, Zevgolatakos, E, Zimin, NI, Zucchelli, GC, Zumerle, G, and Collaboration, DELPHI
- Subjects
PHYSICS ,MICROVERTEX DETECTOR ,DELPHI DETECTOR ,MASS TAG ,MULTIPLICITY ,PAIRS ,LEP - Published
- 1999
19. A precise measurement of the partial decay width ratio R-b(0) = Gamma(b(b)over-bar)/Gamma(had)
- Author
-
DELPHI Collaboration, Abreu P., Adam W., CANALE, VINCENZO, Delphi, Collaboration, Abreu, P., Adam, W., and Canale, Vincenzo
- Subjects
PHYSICS ,MASS TAG ,PAIRS ,MULTIPLICITY ,LEP ,MICROVERTEX DETECTOR ,DELPHI DETECTOR - Abstract
The partial decay width of the Z to b (b) over bar quark pairs has been measured by the DELPHI detector at LEP using data taken in the years 1992 to 1995. Decays of b-hadrons were tagged by several methods using tracks with large impact parameters and/or reconstructed secondary vertices; complemented by event shape variables. Combining these methods in a multivariate analysis the value Gamma(Z --> b (b) over bar)/Gamma(Z --> had) = 0.21634 +/- 0.00067(stat) +/- 0.00060(syst) was obtained, where the c (c) over bar production fraction was fixed to its Standard Model value.
- Published
- 1999
20. A Measurement of Rb using a Double Tagging Method
- Author
-
Abbiendi, G, Ackerstaff, K, Alexander, G, Allison, J, Altekamp, N, Anderson, KJ, Anderson, S, Arcelli, S, Asai, S, Ashby, SF, Axen, D, Cooke, OC, Herten, G, Lellouch, D, Schmitt, S, Letts, J, Rodning, N, Strohmer, R, Charlton, DG, Mannelli, M, Barberio, E, Sproston, M, Przybycien, M, Fanti, M, Nisius, R, Hansroul, M, Levinson, L, Baumann, S, Shears, TG, Roney, JM, Liebisch, R, Mes, H, Biebel, O, Seuster, R, Dubbert, J, Jeremie, H, List, B, Soldner-Rembold, S, Littlewood, C, Towers, S, De Jong, S, Mihara, S, Bethke, S, Futyan, DI, Perez-Ochoa, R, Howard, R, Lloyd, AW, Brown, RM, Stoll, K, Lloyd, SL, O'Neale, SW, Faust, AA, Klier, A, Loebinger, FK, Marcellini, S, Long, GD, Verzocchi, M, Estabrooks, PG, Ogren, HO, Rembser, C, Losty, MJ, Couyoumtzelis, C, von Torne, E, Ludwig, J, Petzold, S, Gagnon, P, Krieger, P, Shen, BC, Liu, D, Pilcher, JE, Roscoe, K, Bechtluft, J, Hill, JC, Bloodworth, IJ, Grunhaus, J, Rick, H, Lautenschlager, SR, Azuelos, G, Macchiolo, A, Burckhart, HJ, McPherson, RA, Chrisman, D, Honma, AK, Rossi, AM, Bonacorsi, D, Bell, KW, Coxe, RL, Neal, HA, Kartvelishvili, V, Clarke, PEL, Mashimo, T, Mattig, P, Kokott, TP, Desch, K, Montanari, A, Mori, T, Batley, JR, Palinkas, J, Siroli, GP, Bentvelsen, S, Kawamoto, T, McMahon, TJ, Rozen, Y, Bright-Thomas, P, Runge, K, Watkins, PM, Davis, R, Jones, CR, Schmitt, B, Gruwe, M, Voss, H, Lanske, D, Talbot, SD, Markopoulos, C, Runolfsson, O, Harder, K, Carnegie, RK, Watson, AT, Rust, DR, Skuja, A, Capiluppi, P, Komamiya, S, Nakamura, I, Sachs, K, Conboy, JE, Saeki, T, Eatough, D, Kobayashi, T, Sobie, R, Hemingway, RJ, Trocsanyi, Z, Miller, DJ, Sahr, O, Huntemeyer, P, Dado, S, Sang, WM, Tanaka, S, Lauber, J, Pater, JR, Betts, S, Sarkisyan, EKG, Fierro, M, Kuhl, T, Teuscher, R, Wackerle, F, Sbarra, C, Kayal, PI, Duckeck, G, Schaile, AD, Tsur, E, Poffenberger, P, Carter, AA, Schaile, O, Turner-Watson, MF, Watson, NK, Hargrove, CK, Menke, S, Hillier, SJ, Mader, W, Wagner, A, Gross, E, Scharf, F, Igo-Kemenes, P, Sherwood, P, Jovanovic, P, Michelini, A, Bobinski, M, Homer, RJ, Hauschild, M, Keeler, RK, Odorici, F, Karlen, D, Schwick, C, Scott, WG, Pfeifenschneider, P, Bartoldus, R, Steuerer, J, Bird, SD, Hapke, M, Thomson, MA, Hawkings, R, Oreglia, MJ, Shepherd-Themistocleous, CH, Wells, PS, Hossain, KR, Wermes, N, Gary, JW, Kluth, S, Nellen, B, Braibant, S, Fleck, I, Robertson, S, del Pozo, LA, Schoning, A, White, JS, Martin, JP, Jacob, FR, Gascon, J, Wilson, GW, Ciocca, C, Pinfold, J, Strom, D, Wilson, JA, Barlow, RJ, Wyatt, TR, von Krogh, J, Patt, J, Cohen, I, McKenna, J, Etzion, E, Yamashita, S, Mir, R, Kennedy, BW, Yekutieli, G, de Roeck, A, Robins, SA, Torrence, E, Herndon, M, Zacek, V, Lawson, I, Dixit, MS, Folman, R, Zer-Zion, D, Orito, S, Kress, T, Bock, P, Evans, HG, Vannerem, P, Jawahery, A, OPAL Collaboration, Gascon-Shotkin, SM, Martinez, G, Biguzzi, A, Merritt, FS, Schieck, J, Furtjes, A, Macpherson, A, Bohme, J, Mohr, W, Chang, CY, Snow, GA, Hobson, PR, Meyer, J, Behnke, T, Bellerive, A, Tarem, S, Oakham, FG, Burgard, C, Burgin, R, Turcot, AS, Cuffiani, M, Hildreth, MD, Martin, AJ, Duchovni, E, McDonald, WJ, Thiergen, M, Carter, JR, Gaycken, G, Mikenberg, G, Geich-Gimbel, C, Patrick, GN, Surrow, B, Horvath, D, Layter, JG, Ward, CP, Kobel, M, Brigliadori, L, Giacomelli, G, Schroder, M, Nagai, K, Giacomelli, P, Junk, TR, Van Kooten, R, Dallavalle, GM, Gibson, V, Hanson, GG, Gibson, WR, Polok, J, Trigger, I, Kawagoe, K, Kyberd, P, Gingrich, DM, Stahl, A, Pasztor, G, Glenzinski, D, Koetke, DS, Ward, DR, Duerdoth, IP, Mckigney, EA, Goldberg, J, Kolrep, M, Lazic, D, Gorn, W, Blobel, V, Plane, DE, Ball, AH, Lafferty, GD, Fiedler, F, Bella, G, Grandi, C, Schumacher, M, Heuer, RD, Sittler, A, Boutemeur, M, Lee, AM, Scharff-Hansen, P, Hocker, A, Stephens, K, Jimack, M, Clay, E, Smith, AM, Hartmann, C, Hawkes, CM, Dienes, B, Taras, P, Imrie, DC, Ishii, K, Fabbri, F, Kellogg, RG, Meijers, F, and Kowalewski, RV
- Subjects
Microvertex detector ,Particle physics ,Physics and Astronomy (miscellaneous) ,Gluons ,Hadron ,FOS: Physical sciences ,Value (computer science) ,Electron ,01 natural sciences ,High momentum ,Standard Model ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Quark fragmentation ,Heavy quarks ,0103 physical sciences ,010306 general physics ,Mass tag ,Engineering (miscellaneous) ,Physics ,Muon ,010308 nuclear & particles physics ,Hadronic Z(0) decays ,Meson production ,TAU-lifetime ,Multiplicity ,Simulated data ,High Energy Physics::Experiment - Abstract
The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model., 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal C
- Published
- 1998
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.