94 results on '"Maas SM"'
Search Results
2. SYNGAP1 encephalopathy A distinctive generalized developmental and epileptic encephalopathy
- Author
-
Vlaskamp, DRM, Shaw, BJ, Burgess, R, Mei, D, Montomoli, M, Xie, H, Myers, CT, Bennett, MF, XiangWei, W, Williams, D, Maas, SM, Brooks, AS, Mancini, GMS, van de Laar, IMBH, van Hagen, JM, Ware, TL, Webster, RI, Malone, S, Berkovic, SF, Kalnins, RM, Sicca, F, Korenke, GC, van Ravenswaaij-Arts, CMA, Hildebrand, MS, Mefford, HC, Jiang, Y, Guerrini, R, Scheffer, IE, Vlaskamp, DRM, Shaw, BJ, Burgess, R, Mei, D, Montomoli, M, Xie, H, Myers, CT, Bennett, MF, XiangWei, W, Williams, D, Maas, SM, Brooks, AS, Mancini, GMS, van de Laar, IMBH, van Hagen, JM, Ware, TL, Webster, RI, Malone, S, Berkovic, SF, Kalnins, RM, Sicca, F, Korenke, GC, van Ravenswaaij-Arts, CMA, Hildebrand, MS, Mefford, HC, Jiang, Y, Guerrini, R, and Scheffer, IE
- Abstract
OBJECTIVE: To delineate the epileptology, a key part of the SYNGAP1 phenotypic spectrum, in a large patient cohort. METHODS: Patients were recruited via investigators' practices or social media. We included patients with (likely) pathogenic SYNGAP1 variants or chromosome 6p21.32 microdeletions incorporating SYNGAP1. We analyzed patients' phenotypes using a standardized epilepsy questionnaire, medical records, EEG, MRI, and seizure videos. RESULTS: We included 57 patients (53% male, median age 8 years) with SYNGAP1 mutations (n = 53) or microdeletions (n = 4). Of the 57 patients, 56 had epilepsy: generalized in 55, with focal seizures in 7 and infantile spasms in 1. Median seizure onset age was 2 years. A novel type of drop attack was identified comprising eyelid myoclonia evolving to a myoclonic-atonic (n = 5) or atonic (n = 8) seizure. Seizure types included eyelid myoclonia with absences (65%), myoclonic seizures (34%), atypical (20%) and typical (18%) absences, and atonic seizures (14%), triggered by eating in 25%. Developmental delay preceded seizure onset in 54 of 56 (96%) patients for whom early developmental history was available. Developmental plateauing or regression occurred with seizures in 56 in the context of a developmental and epileptic encephalopathy (DEE). Fifty-five of 57 patients had intellectual disability, which was moderate to severe in 50. Other common features included behavioral problems (73%); high pain threshold (72%); eating problems, including oral aversion (68%); hypotonia (67%); sleeping problems (62%); autism spectrum disorder (54%); and ataxia or gait abnormalities (51%). CONCLUSIONS: SYNGAP1 mutations cause a generalized DEE with a distinctive syndrome combining epilepsy with eyelid myoclonia with absences and myoclonic-atonic seizures, as well as a predilection to seizures triggered by eating.
- Published
- 2019
3. Identification of Variants in RET and IHH Pathway Members in a Large Family With History of Hirschsprung Disease
- Author
-
Sribudiani, Yunia, Chauhan, Rajendra, Alves, Maria, Petrova, L, Brosens, Erwin, Harrison, C, Wabbersen, T, de Graaf, Bianca, Rugenbrink, Tim, Burzynski, G, Brouwer, Rutger, van Ijcken, Wilfred, Maas, SM, de Klein, Annelies, Osinga, J, Eggen, BJL, Burns, Alan, Brooks, Alice, Shepherd, IT, Hofstra, Robert, Sribudiani, Yunia, Chauhan, Rajendra, Alves, Maria, Petrova, L, Brosens, Erwin, Harrison, C, Wabbersen, T, de Graaf, Bianca, Rugenbrink, Tim, Burzynski, G, Brouwer, Rutger, van Ijcken, Wilfred, Maas, SM, de Klein, Annelies, Osinga, J, Eggen, BJL, Burns, Alan, Brooks, Alice, Shepherd, IT, and Hofstra, Robert
- Published
- 2018
4. Opposite effects on facial morphology due to gene dosage sensitivity
- Author
-
Hammond, P, Mckee, S, Suttie, M, Allanson, J, Cobben, Jm, Maas, Sm, Quarrell, O, Smith, Ac, Lewis, S, Tassabehji, M, Sisodiya, S, Mattina, Teresa, Hennekam, R., ANS - Amsterdam Neuroscience, Other Research, Human Genetics, Paediatric Genetics, and APH - Amsterdam Public Health
- Subjects
Adult ,Male ,Adolescent ,DNA Copy Number Variations ,Gene Dosage ,Black People ,Chromosome Disorders ,White People ,Imaging, Three-Dimensional ,Gene Duplication ,Genetics ,Humans ,Genetics(clinical) ,Child ,Original Investigation ,Sequence Deletion ,Chromosomes, Human, Pair 11 ,Phenotype ,Case-Control Studies ,Child, Preschool ,Face ,Female ,Chromosomes, Human, Pair 4 ,Chromosomes, Human, Pair 16 ,Chromosomes, Human, Pair 7 ,Chromosomes, Human, Pair 17 - Abstract
Sequencing technology is increasingly demonstrating the impact of genomic copy number variation (CNV) on phenotypes. Opposing variation in growth, head size, cognition and behaviour is known to result from deletions and reciprocal duplications of some genomic regions. We propose normative inversion of face shape, opposing difference from a matched norm, as a basis for investigating the effects of gene dosage on craniofacial development. We use dense surface modelling techniques to match any face (or part of a face) to a facial norm of unaffected individuals of matched age, sex and ethnicity and then we reverse the individual’s face shape differences from the matched norm to produce the normative inversion. We demonstrate for five genomic regions, 4p16.3, 7q11.23, 11p15, 16p13.3 and 17p11.2, that such inversion for individuals with a duplication or (epi)-mutation produces facial forms remarkably similar to those associated with a deletion or opposite (epi-)mutation of the same region, and vice versa. The ability to visualise and quantify face shape effects of gene dosage is of major benefit for determining whether a CNV is the cause of the phenotype of an individual and for predicting reciprocal consequences. It enables face shape to be used as a relatively simple and inexpensive functional analysis of the gene(s) involved. Electronic supplementary material The online version of this article (doi:10.1007/s00439-014-1455-z) contains supplementary material, which is available to authorized users.
- Published
- 2014
5. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes
- Author
-
Loviglio, M. N, Leleu, M., Männik, K., Passeggeri, M., Giannuzzi, G., van der Werf, I., Waszak, S. M., Zazhytska, M., Roberts Caldeira, I., Gheldof, N., Migliavacca, E., Alfaiz, A. A., Hippolyte, L., Maillard, A. M., van Dijck, A., Kooy, R. F., Sanlaville, D., Rosenfeld, J. A., Shaffer, L. G., Andrieux, J., Marshall, C., Scherer, S. W., Shen, Y., Gusella, J. F., Thorsteinsdottir, U., Thorleifsson, G., Dermitzakis, E. T., Deplancke, B., Beckmann, J. S., Rougemont, J., Jacquemont, S., Reymond, A., Collaborators: Loviglio MN, Männik, K, van der Werf, I, Giannuzzi, G, Zazhytska, M, Gheldof, N, Migliavacca, E, Alfaiz, Aa, Roberts Caldeira, I, Hippolyte, L, Maillard, Am, Ferrarini, A, Butschi, Fn, Conrad, B, Addor, Mc, Belfiore, M, Roetzer, K, Dijck, Av, Blaumeiser, B, Kooy, F, Roelens, F, Dheedene, A, Chiaie, Bd, Menten, B, Oostra, A, Caberg, Jh, Carter, M, Kellam, B, Stavropoulos, Dj, Marshall, C, Scherer, Sw, Weksberg, R, Cytrynbaum, C, Bassett, A, Lowther, C, Gillis, J, Mackay, S, Bache, I, Ousager, Lb, Smerdel, Mp, Graakjaer, J, Kjaergaard, S, Metspalu, A, Mathieu, M, Bonneau, D, Guichet, A, Parent, P, Férec, C, Gerard, M, Plessis, G, Lespinasse, J, Masurel, A, Marle, N, Faivre, L, Callier, P, Layet, V, Meur, Nl, Le Goff, C, Duban Bedu, B, Sukno, S, Boute, O, Andrieux, J, Blanchet, P, Geneviève, D, Puechberty, J, Schneider, A, Leheup, B, Jonveaux, P, Mercier, S, David, A, Le Caignec, C, de Pontual, L, Pipiras, E, Jacquette, A, Keren, B, Gilbert Dussardier, B, Bilan, F, Goldenberg, A, Chambon, P, Toutain, A, Till, M, Sanlaville, D, Leube, B, Royer Pokora, B, Grabe, Hj, Schmidt, Co, Schurmann, C, Homuth, G, Thorleifsson, G, Thorsteinsdottir, U, Bernardini, L, Novelli, A, Micale, L, Merla, G, Zollino, M, Mari, Francesca, Rizzo, Cl, Renieri, Alessandra, Silengo, M, Vulto van Silfhout AT, Schouten, M, Pfundt, R, de Leeuw, N, Vansenne, F, Maas, Sm, Barge Schaapveld DQ, Knegt, Ac, Stadheim, B, Rodningen, O, Houge, G, Price, S, Hawkes, L, Campbell, C, Kini, U, Vogt, J, Walters, R, Blakemore, A, Gusella, Jf, Shen, Y, Scott, D, Bacino, Ca, Tsuchiya, K, Ladda, R, Sell, S, Asamoah, A, Hamati, Ai, Rosenfeld, Ja, Shaffer, Lg, Mitchell, E, Hodge, Jc, Beckmann, Js, Jacquemont, S, Reymond, A, Ewans, Lj, Mowat, D, Walker, J, Amor, Dj, Esch, Hv, Leroy, P, Bamforth, Js, Babu, D, Isidor, B, Didonato, N, Hackmann, K, Passeggeri, M, Haeringen, Av, Smith, R, Ellingwood, S, Farber, Dm, Puri, V, Zadeh, N, Weaver, Dd, Miller, M, Wilks, T, Jorgez, Cj, Lafayette, D, Blaumeiser, Bettina, 2p15 Consortium, 16p11.2 Consortium, Loviglio, M.N., Männik, K., van der Werf, I., Giannuzzi, G., Zazhytska, M., Gheldof, N., Migliavacca, E., Alfaiz, A.A., Roberts-Caldeira, I., Hippolyte, L., Maillard, A.M., Ferrarini, A., Butschi, F.N., Conrad, B., Addor, M.C., Belfiore, M., Roetzer, K., Dijck, A.V., Blaumeiser, B., Kooy, F., Roelens, F., Dheedene, A., Chiaie, B.D., Menten, B., Oostra, A., Caberg, J.H., Carter, M., Kellam, B., Stavropoulos, D.J., Marshall, C., Scherer, S.W., Weksberg, R., Cytrynbaum, C., Bassett, A., Lowther, C., Gillis, J., MacKay, S., Bache, I., Ousager, L.B., Smerdel, M.P., Graakjaer, J., Kjaergaard, S., Metspalu, A., Mathieu, M., Bonneau, D., Guichet, A., Parent, P., Férec, C., Gerard, M., Plessis, G., Lespinasse, J., Masurel, A., Marle, N., Faivre, L., Callier, P., Layet, V., Meur, N.L., Le Goff, C., Duban-Bedu, B., Sukno, S., Boute, O., Andrieux, J., Blanchet, P., Geneviève, D., Puechberty, J., Schneider, A., Leheup, B., Jonveaux, P., Mercier, S., David, A., Le Caignec, C., de Pontual, L., Pipiras, E., Jacquette, A., Keren, B., Gilbert-Dussardier, B., Bilan, F., Goldenberg, A., Chambon, P., Toutain, A., Till, M., Sanlaville, D., Leube, B., Royer-Pokora, B., Grabe, H.J., Schmidt, C.O., Schurmann, C., Homuth, G., Thorleifsson, G., Thorsteinsdottir, U., Bernardini, L., Novelli, A., Micale, L., Merla, G., Zollino, M., Mari, F., Rizzo, C.L., Renieri, A., Silengo, M., Vulto-van Silfhout, A.T., Schouten, M., Pfundt, R., de Leeuw, N., Vansenne, F., Maas, S.M., Barge-Schaapveld, D.Q., Knegt, A.C., Stadheim, B., Rodningen, O., Houge, G., Price, S., Hawkes, L., Campbell, C., Kini, U., Vogt, J., Walters, R., Blakemore, A., Gusella, J.F., Shen, Y., Scott, D., Bacino, C.A., Tsuchiya, K., Ladda, R., Sell, S., Asamoah, A., Hamati, A.I., Rosenfeld, J.A., Shaffer, L.G., Mitchell, E., Hodge, J.C., Beckmann, J.S., Jacquemont, S., Reymond, A., Ewans, L.J., Mowat, D., Walker, J., Amor, D.J., Esch, H.V., Leroy, P., Bamforth, J.S., Babu, D., Isidor, B., DiDonato, N., Hackmann, K., Passeggeri, M., Haeringen, A.V., Smith, R., Ellingwood, S., Farber, D.M., Puri, V., Zadeh, N., Weaver, D.D., Miller, M., Wilks, T., Jorgez, C.J., Lafayette, D., Other departments, and Human Genetics
- Subjects
0301 basic medicine ,Male ,Microcephaly ,Autism Spectrum Disorder ,Obesity/genetics ,Settore MED/03 - GENETICA MEDICA ,Body Mass Index ,Microcephaly/genetics ,Gene duplication ,Chromosome Duplication ,ddc:576.5 ,Copy-number variation ,Child ,In Situ Hybridization ,In Situ Hybridization, Fluorescence ,Genetics ,medicine.diagnostic_test ,Chromosome Mapping ,Middle Aged ,Phenotype ,Chromatin ,Chemistry ,Psychiatry and Mental Health ,Child, Preschool ,Female ,Original Article ,Chromosomes, Human, Pair 16/genetics ,Megalencephaly/genetics ,Chromosome Deletion ,Autistic Disorder/genetics ,Molecular Biology ,Cellular and Molecular Neuroscience ,Human ,Rare cancers Radboud Institute for Health Sciences [Radboudumc 9] ,Adult ,Adolescent ,DNA Copy Number Variations ,Locus (genetics) ,DNA Copy Number Variations/genetics ,Biology ,Aged ,Autistic Disorder ,Chromosomes, Human, Pair 16 ,Humans ,Infant ,Intellectual Disability ,Megalencephaly ,Obesity ,Chromosomes ,Fluorescence ,Chromatin/metabolism ,03 medical and health sciences ,medicine ,Preschool ,Gene ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,Pair 16 ,medicine.disease ,Intellectual Disability/genetics ,Autism Spectrum Disorder/genetics ,030104 developmental biology ,Human medicine ,Chromosome Mapping/methods ,Fluorescence in situ hybridization - Abstract
Contains fulltext : 174530.pdf (Publisher’s version ) (Open Access) Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts' maps could uncover functionally and clinically related genes.
- Published
- 2015
6. RET and GDNF gene scanning in Hirschprung patients using two dual denaturing gel systems
- Author
-
Hofstra, RMW, Wu, Y, Stulp, RP, Elfferich, P, Osinga, J, Maas, SM, Siderius, L, Brooks, AS, Von der Ende, JJ, Heydendael, VMR, Severijnen, RSVM, Bax, KMA, Meijers, C, and Buys, CHCM
- Subjects
mutation detection ,MEDULLARY-THYROID CARCINOMA ,TRANSFORMING GENE ,WAARDENBURG-HIRSCHSPRUNG-DISEASE ,GERMLINE MUTATIONS ,Hirschsprung ,PROTOONCOGENE ,GDNF ,TYROSINE KINASE DOMAIN ,MISSENSE MUTATION ,MULTIPLE ENDOCRINE NEOPLASIA ,2-DIMENSIONAL DNA ELECTROPHORESIS ,CDGE ,DGGE ,RET ,ENDOTHELIN-3 GENE - Abstract
Hirschsprung disease (HSCR) is a congenital disorder characterised by intestinal obstruction due to an absence of intramural ganglia along variable lengths of the intestine. RET is the major gene involved in HSCR. Mutations in the GDNF gene, and encoding one of the RET ligands, either alone or in combination with RET mutations, can also cause HSCR, as can mutations in four other genes (EDN3, EDNRB, ECE1, and SOX10). The rare mutations in the latter four genes, however, are more or less restricted to HSCR associated with specific phenotypes. We have developed a novel comprehensive mutation detection system to analyse all but three amplicons of the RET and GDNF genes, based on denaturing gradient gel electrophoresis. We make use of two urea-formamide gradients on top of each other, allowing mutation detection over a broad range of melting temperatures. For the three remaining (GC-rich) PCR fragments we use a combination of DGGE and constant denaturing gel electrophoresis (CDGE). These two dual gel systems substantially facilitate mutation scanning of RET and GDNF and may also serve as a model to develop mutation detection systems for other disease genes. In a screening of 95 HSCR patients, RET mutations were found in nine out of 17 familial cases (53%), all containing long segment HSCR. In 11 of 78 sporadic cases (14%), none had long segment HSCR. Only one GDNF mutation was found, in a sporadic case. Hum Mutat 15:418-429, 2000. (C) 2000 Wiley-Liss, Inc.
- Published
- 2000
7. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study
- Author
-
Doornbos, ME, Maas, SM, McDonnell, J, Vermeiden, JPW, Hennekam, RCM, Doornbos, ME, Maas, SM, McDonnell, J, Vermeiden, JPW, and Hennekam, RCM
- Abstract
BACKGROUND: Evaluation of relationships between assisted reproduction technologies (ART), fertility problems and disorders caused by disturbed genetic imprinting such as Angelman syndrome (AS) and Beckwith–Wiedemann syndrome (BWS). METHODS: A nation-wide questionnaire survey was performed regarding ART in families with a child with AS, BWS or Prader–Willi syndrome (PWS) including questions on fertility. Molecular data on the genetic disorder in affected children were gathered. RESULTS: Of the 220 affected children in this study, 14 (6.4%) were born following any form of ART compared with 83 818 (2.1%) in the Dutch population. Of AS, PWS or BWS children 15 (6.8%) were born after a fertility problem (Time To Pregnancy > 12 months, no forms of ART) compared to 141,340 (3.5%) in the Dutch population. Maternal age in the individual syndromes was higher than in the Dutch population. Families with affected children were three times more likely to experience fertility problems than the general population. All three syndromes were also individually associated with increased fertility problems in the families. CONCULSIONS: After correction for the increased fertility problems of the parents, there is no increased incidence of ART related birth of AS, PWS or BWS children. ART does not seem to have a direct effect on the increase of imprinted diseases.
- Published
- 2007
8. GNB1 and obesity: Evidence for a correlation between haploinsufficiency and syndromic obesity.
- Author
-
Kleinendorst L, Abawi O, Vos N, van der Valk ES, Maas SM, Morgan AT, Hildebrand MS, Da Silva JD, Florijn RJ, Lauffer P, Visser JA, van Rossum EFC, van den Akker ELT, and van Haelst MM
- Subjects
- Humans, Male, Female, Child, Intellectual Disability genetics, Child, Preschool, Phenotype, Adolescent, Hyperphagia genetics, Adult, Haploinsufficiency, GTP-Binding Protein beta Subunits genetics, Obesity genetics
- Abstract
Most patients with GNB1 encephalopathy have developmental delay and/or intellectual disability, brain anomalies and seizures. Recently, two cases with GNB1 encephalopathy caused by haploinsufficiency have been reported that also show a Prader-Willi-like phenotype of childhood hypotonia and severe obesity. Here we present three new cases from our expert centre for genetic obesity in which GNB1 truncating and splice variants, probably leading to haploinsufficiency, were identified. They all have obesity, hyperphagia and intellectual deficit. The clinical cases and their weight courses are presented, together with a review of all 68 published cases with GNB1 encephalopathy. Information on weight was not mentioned in most of these articles, so we contacted authors for additional clinical information on weight status and hyperphagia. Of the 42 patients whose weight status we could determine, obesity was present in 8 patients (19%). Obesity is significantly over-represented in the group with truncating and splicing variants. In this group, we see an obesity prevalence of 75%. Since GNB1 has been linked to several key genes in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure, our data support the potential association between GNB1 haploinsufficiency and genetic obesity. We also suggest GNB1 is a candidate gene for the known obesity phenotype of the 1p36 microdeletion syndrome given this chromosomal region includes the GNB1 gene. Knowledge of an additional obesity phenotype is important for prognosis, early interventions against obesity and awareness when prescribing weight-inducing medication., (© 2024 The Authors. Clinical Obesity published by John Wiley & Sons Ltd on behalf of World Obesity Federation.)
- Published
- 2024
- Full Text
- View/download PDF
9. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis.
- Author
-
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, and Tümer Z
- Subjects
- Humans, Genetic Testing methods, Genomic Imprinting genetics, DNA Methylation genetics
- Abstract
Background: Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need., Methods: A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations., Results: In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID., Conclusions: MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
10. Recessively Inherited Deficiency of Secreted WFDC2 (HE4) Causes Nasal Polyposis and Bronchiectasis.
- Author
-
Dougherty GW, Ostrowski LE, Nöthe-Menchen T, Raidt J, Schramm A, Olbrich H, Yin W, Sears PR, Dang H, Smith AJ, Beule AG, Hjeij R, Rutjes N, Haarman EG, Maas SM, Ferkol TW, Noone PG, Olivier KN, Bracht DC, Barbry P, Zaragosi LE, Fierville M, Kliesch S, Wohlgemuth K, König J, George S, Loges NT, Ceppe A, Markovetz MR, Luo H, Guo T, Rizk H, Eldesoky T, Dahlke K, Boldt K, Ueffing M, Hill DB, Pang YP, Knowles MR, Zariwala MA, and Omran H
- Subjects
- Adolescent, Adult, Child, Female, Humans, Male, Middle Aged, Young Adult, WAP Four-Disulfide Core Domain Protein 2, Bronchiectasis genetics, Bronchiectasis physiopathology, Nasal Polyps genetics
- Abstract
Rationale: Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia, and primary immunodeficiency disorders), but most cases remain idiopathic. Objectives: To identify novel genetic defects in unsolved cases of bronchiectasis presenting with severe rhinosinusitis, nasal polyposis, and pulmonary Pseudomonas aeruginosa infection. Methods: DNA was analyzed by next-generation or targeted Sanger sequencing. RNA was analyzed by quantitative PCR and single-cell RNA sequencing. Patient-derived cells, cell cultures, and secretions (mucus, saliva, seminal fluid) were analyzed by Western blotting and immunofluorescence microscopy, and mucociliary activity was measured. Blood serum was analyzed by electrochemiluminescence immunoassay. Protein structure and proteomic analyses were used to assess the impact of a disease-causing founder variant. Measurements and Main Results: We identified biallelic pathogenic variants in WAP four-disulfide core domain 2 ( WFDC2 ) in 11 individuals from 10 unrelated families originating from the United States, Europe, Asia, and Africa. Expression of WFDC2 was detected predominantly in secretory cells of control airway epithelium and also in submucosal glands. We demonstrate that WFDC2 is below the limit of detection in blood serum and hardly detectable in samples of saliva, seminal fluid, and airway surface liquid from WFDC2 -deficient individuals. Computer simulations and deglycosylation assays indicate that the disease-causing founder variant p.Cys49Arg structurally hampers glycosylation and, thus, secretion of mature WFDC2. Conclusions: WFDC2 dysfunction defines a novel molecular etiology of bronchiectasis characterized by the deficiency of a secreted component of the airways. A commercially available blood test combined with genetic testing allows its diagnosis.
- Published
- 2024
- Full Text
- View/download PDF
11. Genetic mutations and phenotype characteristics in peripheral vascular malformations: A systematic review.
- Author
-
Stor MLE, Horbach SER, Lokhorst MM, Tan E, Maas SM, van Noesel CJM, and van der Horst CMAM
- Subjects
- Humans, Mutation, Phenotype, Vascular Malformations genetics, Vascular Malformations pathology
- Abstract
Vascular malformations (VMs) are clinically diverse with regard to the vessel type, anatomical location, tissue involvement and size. Consequently, symptoms and disease impact differ significantly. Diverse causative mutations in more and more genes are discovered and play a major role in the development of VMs. However, the relationship between the underlying causative mutations and the highly variable phenotype of VMs is not yet fully understood. In this systematic review, we aimed to provide an overview of known causative mutations in genes in VMs and discuss associations between the causative mutations and clinical phenotypes. PubMed and EMBASE libraries were systematically searched on November 9th, 2022 for randomized controlled trials and observational studies reporting causative mutations in at least five patients with peripheral venous, lymphatic, arteriovenous and combined malformations. Study quality was assessed with the Newcastle-Ottawa Scale. Data were extracted on patient and VM characteristics, molecular sequencing method and results of molecular analysis. In total, 5667 articles were found of which 69 studies were included, reporting molecular analysis in a total of 4261 patients and 1686 (40%) patients with peripheral VMs a causative mutation was detected. In conclusion, this systematic review provides a comprehensive overview of causative germline and somatic mutations in various genes and associated phenotypes in peripheral VMs. With these findings, we attempt to better understand how the underlying causative mutations in various genes contribute to the highly variable clinical characteristics of VMs. Our study shows that some causative mutations lead to a uniform phenotype, while other causal variants lead to more varying phenotypes. By contrast, distinct causative mutations may lead to similar phenotypes and result in almost indistinguishable VMs. VMs are currently classified based on clinical and histopathology features, however, the findings of this systematic review suggest a larger role for genotype in current diagnostics and classification., (© 2023 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.)
- Published
- 2024
- Full Text
- View/download PDF
12. The detection of a strong episignature for Chung-Jansen syndrome, partially overlapping with Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
- Author
-
Vos N, Haghshenas S, van der Laan L, Russel PKM, Rooney K, Levy MA, Relator R, Kerkhof J, McConkey H, Maas SM, Vissers LELM, de Vries BBA, Pfundt R, Elting MW, van Hagen JM, Verbeek NE, Jongmans MCJ, Lakeman P, Rumping L, Bosch DGM, Vitobello A, Thauvin-Robinet C, Faivre L, Nambot S, Garde A, Willems M, Genevieve D, Nicolas G, Busa T, Toutain A, Gérard M, Bizaoui V, Isidor B, Merla G, Accadia M, Schwartz CE, Ounap K, Hoffer MJV, Nezarati MM, van den Boogaard MH, Tedder ML, Rogers C, Brusco A, Ferrero GB, Spodenkiewicz M, Sidlow R, Mussa A, Trajkova S, McCann E, Mroczkowski HJ, Jansen S, Donker-Kaat L, Duijkers FAM, Stuurman KE, Mannens MMAM, Alders M, Henneman P, White SM, Sadikovic B, and van Haelst MM
- Subjects
- Humans, Male, Female, Haploinsufficiency genetics, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders diagnosis, Child, DNA Methylation, Intellectual Disability genetics, Intellectual Disability diagnosis
- Abstract
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
13. Evaluation of 100 Dutch cases with 16p11.2 deletion and duplication syndromes; from clinical manifestations towards personalized treatment options.
- Author
-
Vos N, Kleinendorst L, van der Laan L, van Uhm J, Jansen PR, van Eeghen AM, Maas SM, Mannens MMAM, and van Haelst MM
- Abstract
The 16p11.2 deletion syndrome is a clinically heterogeneous disorder, characterized by developmental delay, intellectual disability, hyperphagia, obesity, macrocephaly and psychiatric problems. Cases with 16p11.2 duplication syndrome have similar neurodevelopmental problems, but typically show a partial 'mirror phenotype' with underweight and microcephaly. Various copy number variants (CNVs) of the chromosomal 16p11.2 region have been described. Most is known about the 'typical' 16p11.2 BP4-BP5 (29.6-30.2 Mb; ~600 kb) deletions and duplications, but there are also several published cohorts with more distal 16p11.2 BP2-BP3 CNVs (28.8-29.0 Mb; ~220 kb), who exhibit clinical overlap. We assessed 100 cases with various pathogenic 16p11.2 CNVs and compared their clinical characteristics to provide more clear genotype-phenotype correlations and raise awareness of the different 16p11.2 CNVs. Neurodevelopmental and weight issues were reported in the majority of cases. Cases with distal 16p11.2 BP2-BP3 deletion showed the most severe obesity phenotype (73.7% obesity, mean BMI SDS 3.2). In addition to the more well defined typical 16p11.2 BP4-BP5 and distal 16p11.2 BP2-BP3 CNVs, we describe the clinical features of five cases with other, overlapping, 16p11.2 CNVs in more detail. Interestingly, four cases had a second genetic diagnosis and 18 cases an additional gene variant of uncertain significance, that could potentially help explain the cases' phenotypes. In conclusion, we provide an overview of our Dutch cohort of cases with various pathogenic 16p11.2 CNVs and relevant second genetic findings, that can aid in adequately recognizing, diagnosing and counseling of individuals with 16p11.2 CNVs, and describe the personalized medicine for cases with these conditions., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
14. Spliceosome malfunction causes neurodevelopmental disorders with overlapping features.
- Author
-
Li D, Wang Q, Bayat A, Battig MR, Zhou Y, Bosch DG, van Haaften G, Granger L, Petersen AK, Pérez-Jurado LA, Aznar-Laín G, Aneja A, Hancarova M, Bendova S, Schwarz M, Kremlikova Pourova R, Sedlacek Z, Keena BA, March ME, Hou C, O'Connor N, Bhoj EJ, Harr MH, Lemire G, Boycott KM, Towne M, Li M, Tarnopolsky M, Brady L, Parker MJ, Faghfoury H, Parsley LK, Agolini E, Dentici ML, Novelli A, Wright M, Palmquist R, Lai K, Scala M, Striano P, Iacomino M, Zara F, Cooper A, Maarup TJ, Byler M, Lebel RR, Balci TB, Louie R, Lyons M, Douglas J, Nowak C, Afenjar A, Hoyer J, Keren B, Maas SM, Motazacker MM, Martinez-Agosto JA, Rabani AM, McCormick EM, Falk MJ, Ruggiero SM, Helbig I, Møller RS, Tessarollo L, Tomassoni Ardori F, Palko ME, Hsieh TC, Krawitz PM, Ganapathi M, Gelb BD, Jobanputra V, Wilson A, Greally J, Jacquemont S, Jizi K, Bruel AL, Quelin C, Misra VK, Chick E, Romano C, Greco D, Arena A, Morleo M, Nigro V, Seyama R, Uchiyama Y, Matsumoto N, Taira R, Tashiro K, Sakai Y, Yigit G, Wollnik B, Wagner M, Kutsche B, Hurst AC, Thompson ML, Schmidt R, Randolph L, Spillmann RC, Shashi V, Higginbotham EJ, Cordeiro D, Carnevale A, Costain G, Khan T, Funalot B, Tran Mau-Them F, Fernandez Garcia Moya L, García-Miñaúr S, Osmond M, Chad L, Quercia N, Carrasco D, Li C, Sanchez-Valle A, Kelley M, Nizon M, Jensson BO, Sulem P, Stefansson K, Gorokhova S, Busa T, Rio M, Hadj Habdallah H, Lesieur-Sebellin M, Amiel J, Pingault V, Mercier S, Vincent M, Philippe C, Fatus-Fauconnier C, Friend K, Halligan RK, Biswas S, Rosser J, Shoubridge C, Corbett M, Barnett C, Gecz J, Leppig K, Slavotinek A, Marcelis C, Pfundt R, de Vries BB, van Slegtenhorst MA, Brooks AS, Cogne B, Rambaud T, Tümer Z, Zackai EH, Akizu N, Song Y, and Hakonarson H
- Subjects
- Humans, Gene Regulatory Networks, Mutation, Missense, RNA Splicing, RNA Splicing Factors genetics, Nuclear Proteins genetics, DNA Repair Enzymes genetics, Spliceosomes genetics, Neurodevelopmental Disorders genetics
- Abstract
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.
- Published
- 2024
- Full Text
- View/download PDF
15. Evaluating International Diagnostic, Screening, and Monitoring Practices for Craniofacial Microsomia and Microtia: A Survey Study.
- Author
-
Ronde EM, Nolte JW, Kruisinga FH, Maas SM, Lapid O, Ebbens FA, Becking AG, and Breugem CC
- Subjects
- Humans, Cross-Sectional Studies, Mandible, Surveys and Questionnaires, Goldenhar Syndrome psychology, Congenital Microtia diagnosis
- Abstract
To (1) appraise current international classification and clinical management strategies for craniofacial microsomia (CFM) and microtia, and (2) to assess agreement with the European Reference Network "European Guideline Craniofacial Microsomia" recommendations on screening and monitoring., This was a cross-sectional online survey study. The survey consisted of 44 questions on demographics, diagnostics and classification, obstructive sleep apnea, feeding difficulties, speech and language development, hearing, ocular abnormalities, visual development, orthodontic screening, genetic counselling, psychological wellbeing, and extracraniofacial anomalies., Respondents were participants of 3 international cleft and craniofacial conferences, members of the American Cleft Palate and Craniofacial Association and members of the International Society for Auricular Reconstruction. Respondents were requested to complete 1 questionnaire per multidisciplinary team., Fifty-seven responses were received from 30 countries (response rate ∼3%).The International Consortium for Health Outcomes Measurement diagnostic criteria were used by 86% of respondents, though 65% considered isolated microtia a mild form of CFM. The Orbit, Mandible, Ear, Facial Nerve and Soft Tissue classification system was used by 74% of respondents. Agreement with standardized screening and monitoring recommendations was between 61% and 97%. A majority of respondents agreed with screening for extracraniofacial anomalies (63%-68%) and with genetic counselling (81%)., This survey did not reveal consistent agreement on the diagnostic criteria for CFM. Respondents mostly supported management recommendations, but frequently disagreed with the standardization of care. Future studies could focus on working towards international consensus on diagnostic criteria, and exploring internationally feasible management strategies.
- Published
- 2023
- Full Text
- View/download PDF
16. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome.
- Author
-
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, and Kim HG
- Subjects
- Humans, Carrier Proteins genetics, Comparative Genomic Hybridization, DNA Copy Number Variations, Membrane Proteins genetics, Tetraspanins genetics, Translocation, Genetic, Intellectual Disability genetics, Kallmann Syndrome genetics
- Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
17. Diagnostic Gene Panel Testing in (Non)-Syndromic Patients with Cleft Lip, Alveolus and/or Palate in the Netherlands.
- Author
-
Wurfbain LF, Cox IL, van Dooren MF, Lachmeijer AMA, Verhoeven VJM, van Hagen JM, Heijligers M, Klein Wassink-Ruiter JS, Koene S, Maas SM, Veenstra-Knol HE, Ploos van Amstel JK, Massink MPG, Mink van der Molen AB, and van den Boogaard MH
- Abstract
Objectives: Clefts of the lip, alveolus and/or palate (CLA/P) are the most common craniofacial congenital malformations in humans. These oral clefts can be divided into non-syndromic (isolated) and syndromic forms. Many cleft-related syndromes are clinically variable and genetically heterogeneous, making it challenging to distinguish syndromic from non-syndromic cases. Recognition of syndromic/genetic causes is important for personalized tailored care, identification of (unrecognized) comorbidities, and accurate genetic counseling. Therefore, next generation sequencing (NGS)-based targeted gene panel testing is increasingly implemented in diagnostics of CLA/P patients. In this retrospective study, we assess the yield of NGS gene panel testing in a cohort of CLA/P cases., Methods: Whole exome sequencing (WES) followed by variant detection and interpretation in an a priori selected set of genes associated with CLA/P phenotypes was performed in 212 unrelated CLA/P patients after genetic counseling between 2015 and 2020. Medical records including family history and results of additional genetic tests were evaluated., Results: In 24 CLA/P cases (11.3%), a pathogenic genetic variant was identified. Twenty out of these 24 had a genetic syndrome requiring specific monitoring and follow-up. Six of these 24 cases (25%) were presumed to be isolated CLA/P cases prior to testing, corresponding to 2.8% of the total cohort. In eight CLA/P cases (3.8%) without a diagnosis after NGS-based gene panel testing, a molecular diagnosis was established by additional genetic analyses (e.g., SNP array, single gene testing, trio WES)., Conclusion: This study illustrates NGS-based gene panel testing is a powerful diagnostic tool in the diagnostic workup of CLA/P patients. Also, in apparently isolated cases and non-familial cases, a genetic diagnosis can be identified. Early diagnosis facilitates personalized care for patients and accurate genetic counseling of their families., Competing Interests: The authors have no conflicts of interest to declare., (© 2023 The Author(s). Published by S. Karger AG, Basel.)
- Published
- 2023
- Full Text
- View/download PDF
18. Should testing for mosaic genome-wide paternal uniparental disomy in Beckwith-Wiedemann spectrum (BWSp) be implemented in diagnostic testing?
- Author
-
Maas SM, Krzyzewska IM, Lombardi MPR, Mannens MMA, Vos N, and Bliek J
- Subjects
- Humans, Genomic Imprinting, DNA Methylation, Diagnostic Techniques and Procedures, Mosaicism, Uniparental Disomy diagnosis, Uniparental Disomy genetics, Beckwith-Wiedemann Syndrome diagnosis, Beckwith-Wiedemann Syndrome genetics
- Published
- 2023
- Full Text
- View/download PDF
19. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome.
- Author
-
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, and Kim HG
- Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
- Published
- 2023
- Full Text
- View/download PDF
20. The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8.
- Author
-
Dingemans AJM, Truijen KMG, van de Ven S, Bernier R, Bongers EMHF, Bouman A, de Graaff-Herder L, Eichler EE, Gerkes EH, De Geus CM, van Hagen JM, Jansen PR, Kerkhof J, Kievit AJA, Kleefstra T, Maas SM, de Man SA, McConkey H, Patterson WG, Dobson AT, Prijoles EJ, Sadikovic B, Relator R, Stevenson RE, Stumpel CTRM, Heijligers M, Stuurman KE, Löhner K, Zeidler S, Lee JA, Lindy A, Zou F, Tedder ML, Vissers LELM, and de Vries BBA
- Subjects
- DNA-Binding Proteins genetics, Female, Genetic Association Studies, Humans, Male, Phenotype, Transcription Factors genetics, Autism Spectrum Disorder genetics, Autistic Disorder genetics, Intellectual Disability genetics, Megalencephaly genetics
- Abstract
CHD8, a major autism gene, functions in chromatin remodelling and has various roles involving several biological pathways. Therefore, unsurprisingly, previous studies have shown that intellectual developmental disorder with autism and macrocephaly (IDDAM), the syndrome caused by pathogenic variants in CHD8, consists of a broad range of phenotypic abnormalities. We collected and reviewed 106 individuals with IDDAM, including 36 individuals not previously published, thus enabling thorough genotype-phenotype analyses, involving the CHD8 mutation spectrum, characterization of the CHD8 DNA methylation episignature, and the systematic analysis of phenotypes collected in Human Phenotype Ontology (HPO). We identified 29 unique nonsense, 25 frameshift, 24 missense, and 12 splice site variants. Furthermore, two unique inframe deletions, one larger deletion (exons 26-28), and one translocation were observed. Methylation analysis was performed for 13 patients, 11 of which showed the previously established episignature for IDDAM (85%) associated with CHD8 haploinsufficiency, one analysis was inconclusive, and one showing a possible gain-of-function signature instead of the expected haploinsufficiency signature was observed. Consistent with previous studies, phenotypical abnormalities affected multiple organ systems. Many neurological abnormalities, like intellectual disability (68%) and hypotonia (29%) were observed, as well as a wide variety of behavioural abnormalities (88%). Most frequently observed behavioural problems included autism spectrum disorder (76%), short attention span (32%), abnormal social behaviour (31%), sleep disturbance (29%) and impaired social interactions (28%). Furthermore, abnormalities in the digestive (53%), musculoskeletal (79%) and genitourinary systems (18%) were noted. Although no significant difference in severity was observed between males and females, individuals with a missense variant were less severely affected. Our study provides an extensive review of all phenotypic abnormalities in patients with IDDAM and provides clinical recommendations, which will be of significant value to individuals with a pathogenic variant in CHD8, their families, and clinicians as it gives a more refined insight into the clinical and molecular spectrum of IDDAM, which is essential for accurate care and counselling., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
21. DNA Methylation Signature for JARID2 -Neurodevelopmental Syndrome.
- Author
-
Verberne EA, van der Laan L, Haghshenas S, Rooney K, Levy MA, Alders M, Maas SM, Jansen S, Lieden A, Anderlid BM, Rafael-Croes L, Campeau PM, Chaudhry A, Koolen DA, Pfundt R, Hurst ACE, Tran-Mau-Them F, Bruel AL, Lambert L, Isidor B, Mannens MMAM, Sadikovic B, Henneman P, and van Haelst MM
- Subjects
- Humans, Nucleotide Motifs, Phenotype, Protein Processing, Post-Translational, Syndrome, DNA Methylation, Polycomb Repressive Complex 2 genetics
- Abstract
JARID2 (Jumonji, AT Rich Interactive Domain 2) pathogenic variants cause a neurodevelopmental syndrome, that is characterized by developmental delay, cognitive impairment, hypotonia, autistic features, behavior abnormalities and dysmorphic facial features. JARID2 encodes a transcriptional repressor protein that regulates the activity of various histone methyltransferase complexes. However, the molecular etiology is not fully understood, and JARID2 -neurodevelopmental syndrome may vary in its typical clinical phenotype. In addition, the detection of variants of uncertain significance (VUSs) often results in a delay of final diagnosis which could hamper the appropriate care. In this study we aim to detect a specific and sensitive DNA methylation signature for JARID2 -neurodevelopmental syndrome. Peripheral blood DNA methylation profiles from 56 control subjects, 8 patients with (likely) pathogenic JARID2 variants and 3 patients with JARID2 VUSs were analyzed. DNA methylation analysis indicated a clear and robust separation between patients with (likely) pathogenic variants and controls. A binary model capable of classifying patients with the JARID2 -neurodevelopmental syndrome was constructed on the basis of the identified episignature. Patients carrying VUSs clustered with the control group. We identified a distinct DNA methylation signature associated with JARID2 -neurodevelopmental syndrome, establishing its utility as a biomarker for this syndrome and expanding the EpiSign diagnostic test.
- Published
- 2022
- Full Text
- View/download PDF
22. Hematopoietic stem cell transplantation in a patient with proteasome-associated autoinflammatory syndrome (PRAAS).
- Author
-
Verhoeven D, Schonenberg-Meinema D, Ebstein F, Papendorf JJ, Baars PA, van Leeuwen EMM, Jansen MH, Lankester AC, van der Burg M, Florquin S, Maas SM, van Koningsbruggen S, Krüger E, van den Berg JM, and Kuijpers TW
- Subjects
- Child, Humans, Male, Proteasome Endopeptidase Complex genetics, Retrospective Studies, Syndrome, Hematopoietic Stem Cell Transplantation, Lipodystrophy genetics
- Abstract
Background: Proteasome-associated autoinflammatory syndromes (PRAASs) form a family of recently described rare autosomal recessive disorders of disturbed proteasome assembly and proteolytic activity caused by mutations in genes coding for proteasome subunits. The treatment options for these proteasome disorders consist of lifelong immunosuppressive drugs or Janus kinase inhibitors, which may have partial efficacy and noticeable side effects. Because proteasomes are ubiquitously expressed, it is unknown whether hematopoietic stem cell transplantation (HSCT) may be a sufficient treatment option., Objective: Our aim was to report the case of a young boy with a treatment-resistant cutaneous vasculitis that was initially suspected to be associated with a gene variant in SH2D1A., Methods: Whole-exome sequencing was performed to identify the genetic defect. Molecular and functional analyses were performed to assess the impact of variants on proteasomal function. The immune characterization led to the decision to perform HSCT on our patient and conduct follow-up over the 7-year period after the transplant. Because loss of myeloid chimerism after the first HSCT was associated with relapse of autoinflammation, a second HSCT was performed., Results: After the successful second HSCT, the patient developed mild symptoms of lipodystrophy, which raised the suspicion of a PRAAS. Genetic analysis revealed 2 novel heterozygous variants in PSMB4 (encoding proteasomal subunit β7). Retrospective analysis of patient cells stored before the first HSCT and patient cells obtained after the second HSCT demonstrated that HSCT successfully rescued proteasome function, restored protein homeostasis, and resolved the interferon-stimulated gene signature. Furthermore, successful HSCT alleviated the autoinflammatory manifestations in our patient., Conclusion: Patients with treatment-resistant PRAAS can be cured by HSCT., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
23. Terminal osseous dysplasia with pigmentary defects and cardiomyopathy caused by a novel FLNA variant.
- Author
-
Rumping L, Wessels MW, Postma AV, van Schuppen J, van Slegtenhorst MA, Saris JJ, van Tintelen JP, Robertson SP, Alders M, Maas SM, and Deprez RHL
- Subjects
- Cardiomyopathies complications, Cardiomyopathies pathology, Child, Preschool, Female, Fingers pathology, Genes, X-Linked genetics, Genetic Diseases, X-Linked complications, Genetic Diseases, X-Linked pathology, Humans, Infant, Limb Deformities, Congenital complications, Limb Deformities, Congenital pathology, Mutation genetics, Osteochondrodysplasias complications, Osteochondrodysplasias pathology, Phenotype, Pigmentation Disorders complications, Pigmentation Disorders pathology, Sequence Deletion genetics, Toes pathology, X Chromosome Inactivation genetics, Cardiomyopathies genetics, Filamins genetics, Fingers abnormalities, Genetic Diseases, X-Linked genetics, Genetic Predisposition to Disease, Limb Deformities, Congenital genetics, Osteochondrodysplasias genetics, Pigmentation Disorders genetics, Toes abnormalities
- Abstract
Terminal osseous dysplasia with pigmentary defects (TODPD), also known as digitocutaneous dysplasia, is one of the X-linked filaminopathies caused by a variety of FLNA-variants. TODPD is characterized by skeletal defects, skin fibromata and dysmorphic facial features. So far, only a single recurrent variant (c.5217G>A;p.Val1724_Thr1739del) in FLNA has found to be responsible for TODPD. We identified a novel c.5217+5G>C variant in FLNA in a female proband with skeletal defects, skin fibromata, interstitial lung disease, epilepsy, and restrictive cardiomyopathy. This variant causes mis-splicing of exon 31 predicting the production of a FLNA-protein with an in-frame-deletion of 16 residues identical to the miss-splicing-effect of the recurrent TODPD c.5217G>A variant. This mis-spliced transcript was explicitly detected in heart tissue, but was absent from blood, skin, and lung. X-inactivation analyses showed extreme skewing with almost complete inactivation of the mutated allele (>90%) in these tissues, except for heart. The mother of the proband, who also has fibromata and skeletal abnormalities, is also carrier of the FLNA-variant and was diagnosed with noncompaction cardiomyopathy after cardiac screening. No other relevant variants in cardiomyopathy-related genes were found. Here we describe a novel variant in FLNA (c.5217+5G>C) as the second pathogenic variant responsible for TODPD. Cardiomyopathy has not been described as a phenotypic feature of TODPD before., (© 2021 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.)
- Published
- 2021
- Full Text
- View/download PDF
24. The important role of RPS14, RPL5 and MDM2 in TP53-associated ribosome stress in mycophenolic acid-induced microtia.
- Author
-
Lin Y, Breugem CC, Maas SM, de Bakker BS, and Li G
- Subjects
- Computational Biology, Humans, Mycophenolic Acid metabolism, Protein Interaction Maps, Proto-Oncogene Proteins c-mdm2 genetics, Ribosomal Proteins genetics, Ribosomes genetics, Ribosomes metabolism, Tumor Suppressor Protein p53 genetics, Cleft Lip, Cleft Palate, Congenital Microtia
- Abstract
Objective: Mycophenolate embryopathy (ME) is a congenital malformation induced by mycophenolic acid (MA). Microtia is the most common ME phenotype. This study aimed to identify the key genes in the pathological process of microtia caused by mycophenolate mofetil (MM) through bioinformatics methods, to explore the potential pathogenesis, and to provide a direction for future genetic research on aetiology., Methods: Genes related to MM and microtia were obtained from the GeneCards database for bioinformatics. Metacore was used to identify and visualize the upstream and downstream gene relationships in the protein-protein interaction (PPI) results of these genes. The clusterProfiler R software package was used to simulate and visualize the enrichment results based on data from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses., Results: Fifty-nine genes were associated with microtia and MM/MA. The hub genes with the most significant effects on MM/MA-induced microtia pathogenesis included tumour protein P53 (p53), MDM2 proto-oncogene (MDM2), ribosomal protein L5 (RPL5) and ribosomal protein S14 (RBS14). The GO term with the most enriched genes was peptidyl-tyrosine phosphorylation. For the KEGG terms, there was significant enrichment regarding the haematopoietic cell lineage, apoptosis, p53 signalling, proteasome and necroptosis., Conclusions: We propose that an axis composed of MA, microtia, TP53 and related genes is involved in ME pathogenesis. The important role of TP53-associated ribosome stress in ME pathogenesis is consistent with our previous findings from MA-induced cleft lip and palate. Deregulation of genes protective against TP53 overexpression, such as MDM2, could be a strategy for constructing a microtia animal model., (Copyright © 2021. Published by Elsevier B.V.)
- Published
- 2021
- Full Text
- View/download PDF
25. Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities.
- Author
-
Jeanne M, Demory H, Moutal A, Vuillaume ML, Blesson S, Thépault RA, Marouillat S, Halewa J, Maas SM, Motazacker MM, Mancini GMS, van Slegtenhorst MA, Andreou A, Cox H, Vogt J, Laufman J, Kostandyan N, Babikyan D, Hancarova M, Bendova S, Sedlacek Z, Aldinger KA, Sherr EH, Argilli E, England EM, Audebert-Bellanger S, Bonneau D, Colin E, Denommé-Pichon AS, Gilbert-Dussardier B, Isidor B, Küry S, Odent S, Redon R, Khanna R, Dobyns WB, Bézieau S, Honnorat J, Lohkamp B, Toutain A, and Laumonnier F
- Subjects
- Adult, Agenesis of Corpus Callosum diagnostic imaging, Cerebellum diagnostic imaging, Child, Child, Preschool, Female, Humans, Hydrolases chemistry, Hydrolases genetics, Intellectual Disability diagnostic imaging, Intellectual Disability genetics, Male, Microtubule-Associated Proteins chemistry, Microtubule-Associated Proteins genetics, Microtubule-Associated Proteins metabolism, Models, Molecular, Neurodevelopmental Disorders diagnostic imaging, Tubulin metabolism, Young Adult, Agenesis of Corpus Callosum genetics, Cerebellum abnormalities, Mutation, Missense genetics, Neurodevelopmental Disorders genetics
- Abstract
The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and βIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and βIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders., (Copyright © 2021 American Society of Human Genetics. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
26. Heterozygous Variants in KDM4B Lead to Global Developmental Delay and Neuroanatomical Defects.
- Author
-
Duncan AR, Vitobello A, Collins SC, Vancollie VE, Lelliott CJ, Rodan L, Shi J, Seman AR, Agolini E, Novelli A, Prontera P, Guillen Sacoto MJ, Santiago-Sim T, Trimouille A, Goizet C, Nizon M, Bruel AL, Philippe C, Grant PE, Wojcik MH, Stoler J, Genetti CA, van Dooren MF, Maas SM, Alders M, Faivre L, Sorlin A, Yoon G, Yalcin B, and Agrawal PB
- Subjects
- Animals, Brain diagnostic imaging, Epigenesis, Genetic, Female, Heterozygote, Hippocampus diagnostic imaging, Hippocampus metabolism, Histones metabolism, Humans, Magnetic Resonance Imaging, Male, Methylation, Mice, Protein Processing, Post-Translational, Seizures genetics, Signal Transduction, Developmental Disabilities genetics, Genetic Variation, Jumonji Domain-Containing Histone Demethylases genetics, Nervous System Malformations genetics
- Abstract
KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria. In mice, lysine demethylase 4B is expressed during brain development with high levels in the hippocampus, a region important for learning and memory. To understand how KDM4B variants can lead to GDD in humans, we assessed the effect of KDM4B disruption on brain anatomy and behavior through an in vivo heterozygous mouse model (Kdm4b
+/- ), focusing on neuroanatomical changes. In mutant mice, the total brain volume was significantly reduced with decreased size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly. This report demonstrates that variants in KDM4B are associated with GDD/ intellectual disability and neuroanatomical defects. Our findings suggest that KDM4B variation leads to a chromatinopathy, broadening the spectrum of this group of Mendelian disorders caused by alterations in epigenetic machinery., (Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
27. Development, behaviour and sensory processing in Marshall-Smith syndrome and Malan syndrome: phenotype comparison in two related syndromes.
- Author
-
Mulder PA, van Balkom IDC, Landlust AM, Priolo M, Menke LA, Acero IH, Alkuraya FS, Arias P, Bernardini L, Bijlsma EK, Cole T, Coubes C, Dapia I, Davies S, Di Donato N, Elcioglu NH, Fahrner JA, Foster A, González NG, Huber I, Iascone M, Kaiser AS, Kamath A, Kooblall K, Lapunzina P, Liebelt J, Lynch SA, Maas SM, Mammì C, Mathijssen IB, McKee S, Mirzaa GM, Montgomery T, Neubauer D, Neumann TE, Pintomalli L, Pisanti MA, Plomp AS, Price S, Salter C, Santos-Simarro F, Sarda P, Schanze D, Segovia M, Shaw-Smith C, Smithson S, Suri M, Tatton-Brown K, Tenorio J, Thakker RV, Valdez RM, Van Haeringen A, Van Hagen JM, Zenker M, Zollino M, Dunn WW, Piening S, and Hennekam RC
- Subjects
- Adaptation, Psychological, Adolescent, Adult, Child, Child, Preschool, Comorbidity, Cross-Sectional Studies, Female, Follow-Up Studies, Humans, Male, Mental Disorders physiopathology, Netherlands epidemiology, Phenotype, Speech Disorders physiopathology, Syndrome, Young Adult, Abnormalities, Multiple epidemiology, Abnormalities, Multiple physiopathology, Bone Diseases, Developmental epidemiology, Bone Diseases, Developmental physiopathology, Craniofacial Abnormalities epidemiology, Craniofacial Abnormalities physiopathology, Intellectual Disability epidemiology, Intellectual Disability physiopathology, Mental Disorders epidemiology, Septo-Optic Dysplasia epidemiology, Septo-Optic Dysplasia physiopathology, Speech Disorders epidemiology
- Abstract
Background: Ultrarare Marshall-Smith and Malan syndromes, caused by changes of the gene nuclear factor I X (NFIX), are characterised by intellectual disability (ID) and behavioural problems, although questions remain. Here, development and behaviour are studied and compared in a cross-sectional study, and results are presented with genetic findings., Methods: Behavioural phenotypes are compared of eight individuals with Marshall-Smith syndrome (three male individuals) and seven with Malan syndrome (four male individuals). Long-term follow-up assessment of cognition and adaptive behaviour was possible in three individuals with Marshall-Smith syndrome., Results: Marshall-Smith syndrome individuals have more severe ID, less adaptive behaviour, more impaired speech and less reciprocal interaction compared with individuals with Malan syndrome. Sensory processing difficulties occur in both syndromes. Follow-up measurement of cognition and adaptive behaviour in Marshall-Smith syndrome shows different individual learning curves over time., Conclusions: Results show significant between and within syndrome variability. Different NFIX variants underlie distinct clinical phenotypes leading to separate entities. Cognitive, adaptive and sensory impairments are common in both syndromes and increase the risk of challenging behaviour. This study highlights the value of considering behaviour within developmental and environmental context. To improve quality of life, adaptations to environment and treatment are suggested to create a better person-environment fit., (© 2020 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
28. Delineation of phenotypes and genotypes related to cohesin structural protein RAD21.
- Author
-
Krab LC, Marcos-Alcalde I, Assaf M, Balasubramanian M, Andersen JB, Bisgaard AM, Fitzpatrick DR, Gudmundsson S, Huisman SA, Kalayci T, Maas SM, Martinez F, McKee S, Menke LA, Mulder PA, Murch OD, Parker M, Pie J, Ramos FJ, Rieubland C, Rosenfeld Mokry JA, Scarano E, Shinawi M, Gómez-Puertas P, Tümer Z, and Hennekam RC
- Subjects
- Adolescent, Adult, Cell Cycle Proteins chemistry, Child, Child, Preschool, DNA-Binding Proteins chemistry, Female, Genetic Association Studies, Genotype, Humans, Infant, Infant, Newborn, Male, Middle Aged, Molecular Dynamics Simulation, Phenotype, Protein Conformation, Young Adult, Cell Cycle Proteins genetics, Cell Cycle Proteins metabolism, Chromosome Deletion, DNA-Binding Proteins genetics, DNA-Binding Proteins metabolism, De Lange Syndrome genetics, De Lange Syndrome pathology, Mutation
- Abstract
RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype-phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype-phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.
- Published
- 2020
- Full Text
- View/download PDF
29. Deleterious de novo variants of X-linked ZC4H2 in females cause a variable phenotype with neurogenic arthrogryposis multiplex congenita.
- Author
-
Frints SGM, Hennig F, Colombo R, Jacquemont S, Terhal P, Zimmerman HH, Hunt D, Mendelsohn BA, Kordaß U, Webster R, Sinnema M, Abdul-Rahman O, Suckow V, Fernández-Jaén A, van Roozendaal K, Stevens SJC, Macville MVE, Al-Nasiry S, van Gassen K, Utzig N, Koudijs SM, McGregor L, Maas SM, Baralle D, Dixit A, Wieacker P, Lee M, Lee AS, Engle EC, Houge G, Gradek GA, Douglas AGL, Longman C, Joss S, Velasco D, Hennekam RC, Hirata H, and Kalscheuer VM
- Subjects
- Animals, Codon, Nonsense, Disease Models, Animal, Female, Frameshift Mutation, Genes, X-Linked, Genetic Predisposition to Disease, Humans, Male, Mutation, Missense, Pedigree, Phenotype, Sequence Deletion, Sex Characteristics, Zebrafish, Arthrogryposis genetics, Intracellular Signaling Peptides and Proteins genetics, Mutation, Nuclear Proteins genetics
- Abstract
Pathogenic variants in the X-linked gene ZC4H2, which encodes a zinc-finger protein, cause an infrequently described syndromic form of arthrogryposis multiplex congenita (AMC) with central and peripheral nervous system involvement. We present genetic and detailed phenotypic information on 23 newly identified families and simplex cases that include 19 affected females from 18 families and 14 affected males from nine families. Of note, the 15 females with deleterious de novo ZC4H2 variants presented with phenotypes ranging from mild to severe, and their clinical features overlapped with those seen in affected males. By contrast, of the nine carrier females with inherited ZC4H2 missense variants that were deleterious in affected male relatives, four were symptomatic. We also compared clinical phenotypes with previously published cases of both sexes and provide an overview on 48 males and 57 females from 42 families. The spectrum of ZC4H2 defects comprises novel and recurrent mostly inherited missense variants in affected males, and de novo splicing, frameshift, nonsense, and partial ZC4H2 deletions in affected females. Pathogenicity of two newly identified missense variants was further supported by studies in zebrafish. We propose ZC4H2 as a good candidate for early genetic testing of males and females with a clinical suspicion of fetal hypo-/akinesia and/or (neurogenic) AMC., (© 2019 Wiley Periodicals, Inc.)
- Published
- 2019
- Full Text
- View/download PDF
30. A genome-wide DNA methylation signature for SETD1B-related syndrome.
- Author
-
Krzyzewska IM, Maas SM, Henneman P, Lip KVD, Venema A, Baranano K, Chassevent A, Aref-Eshghi E, van Essen AJ, Fukuda T, Ikeda H, Jacquemont M, Kim HG, Labalme A, Lewis SME, Lesca G, Madrigal I, Mahida S, Matsumoto N, Rabionet R, Rajcan-Separovic E, Qiao Y, Sadikovic B, Saitsu H, Sweetser DA, Alders M, and Mannens MMAM
- Subjects
- Adolescent, Adult, Child, Child, Preschool, CpG Islands, Epigenesis, Genetic, F-Box Proteins genetics, Female, Genetic Markers, Humans, Infant, Newborn, Jumonji Domain-Containing Histone Demethylases genetics, Male, Anxiety genetics, Autism Spectrum Disorder genetics, DNA Methylation, Epilepsy genetics, Histone-Lysine N-Methyltransferase genetics, Intellectual Disability genetics, Loss of Function Mutation
- Abstract
SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients.
- Published
- 2019
- Full Text
- View/download PDF
31. Transcription alterations of KCNQ1 associated with imprinted methylation defects in the Beckwith-Wiedemann locus.
- Author
-
Valente FM, Sparago A, Freschi A, Hill-Harfe K, Maas SM, Frints SGM, Alders M, Pignata L, Franzese M, Angelini C, Carli D, Mussa A, Gazzin A, Gabbarini F, Acurzio B, Ferrero GB, Bliek J, Williams CA, Riccio A, and Cerrato F
- Subjects
- Adolescent, Adult, Animals, Beckwith-Wiedemann Syndrome epidemiology, Beckwith-Wiedemann Syndrome pathology, Child, Child, Preschool, Chromosomes, Human, Pair 11 genetics, Female, Genomic Imprinting genetics, Humans, Infant, Introns genetics, Male, Maternal Inheritance genetics, Mice, Pedigree, Young Adult, Beckwith-Wiedemann Syndrome genetics, DNA Methylation genetics, KCNQ1 Potassium Channel genetics
- Abstract
Purpose: Beckwith-Wiedemann syndrome (BWS) is a developmental disorder caused by dysregulation of the imprinted gene cluster of chromosome 11p15.5 and often associated with loss of methylation (LOM) of the imprinting center 2 (IC2) located in KCNQ1 intron 10. To unravel the etiological mechanisms underlying these epimutations, we searched for genetic variants associated with IC2 LOM., Methods: We looked for cases showing the clinical features of both BWS and long QT syndrome (LQTS), which is often associated with KCNQ1 variants. Pathogenic variants were identified by genomic analysis and targeted sequencing. Functional experiments were performed to link these pathogenic variants to the imprinting defect., Results: We found three rare cases in which complete IC2 LOM is associated with maternal transmission of KCNQ1 variants, two of which were demonstrated to affect KCNQ1 transcription upstream of IC2. As a consequence of KCNQ1 haploinsufficiency, these variants also cause LQTS on both maternal and paternal transmission., Conclusion: These results are consistent with the hypothesis that, similar to what has been demonstrated in mouse, lack of transcription across IC2 results in failure of methylation establishment in the female germline and BWS later in development, and also suggest a new link between LQTS and BWS that is important for genetic counseling.
- Published
- 2019
- Full Text
- View/download PDF
32. Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.
- Author
-
O'Donnell-Luria AH, Pais LS, Faundes V, Wood JC, Sveden A, Luria V, Abou Jamra R, Accogli A, Amburgey K, Anderlid BM, Azzarello-Burri S, Basinger AA, Bianchini C, Bird LM, Buchert R, Carre W, Ceulemans S, Charles P, Cox H, Culliton L, Currò A, Demurger F, Dowling JJ, Duban-Bedu B, Dubourg C, Eiset SE, Escobar LF, Ferrarini A, Haack TB, Hashim M, Heide S, Helbig KL, Helbig I, Heredia R, Héron D, Isidor B, Jonasson AR, Joset P, Keren B, Kok F, Kroes HY, Lavillaureix A, Lu X, Maas SM, Maegawa GHB, Marcelis CLM, Mark PR, Masruha MR, McLaughlin HM, McWalter K, Melchinger EU, Mercimek-Andrews S, Nava C, Pendziwiat M, Person R, Ramelli GP, Ramos LLP, Rauch A, Reavey C, Renieri A, Rieß A, Sanchez-Valle A, Sattar S, Saunders C, Schwarz N, Smol T, Srour M, Steindl K, Syrbe S, Taylor JC, Telegrafi A, Thiffault I, Trauner DA, van der Linden H Jr, van Koningsbruggen S, Villard L, Vogel I, Vogt J, Weber YG, Wentzensen IM, Widjaja E, Zak J, Baxter S, Banka S, and Rodan LH
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Epilepsy pathology, Female, Haploinsufficiency, Humans, Infant, Male, Neurodevelopmental Disorders pathology, Pedigree, Phenotype, Young Adult, DNA-Binding Proteins genetics, Epilepsy etiology, Genetic Variation, Heterozygote, Neurodevelopmental Disorders etiology
- Abstract
We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities., (Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
33. Genome-wide methylation profiling of Beckwith-Wiedemann syndrome patients without molecular confirmation after routine diagnostics.
- Author
-
Krzyzewska IM, Alders M, Maas SM, Bliek J, Venema A, Henneman P, Rezwan FI, Lip KVD, Mul AN, Mackay DJG, and Mannens MMAM
- Subjects
- Beckwith-Wiedemann Syndrome genetics, Chromosomes, Human, Pair 11 genetics, Female, Genomic Imprinting, Humans, Male, Oligonucleotide Array Sequence Analysis, Phenotype, Beckwith-Wiedemann Syndrome diagnosis, DNA Methylation, Whole Genome Sequencing methods
- Abstract
Beckwith-Wiedemann syndrome (BWS) is caused due to the disturbance of imprinted genes at chromosome 11p15. The molecular confirmation of this syndrome is possible in approximately 85% of the cases, whereas in the remaining 15% of the cases, the underlying defect remains unclear. The goal of our research was to identify new epigenetic loci related to BWS. We studied a group of 25 patients clinically diagnosed with BWS but without molecular conformation after DNA diagnostics and performed a whole genome methylation analysis using the HumanMethylation450 Array (Illumina).We found hypermethylation throughout the methylome in two BWS patients. The hypermethylated sites in these patients overlapped and included both non-imprinted and imprinted regions. This finding was not previously described in any BWS-diagnosed patient.Furthermore, one BWS patient exhibited aberrant methylation in four maternally methylated regions-IGF1R, NHP2L1, L3MBTL, and ZDBF2-that overlapped with the differentially methylated regions found in BWS patients with multi-locus imprinting disturbance (MLID). This finding suggests that the BWS phenotype can result from MLID without detectable methylation defects in the primarily disease-associated loci (11p15). Another patient manifested small but significant aberrant methylation in disease-associated loci at 11p near H19, possibly confirming the diagnosis in this patient.
- Published
- 2019
- Full Text
- View/download PDF
34. SYNGAP1 encephalopathy: A distinctive generalized developmental and epileptic encephalopathy.
- Author
-
Vlaskamp DRM, Shaw BJ, Burgess R, Mei D, Montomoli M, Xie H, Myers CT, Bennett MF, XiangWei W, Williams D, Maas SM, Brooks AS, Mancini GMS, van de Laar IMBH, van Hagen JM, Ware TL, Webster RI, Malone S, Berkovic SF, Kalnins RM, Sicca F, Korenke GC, van Ravenswaaij-Arts CMA, Hildebrand MS, Mefford HC, Jiang Y, Guerrini R, and Scheffer IE
- Subjects
- Adolescent, Adult, Anticonvulsants therapeutic use, Brain diagnostic imaging, Brain Diseases complications, Brain Diseases diagnostic imaging, Brain Diseases genetics, Child, Child, Preschool, Cohort Studies, Developmental Disabilities complications, Developmental Disabilities diagnostic imaging, Electroencephalography, Female, Genetic Association Studies, Humans, Infant, Male, Spasms, Infantile complications, Spasms, Infantile diagnostic imaging, Spasms, Infantile drug therapy, Young Adult, Developmental Disabilities genetics, Mutation genetics, Spasms, Infantile genetics, ras GTPase-Activating Proteins genetics
- Abstract
Objective: To delineate the epileptology, a key part of the SYNGAP1 phenotypic spectrum, in a large patient cohort., Methods: Patients were recruited via investigators' practices or social media. We included patients with (likely) pathogenic SYNGAP1 variants or chromosome 6p21.32 microdeletions incorporating SYNGAP1 . We analyzed patients' phenotypes using a standardized epilepsy questionnaire, medical records, EEG, MRI, and seizure videos., Results: We included 57 patients (53% male, median age 8 years) with SYNGAP1 mutations (n = 53) or microdeletions (n = 4). Of the 57 patients, 56 had epilepsy: generalized in 55, with focal seizures in 7 and infantile spasms in 1. Median seizure onset age was 2 years. A novel type of drop attack was identified comprising eyelid myoclonia evolving to a myoclonic-atonic (n = 5) or atonic (n = 8) seizure. Seizure types included eyelid myoclonia with absences (65%), myoclonic seizures (34%), atypical (20%) and typical (18%) absences, and atonic seizures (14%), triggered by eating in 25%. Developmental delay preceded seizure onset in 54 of 56 (96%) patients for whom early developmental history was available. Developmental plateauing or regression occurred with seizures in 56 in the context of a developmental and epileptic encephalopathy (DEE). Fifty-five of 57 patients had intellectual disability, which was moderate to severe in 50. Other common features included behavioral problems (73%); high pain threshold (72%); eating problems, including oral aversion (68%); hypotonia (67%); sleeping problems (62%); autism spectrum disorder (54%); and ataxia or gait abnormalities (51%)., Conclusions: SYNGAP1 mutations cause a generalized DEE with a distinctive syndrome combining epilepsy with eyelid myoclonia with absences and myoclonic-atonic seizures, as well as a predilection to seizures triggered by eating., (Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.)
- Published
- 2019
- Full Text
- View/download PDF
35. De novo and inherited loss-of-function variants of ATP2B2 are associated with rapidly progressive hearing impairment.
- Author
-
Smits JJ, Oostrik J, Beynon AJ, Kant SG, de Koning Gans PAM, Rotteveel LJC, Klein Wassink-Ruiter JS, Free RH, Maas SM, van de Kamp J, Merkus P, Koole W, Feenstra I, Admiraal RJC, Lanting CP, Schraders M, Yntema HG, Pennings RJE, and Kremer H
- Subjects
- Adolescent, Adult, Aged, Child, Child, Preschool, Female, Follow-Up Studies, Heterozygote, Humans, Male, Middle Aged, Pedigree, Prognosis, Young Adult, Biomarkers analysis, Genetic Predisposition to Disease, Hearing Loss genetics, Mutation, Plasma Membrane Calcium-Transporting ATPases genetics
- Abstract
ATP2B2 encodes the PMCA2 Ca
2+ pump that plays an important role in maintaining ion homeostasis in hair cells among others by extrusion of Ca2+ from the stereocilia to the endolymph. Several mouse models have been described for this gene; mice heterozygous for loss-of-function defects display a rapidly progressive high-frequency hearing impairment. Up to now ATP2B2 has only been reported as a modifier, or in a digenic mechanism with CDH23 for hearing impairment in humans. Whole exome sequencing in hearing impaired index cases of Dutch and Polish origins revealed five novel heterozygous (predicted to be) loss-of-function variants of ATP2B2. Two variants, c.1963G>T (p.Glu655*) and c.955delG (p.Ala319fs), occurred de novo. Three variants c.397+1G>A (p.?), c.1998C>A (p.Cys666*), and c.2329C>T (p.Arg777*), were identified in families with an autosomal dominant inheritance pattern of hearing impairment. After normal newborn hearing screening, a rapidly progressive high-frequency hearing impairment was diagnosed at the age of about 3-6 years. Subjects had no balance complaints and vestibular testing did not yield abnormalities. There was no evidence for retrocochlear pathology or structural inner ear abnormalities. Although a digenic inheritance pattern of hearing impairment has been reported for heterozygous missense variants of ATP2B2 and CDH23, our findings indicate a monogenic cause of hearing impairment in cases with loss-of-function variants of ATP2B2.- Published
- 2019
- Full Text
- View/download PDF
36. Further delineation of Malan syndrome.
- Author
-
Priolo M, Schanze D, Tatton-Brown K, Mulder PA, Tenorio J, Kooblall K, Acero IH, Alkuraya FS, Arias P, Bernardini L, Bijlsma EK, Cole T, Coubes C, Dapia I, Davies S, Di Donato N, Elcioglu NH, Fahrner JA, Foster A, González NG, Huber I, Iascone M, Kaiser AS, Kamath A, Liebelt J, Lynch SA, Maas SM, Mammì C, Mathijssen IB, McKee S, Menke LA, Mirzaa GM, Montgomery T, Neubauer D, Neumann TE, Pintomalli L, Pisanti MA, Plomp AS, Price S, Salter C, Santos-Simarro F, Sarda P, Segovia M, Shaw-Smith C, Smithson S, Suri M, Valdez RM, Van Haeringen A, Van Hagen JM, Zollino M, Lapunzina P, Thakker RV, Zenker M, and Hennekam RC
- Subjects
- Abnormalities, Multiple physiopathology, Adolescent, Adult, Bone Diseases, Developmental genetics, Bone Diseases, Developmental physiopathology, Child, Child, Preschool, Chromosome Deletion, Congenital Hypothyroidism physiopathology, Craniofacial Abnormalities physiopathology, Developmental Disabilities genetics, Developmental Disabilities physiopathology, Exons genetics, Female, Hand Deformities, Congenital physiopathology, Humans, Intellectual Disability physiopathology, Male, Megalencephaly genetics, Megalencephaly physiopathology, Mutation, Missense genetics, Phenotype, Septo-Optic Dysplasia genetics, Septo-Optic Dysplasia physiopathology, Sotos Syndrome physiopathology, Young Adult, Abnormalities, Multiple genetics, Congenital Hypothyroidism genetics, Craniofacial Abnormalities genetics, Hand Deformities, Congenital genetics, Intellectual Disability genetics, NFI Transcription Factors genetics, Sotos Syndrome genetics
- Abstract
Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only., (© 2018 The Authors. Human Mutation published by Wiley Periodicals, Inc.)
- Published
- 2018
- Full Text
- View/download PDF
37. Identification of Variants in RET and IHH Pathway Members in a Large Family With History of Hirschsprung Disease.
- Author
-
Sribudiani Y, Chauhan RK, Alves MM, Petrova L, Brosens E, Harrison C, Wabbersen T, de Graaf BM, Rügenbrink T, Burzynski G, Brouwer RWW, van IJcken WFJ, Maas SM, de Klein A, Osinga J, Eggen BJL, Burns AJ, Brooks AS, Shepherd IT, and Hofstra RMW
- Subjects
- Animals, COS Cells, Chlorocebus aethiops, Family, Female, Genetic Predisposition to Disease, Genetic Variation, HEK293 Cells, Humans, Male, Morpholinos, Netherlands, Pedigree, Protein Isoforms, Proto-Oncogene Mas, Sequence Analysis, DNA, Signal Transduction, Zebrafish, Adaptor Proteins, Signal Transducing genetics, Glial Cell Line-Derived Neurotrophic Factor genetics, Hedgehog Proteins genetics, Hirschsprung Disease genetics, Nerve Tissue Proteins genetics, Proto-Oncogene Proteins c-ret genetics, Zinc Finger Protein Gli3 genetics
- Abstract
Background & Aims: Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by absence of enteric ganglia in the distal part of the gut. Variants in ret proto-oncogene (RET) have been associated with up to 50% of familial and 35% of sporadic cases. We searched for variants that affect disease risk in a large, multigenerational family with history of HSCR in a linkage region previously associated with the disease (4q31.3-q32.3) and exome wide., Methods: We performed exome sequencing analyses of a family in the Netherlands with 5 members diagnosed with HSCR and 2 members diagnosed with functional constipation. We initially focused on variants in genes located in 4q31.3-q32.3; however, we also performed an exome-wide analysis in which known HSCR or HSCR-associated gene variants predicted to be deleterious were prioritized for further analysis. Candidate genes were expressed in HEK293, COS-7, and Neuro-2a cells and analyzed by luciferase and immunoblot assays. Morpholinos were designed to target exons of candidate genes and injected into 1-cell stage zebrafish embryos. Embryos were allowed to develop and stained for enteric neurons., Results: Within the linkage region, we identified 1 putative splice variant in the lipopolysaccharide responsive beige-like anchor protein gene (LRBA). Functional assays could not confirm its predicted effect on messenger RNA splicing or on expression of the mab-21 like 2 gene (MAB21L2), which is embedded in LRBA. Zebrafish that developed following injection of the lrba morpholino had a shortened body axis and subtle gut morphological defects, but no significant reduction in number of enteric neurons compared with controls. Outside the linkage region, members of 1 branch of the family carried a previously unidentified RET variant or an in-frame deletion in the glial cell line derived neurotrophic factor gene (GDNF), which encodes a ligand of RET. This deletion was located 6 base pairs before the last codon. We also found variants in the Indian hedgehog gene (IHH) and its mediator, the transcription factor GLI family zinc finger 3 (GLI3). When expressed in cells, the RET-P399L variant disrupted protein glycosylation and had altered phosphorylation following activation by GDNF. The deletion in GDNF prevented secretion of its gene product, reducing RET activation, and the IHH-Q51K variant reduced expression of the transcription factor GLI1. Injection of morpholinos that target ihh reduced the number of enteric neurons to 13% ± 1.4% of control zebrafish., Conclusions: In a study of a large family with history of HSCR, we identified variants in LRBA, RET, the gene encoding the RET ligand (GDNF), IHH, and a gene encoding a mediator of IHH signaling (GLI3). These variants altered functions of the gene products when expressed in cells and knockout of ihh reduced the number of enteric neurons in the zebrafish gut., (Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
38. Revisiting Wilms tumour surveillance in Beckwith-Wiedemann syndrome with IC2 methylation loss, reply.
- Author
-
Brioude F, Hennekam R, Bliek J, Coze C, Eggermann T, Ferrero GB, Kratz C, Bouc YL, Maas SM, Mackay DJG, Maher ER, Mussa A, and Netchine I
- Subjects
- DNA Methylation, Genomic Imprinting, Humans, Methylation, Beckwith-Wiedemann Syndrome genetics, Wilms Tumor genetics
- Published
- 2018
- Full Text
- View/download PDF
39. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement.
- Author
-
Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, Boonen SE, Cole T, Baker R, Bertoletti M, Cocchi G, Coze C, De Pellegrin M, Hussain K, Ibrahim A, Kilby MD, Krajewska-Walasek M, Kratz CP, Ladusans EJ, Lapunzina P, Le Bouc Y, Maas SM, Macdonald F, Õunap K, Peruzzi L, Rossignol S, Russo S, Shipster C, Skórka A, Tatton-Brown K, Tenorio J, Tortora C, Grønskov K, Netchine I, Hennekam RC, Prawitt D, Tümer Z, Eggermann T, Mackay DJG, Riccio A, and Maher ER
- Subjects
- Beckwith-Wiedemann Syndrome complications, Beckwith-Wiedemann Syndrome genetics, DNA Copy Number Variations, DNA Methylation, Humans, Molecular Diagnostic Techniques, Neoplasms, Germ Cell and Embryonal etiology, Polymorphism, Single Nucleotide, Prenatal Diagnosis, Reproductive Techniques, Assisted, Beckwith-Wiedemann Syndrome diagnosis, Beckwith-Wiedemann Syndrome therapy, Consensus
- Abstract
Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
- Published
- 2018
- Full Text
- View/download PDF
40. Clues for Polygenic Inheritance of Pituitary Stalk Interruption Syndrome From Exome Sequencing in 20 Patients.
- Author
-
Zwaveling-Soonawala N, Alders M, Jongejan A, Kovacic L, Duijkers FA, Maas SM, Fliers E, van Trotsenburg ASP, and Hennekam RC
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Exome, Female, Genetic Predisposition to Disease, Humans, Infant, Infant, Newborn, Male, Pituitary Diseases congenital, Sequence Analysis, DNA methods, Syndrome, Young Adult, DNA Mutational Analysis methods, Genetic Testing methods, Multifactorial Inheritance genetics, Pituitary Diseases genetics, Pituitary Gland abnormalities
- Abstract
Context: Pituitary stalk interruption syndrome (PSIS) consists of a small/absent anterior pituitary lobe, an interrupted/absent pituitary stalk, and an ectopic posterior pituitary lobe. Mendelian forms of PSIS are detected infrequently (<5%), and a polygenic etiology has been suggested. GLI2 variants have been reported at a relatively high frequency in PSIS., Objective: To provide further evidence for a non-Mendelian, polygenic etiology of PSIS., Methods: Exome sequencing (trio approach) in 20 patients with isolated PSIS. In addition to searching for (potentially) pathogenic de novo and biallelic variants, a targeted search was performed in a panel of genes associated with midline brain development (223 genes). For GLI2 variants, both (potentially) pathogenic and relatively rare variants (<5% in the general population) were studied. The frequency of GLI2 variants was compared with that of a reference population., Results: We found four additional candidate genes for isolated PSIS (DCHS1, ROBO2, CCDC88C, and KIF14) and one for syndromic PSIS (KAT6A). Eleven GLI2 variants were present in six patients. A higher frequency of a combination of two GLI2 variants (M1352V + D1520N) was found in the study group compared with a reference population (10% vs 0.68%). (Potentially) pathogenic variants were identified in genes associated with midline brain anomalies, including holoprosencephaly, hypogonadotropic hypogonadism, and absent corpus callosum and in genes involved in ciliopathies., Conclusion: Combinations of variants in genes associated with midline brain anomalies are frequently present in PSIS and sustain the hypothesis of a polygenic cause of PSIS., (Copyright © 2017 Endocrine Society)
- Published
- 2018
- Full Text
- View/download PDF
41. Variants in KAT6A and pituitary anomalies.
- Author
-
Zwaveling-Soonawala N, Maas SM, Alders M, Majoie CB, Fliers E, van Trotsenburg ASP, and Hennekam RCM
- Subjects
- Alleles, Amino Acid Substitution, Female, Humans, Infant, Magnetic Resonance Imaging, Genetic Association Studies, Histone Acetyltransferases genetics, Mutation, Phenotype, Pituitary Gland abnormalities
- Published
- 2017
- Full Text
- View/download PDF
42. Surveillance Recommendations for Children with Overgrowth Syndromes and Predisposition to Wilms Tumors and Hepatoblastoma.
- Author
-
Kalish JM, Doros L, Helman LJ, Hennekam RC, Kuiper RP, Maas SM, Maher ER, Nichols KE, Plon SE, Porter CC, Rednam S, Schultz KAP, States LJ, Tomlinson GE, Zelley K, and Druley TE
- Subjects
- Europe epidemiology, Hepatoblastoma epidemiology, Hepatoblastoma genetics, Humans, Infant, Male, Medical Oncology, Risk Factors, United States epidemiology, Wilms Tumor epidemiology, Wilms Tumor genetics, Early Detection of Cancer, Genetic Predisposition to Disease epidemiology, Hepatoblastoma diagnosis, Wilms Tumor diagnosis
- Abstract
A number of genetic syndromes have been linked to increased risk for Wilms tumor (WT), hepatoblastoma (HB), and other embryonal tumors. Here, we outline these rare syndromes with at least a 1% risk to develop these tumors and recommend uniform tumor screening recommendations for North America. Specifically, for syndromes with increased risk for WT, we recommend renal ultrasounds every 3 months from birth (or the time of diagnosis) through the seventh birthday. For HB, we recommend screening with full abdominal ultrasound and alpha-fetoprotein serum measurements every 3 months from birth (or the time of diagnosis) through the fourth birthday. We recommend that when possible, these patients be evaluated and monitored by cancer predisposition specialists. At this time, these recommendations are not based on the differential risk between different genetic or epigenetic causes for each syndrome, which some European centers have implemented. This differentiated approach largely represents distinct practice environments between the United States and Europe, and these guidelines are designed to be a broad framework within which physicians and families can work together to implement specific screening. Further study is expected to lead to modifications of these recommendations. Clin Cancer Res; 23(13); e115-e22. ©2017 AACR See all articles in the online-only CCR Pediatric Oncology Series ., (©2017 American Association for Cancer Research.)
- Published
- 2017
- Full Text
- View/download PDF
43. Haploinsufficiency for ANKRD11-flanking genes makes the difference between KBG and 16q24.3 microdeletion syndromes: 12 new cases.
- Author
-
Novara F, Rinaldi B, Sisodiya SM, Coppola A, Giglio S, Stanzial F, Benedicenti F, Donaldson A, Andrieux J, Stapleton R, Weber A, Reho P, van Ravenswaaij-Arts C, Kerstjens-Frederikse WS, Vermeesch JR, Devriendt K, Bacino CA, Delahaye A, Maas SM, Iolascon A, and Zuffardi O
- Subjects
- Abnormalities, Multiple diagnosis, Adolescent, Adult, Bone Diseases, Developmental diagnosis, Cadherins genetics, Child, Diagnosis, Differential, Facies, Female, Humans, Intellectual Disability diagnosis, Male, Nuclear Proteins genetics, Phenotype, Tooth Abnormalities diagnosis, Transcription Factors metabolism, Abnormalities, Multiple genetics, Bone Diseases, Developmental genetics, Chromosome Deletion, Chromosomes, Human, Pair 16 genetics, Haploinsufficiency, Intellectual Disability genetics, Repressor Proteins genetics, Tooth Abnormalities genetics, Transcription Factors genetics
- Abstract
16q24 deletion involving the ANKRD11 gene, ranging from 137 kb to 2 Mb, have been associated with a microdeletion syndrome characterized by variable cognitive impairment, autism spectrum disorder, facial dysmorphisms with dental anomalies, brain abnormalities essentially affecting the corpus callosum and short stature. On the other hand, patients carrying either deletions encompassing solely ANKRD11 or its loss-of-function variants were reported in association with the KBG syndrome, characterized by a very similar phenotype, including mild-to-moderate intellectual disability, short stature and macrodontia of upper incisors, with inter and intrafamilial variability. To assess whether the haploinsufficiency of ANKRD11-flanking genes, such as ZFPM1, CDH15 and ZNF778, contributed to either the severity of the neurological impairment or was associated with other clinical features, we collected 12 new cases with a 16q24.2q24.3 deletion (de novo in 11 cases), ranging from 343 kb to 2.3 Mb. In 11 of them, the deletion involved the ANKRD11 gene, whereas in 1 case only flanking genes upstream to it were deleted. By comparing the clinical and genetic features of our patients with those previously reported, we show that the severity of the neurological phenotype and the frequency of congenital heart defects characterize the deletions that, besides ANKRD11, contain ZFPM1, CDH15 and ZNF778 as well. Moreover, the presence of thrombocytopenia and astigmatism should be taken into account to distinguish between 16q24 microdeletion syndrome and KBG syndrome. The single patient not deleted for ANKRD11, whose phenotype is characterized by milder psychomotor delay, cardiac congenital malformation, thrombocytopenia and astigmatism, confirms all this data.
- Published
- 2017
- Full Text
- View/download PDF
44. The diagnostic yield of whole-exome sequencing targeting a gene panel for hearing impairment in The Netherlands.
- Author
-
Zazo Seco C, Wesdorp M, Feenstra I, Pfundt R, Hehir-Kwa JY, Lelieveld SH, Castelein S, Gilissen C, de Wijs IJ, Admiraal RJ, Pennings RJ, Kunst HP, van de Kamp JM, Tamminga S, Houweling AC, Plomp AS, Maas SM, de Koning Gans PA, Kant SG, de Geus CM, Frints SG, Vanhoutte EK, van Dooren MF, van den Boogaard MH, Scheffer H, Nelen M, Kremer H, Hoefsloot L, Schraders M, and Yntema HG
- Subjects
- Connexin 26, Connexins genetics, DNA Copy Number Variations, Extracellular Matrix Proteins genetics, GPI-Linked Proteins genetics, Genetic Testing standards, Hearing Loss diagnosis, Hearing Loss epidemiology, Humans, Intercellular Signaling Peptides and Proteins, Membrane Proteins genetics, Mutation, Myosin Heavy Chains genetics, Myosins genetics, Netherlands, Sequence Analysis, DNA standards, Exome, Genetic Testing statistics & numerical data, Hearing Loss genetics, Sequence Analysis, DNA statistics & numerical data
- Abstract
Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes. Two hundred index patients, mostly of Dutch origin, with presumed hereditary HI underwent WES followed by targeted analysis of an HI gene panel of 120 genes. We found causative variants underlying the HI in 67 of 200 patients (33.5%). Eight of these patients have a large homozygous deletion involving STRC, OTOA or USH2A, which could only be identified by copy number variation detection. Variants of uncertain significance were found in 10 patients (5.0%). In the remaining 123 cases, no potentially causative variants were detected (61.5%). In our patient cohort, causative variants in GJB2, USH2A, MYO15A and STRC, and in MYO6 were the leading causes for autosomal recessive and dominant HI, respectively. Segregation analysis and functional analyses of variants of uncertain significance will probably further increase the diagnostic yield of WES.
- Published
- 2017
- Full Text
- View/download PDF
45. Polyhydramnios in isolated oral cleft pregnancies: incidence and outcome in a retrospective study.
- Author
-
Depla AL, Breugem CC, van der Horst CM, de Heus R, van den Boogaard MH, Maas SM, Pajkrt E, and Bekker MN
- Subjects
- Adolescent, Adult, Cleft Lip complications, Cleft Lip diagnosis, Cleft Palate complications, Cleft Palate diagnosis, Female, Humans, Incidence, Polyhydramnios diagnosis, Polyhydramnios etiology, Pregnancy, Pregnancy Trimester, Second, Pregnancy Trimester, Third, Prenatal Diagnosis statistics & numerical data, Retrospective Studies, Young Adult, Cleft Lip epidemiology, Cleft Palate epidemiology, Polyhydramnios epidemiology, Pregnancy Outcome epidemiology
- Abstract
Objectives: Polyhydramnios is suggested to be associated with oral clefts (OCs) due to swallowing problems. This study assessed incidence and outcome of idiopathic polyhydramnios in isolated OC pregnancies., Methods: This was a retrospective cohort study of prenatally diagnosed OC. The incidence of idiopathic polyhydramnios in isolated OC pregnancies was determined. Pregnancy outcome, neonatal and paediatric follow-up were compared between cases with polyhydramnios and those with normal amniotic fluid. Subgroup analysis was conducted to evaluate whether an association exists between polyhydramnios and presence of associated anomalies diagnosed after birth., Results: In 230 cases of isolated OC, 15 developed polyhydramnios (6.5%). Involvement of the palate was significantly more common in the presence than in the absence of polyhydramnios (13/15 or 87% vs 125/215 or 58%, p = 0.03, odds ratio 4.7, 95% confidence interval 1.0-30.8). No significant differences were seen in pregnancy outcome or neonatal and paediatric follow-up between the two groups. In subgroup analysis, rate of polyhydramnios was not significantly different in associated cases that appeared isolated prenatally (1/27; 3.7%) compared with that in the isolated cases (15/230; 6.5%)., Conclusions: The incidence of idiopathic polyhydramnios in isolated OC pregnancies is 6.5%. Polyhydramnios in isolated OC increases the risk of palate involvement. The presence of polyhydramnios is not associated with adverse perinatal or long-term outcome. If isolated at prenatal assessment, polyhydramnios does not increase the risk of associated anomalies postpartum. © 2016 John Wiley & Sons, Ltd., (© 2016 John Wiley & Sons, Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
46. CREBBP mutations in individuals without Rubinstein-Taybi syndrome phenotype.
- Author
-
Menke LA, van Belzen MJ, Alders M, Cristofoli F, Ehmke N, Fergelot P, Foster A, Gerkes EH, Hoffer MJ, Horn D, Kant SG, Lacombe D, Leon E, Maas SM, Melis D, Muto V, Park SM, Peeters H, Peters DJ, Pfundt R, van Ravenswaaij-Arts CM, Tartaglia M, and Hennekam RC
- Subjects
- Adolescent, Adult, Alleles, Amino Acid Sequence, Child, Child, Preschool, Exome, Exons, Facies, Female, Genotype, High-Throughput Nucleotide Sequencing, Humans, Infant, Male, Mutation, Missense, Young Adult, CREB-Binding Protein genetics, Genetic Association Studies, Mutation, Phenotype, Rubinstein-Taybi Syndrome diagnosis, Rubinstein-Taybi Syndrome genetics
- Abstract
Mutations in CREBBP cause Rubinstein-Taybi syndrome. By using exome sequencing, and by using Sanger in one patient, CREBBP mutations were detected in 11 patients who did not, or only in a very limited manner, resemble Rubinstein-Taybi syndrome. The combined facial signs typical for Rubinstein-Taybi syndrome were absent, none had broad thumbs, and three had only somewhat broad halluces. All had apparent developmental delay (being the reason for molecular analysis); five had short stature and seven had microcephaly. The facial characteristics were variable; main characteristics were short palpebral fissures, telecanthi, depressed nasal ridge, short nose, anteverted nares, short columella, and long philtrum. Six patients had autistic behavior, and two had self-injurious behavior. Other symptoms were recurrent upper airway infections (n = 5), feeding problems (n = 7) and impaired hearing (n = 7). Major malformations occurred infrequently. All patients had a de novo missense mutation in the last part of exon 30 or beginning of exon 31 of CREBBP, between base pairs 5,128 and 5,614 (codons 1,710 and 1,872). No missense or truncating mutations in this region have been described to be associated with the classical Rubinstein-Taybi syndrome phenotype. No functional studies have (yet) been performed, but we hypothesize that the mutations disturb protein-protein interactions by altering zinc finger function. We conclude that patients with missense mutations in this specific CREBBP region show a phenotype that differs substantially from that in patients with Rubinstein-Taybi syndrome, and may prove to constitute one (or more) separate entities. © 2016 Wiley Periodicals, Inc., (© 2016 Wiley Periodicals, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
47. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups.
- Author
-
Maas SM, Vansenne F, Kadouch DJ, Ibrahim A, Bliek J, Hopman S, Mannens MM, Merks JH, Maher ER, and Hennekam RC
- Subjects
- Adolescent, Beckwith-Wiedemann Syndrome epidemiology, Child, Cohort Studies, DNA Methylation, Female, Genomic Imprinting, Hepatoblastoma epidemiology, Hepatoblastoma etiology, Humans, Insulin-Like Growth Factor II genetics, Male, Minisatellite Repeats, Neoplasms epidemiology, Potassium Channels, Voltage-Gated genetics, RNA, Long Noncoding genetics, Risk, Wilms Tumor epidemiology, Wilms Tumor etiology, Young Adult, Beckwith-Wiedemann Syndrome diagnosis, Beckwith-Wiedemann Syndrome genetics, Genetic Association Studies, Neoplasms etiology, Phenotype, Population Surveillance
- Abstract
Patients with Beckwith-Wiedemann syndrome (BWS) have an increased risk to develop cancer in childhood, especially Wilms tumor and hepatoblastoma. The risk varies depending on the cause of BWS. We obtained clinical and molecular data in our cohort of children with BWS, including tumor occurrences, and correlated phenotype and genotype. We obtained similar data from larger cohorts reported in the literature. Phenotype, genotype and tumor occurrence were available in 229 of our own patients. Minor differences in phenotype existed depending on genotype/epigenotype, similar to earlier studies. By adding patients from the literature, we obtained data on genotype and tumor occurrence of in total 1,971 BWS patients. Tumor risks were highest in the IC1 (H19/IGF2:IG-DMR) hypermethylation subgroup (28%) and pUPD subgroup (16%) and were lower in the KCNQ1OT1:TSS-DMR (IC2) subgroup (2.6%), CDKN1C (6.9%) subgroup, and the group in whom no molecular defect was detectable (6.7%). Wilms tumors (median age 24 months) were frequent in the IC1 (24%) and pUPD (7.9%) subgroups. Hepatoblastoma occurred mostly in the pUPD (3.5%) and IC2 (0.7%) subgroups, never in the IC1 and CDKN1C subgroups, and always before 30 months of age. In the CDKN1C subgroup 2.8% of patients developed neuroblastoma. We conclude tumor risks in BWS differ markedly depending on molecular background. We propose a differentiated surveillance protocol, based on tumor risks in the various molecular subgroups causing BWS. © 2016 Wiley Periodicals, Inc., (© 2016 Wiley Periodicals, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
48. Taste and speech following surgical tongue reduction in children with Beckwith-Wiedemann syndrome.
- Author
-
Maas SM, Kadouch DJ, Masselink AC, and Van Der Horst CM
- Subjects
- Adolescent, Child, Child, Preschool, Emotional Adjustment, Female, Humans, Infant, Male, Patient Satisfaction, Speech Intelligibility, Surveys and Questionnaires, Tongue surgery, Beckwith-Wiedemann Syndrome surgery, Glossectomy adverse effects, Macroglossia surgery, Speech, Taste
- Abstract
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder in which macroglossia is one of the main signs. We investigated the long-term outcome of tongue surgery reduction (TRS) on taste and speech in patients with BWS who were more than 5 years of age and had undergone surgical anterior wedge resection of the tongue. A questionnaire was used to assess medical history and to determine some aspects of speech, taste, psychological well-being, and degree of satisfaction with regard to TRS and tongue mobility. Speech sound error pattern and degree of intelligibility were measured by a speech therapist, and taste was assessed using a validated test. The degree of both intelligibility and satisfaction with the surgery was high. There were some speech errors; especially the interdental 's', addental 't', and addental 'd' were more noticed. We conclude that anterior wedge resection is an effective technique to treat macroglossia in children with BWS, and that it has no long-term consequences for intelligibility and taste perception and only limited consequences for speech., (Copyright © 2016. Published by Elsevier Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
49. Etiology and pathogenesis of robin sequence in a large Dutch cohort.
- Author
-
Basart H, Paes EC, Maas SM, van den Boogaard MJ, van Hagen JM, Breugem CC, Cobben JM, Don Griot JP, Lachmeijer AM, Lichtenbelt KD, van Nunen DP, van der Horst CM, and Hennekam RC
- Subjects
- Airway Obstruction etiology, Airway Obstruction pathology, Arthritis etiology, Arthritis pathology, Cleft Palate pathology, Connective Tissue Diseases etiology, Connective Tissue Diseases pathology, Female, Hearing Loss, Sensorineural etiology, Hearing Loss, Sensorineural pathology, Humans, Male, Micrognathism etiology, Micrognathism pathology, Retinal Detachment etiology, Retinal Detachment pathology, Pierre Robin Syndrome etiology, Pierre Robin Syndrome pathology
- Abstract
Robin sequence (RS) can be defined as the combination of micrognathia and upper airway obstruction/glossoptosis causing neonatal respiratory problems, with or without a cleft palate and either isolated or non-isolated. Pathogenesis varies widely. We hypothesize that optimal treatment depends on pathogenesis and therefore patients should be stratified according to diagnosis. Here, we evaluate diagnoses and (presumed) pathogeneses in an RS cohort. Medical records of all RS patients presenting between 1995-2013 in three academic hospitals were evaluated. Four clinical geneticists re-evaluated all information, including initial diagnosis. Diagnoses were either confirmed, considered uncertain, or rejected. If uncertain or rejected, patients were re-evaluated. Subsequent results were re-discussed and a final conclusion was drawn. We included 191 RS patients. After re-evaluation and changing initial diagnoses in 48 of the 191 patients (25.1%), 37.7% of the cohort had isolated RS, 8.9% a chromosome anomaly, 29.3% a Mendelian disorder, and 24.1% no detectable cause. Twenty-two different Mendelian disorders were diagnosed, of which Stickler syndrome was most frequent. Stratification of diagnoses according to (presumed) pathogenic mechanism in 73 non-isolated patients with reliable diagnoses showed 43.9% to have a connective tissue dysplasia, 5.5% a neuromuscular disorder, 47.9% a multisystem disorder, and 2.7% an unknown mechanism. We diagnosed more non-isolated RS patients compared to other studies. Re-evaluation changed initial diagnosis in a quarter of patients. We suggest standardized re-evaluation of all RS patients. Despite the relatively high diagnostic yield pathogenesis could be determined in only 59.7% (71/119), due to limited insight in pathogenesis in diagnosed entities. Further studies into pathogenesis of entities causing RS are indicated., (© 2015 Wiley Periodicals, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
50. Frontometaphyseal dysplasia and keloid formation without FLNA mutations.
- Author
-
Basart H, van de Kar A, Adès L, Cho TJ, Carter E, Maas SM, Wilson LC, van der Horst CM, Wade EM, Robertson SP, and Hennekam RC
- Subjects
- Adolescent, Child, Chromosome Duplication, Chromosomes, Human, Pair 22, Cleft Palate pathology, Female, Filamins genetics, Forehead pathology, Gene Expression, Humans, Intellectual Disability pathology, Keloid pathology, Male, Mutation, Osteochondrodysplasias pathology, Pierre Robin Syndrome pathology, Sex Factors, Tracheal Stenosis pathology, Cleft Palate genetics, Forehead abnormalities, Intellectual Disability genetics, Keloid genetics, Osteochondrodysplasias genetics, Pierre Robin Syndrome genetics, Tracheal Stenosis genetics
- Abstract
Frontometaphyseal dysplasia (FMD) is a distinctive sclerosing skeletal dysplasia associated with a number of non-skeletal manifestations including hearing loss, cardiac malformations, and stenosis, particularly of the upper airway and urinary tract. Some, but not all, patients have mutations in FLNA causing the condition. Consonant with the X chromosomal location of FLNA males are generally more severely affected than females. FLNA mutations can be detected in 82% of affected males. We describe seven patients (one male, six females) all of whom have the major clinical and radiological features of FMD, but without detectable mutations in FLNA. The females in our cohort are affected to a similar degree as is usually found in males. In addition, all patients have marked keloid formation at various body sites, including the eye, from an early age. Other features that may indicate a different etiology in these patients are the increased frequency of cleft palate, Robin sequence, tracheal stenosis, and mild intellectual disability, which all occur in three of more patients in the present group. All patients are isolated. We hypothesize that the presently reported patients represent further evidence that phenotypes strongly resembling FMD exist that are not accounted for by mutations in FLNA. Since the frequency of several of the manifestations, their sporadic presentations, and the presence of keloid formation differ from the X-linked form of this condition we propose de novo autosomal dominant acting mutations in a gene functionally related to FLNA, underpin this disorder., (© 2015 Wiley Periodicals, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.