12 results on '"Machine Learning Operations (MLOps)"'
Search Results
2. An Analysis of the Barriers Preventing the Implementation of MLOps
- Author
-
Kolar Narayanappa, Ashwini, Amrit, Chintan, Rannenberg, Kai, Editor-in-Chief, Soares Barbosa, Luís, Editorial Board Member, Carette, Jacques, Editorial Board Member, Tatnall, Arthur, Editorial Board Member, Neuhold, Erich J., Editorial Board Member, Stiller, Burkhard, Editorial Board Member, Stettner, Lukasz, Editorial Board Member, Pries-Heje, Jan, Editorial Board Member, Kreps, David, Editorial Board Member, Rettberg, Achim, Editorial Board Member, Furnell, Steven, Editorial Board Member, Mercier-Laurent, Eunika, Editorial Board Member, Winckler, Marco, Editorial Board Member, Malaka, Rainer, Editorial Board Member, Sharma, Sujeet K., editor, Dwivedi, Yogesh K., editor, Metri, Bhimaraya, editor, Lal, Banita, editor, and Elbanna, Amany, editor
- Published
- 2024
- Full Text
- View/download PDF
3. Riding a bicycle while building its wheels: the process of machine learning-based capability development and IT-business alignment practices
- Author
-
Mucha, Tomasz, Ma, Sijia, and Abhari, Kaveh
- Published
- 2023
- Full Text
- View/download PDF
4. Dynamic Topic Modelling of Online Discussions on the Russian War in Ukraine
- Author
-
Taras Ustyianovych, Nadiia Kasianchuk, Halina Falfushynska, Solomiia Fedushko, and Eduard Siemens
- Subjects
machine learning operations (mlops) ,social media discussions ,russian war in ukraine ,splunk enterprise ,latent dirichlet allocation (lda) ,Electronic computers. Computer science ,QA75.5-76.95 ,Technology - Abstract
The availability of robust end-to-end ML processes plays a crucial role in delivering an accurate and reliable system for real-time text data inference. In this paper, we present an approach to building machine learning operations (MLOps) and an observability application to perform topic modelling of online discussions in social media, here observed based on topics and threads related to the Russian war in Ukraine. Splunk Enterprise is the main tool and platform used throughout this research with its knowledge discovery, dashboarding, and alerting. 30GB of social media text data coming from a Russian social network VKontakte over the time line January 2022 to May 2023. Main inquiries included text mining and topic modelling, which we managed to perform over the observation period using Python frameworks, mainly gensim for text processing and MLflow for experiment management and logging. The Splunk architecture allowed us to ingest and analyse the results and prediction of ML experiments for dynamic topic modelling, and served as a MLOps solution. The designed set of five dashboards played a crucial role in determining the optimal model hyperparameters (number of topics, A-priori belief on document-topic distribution, number of total corpus passes) and drift detection which occurred almost every two-three weeks depending on the phase of the war. Our application assisted us with text analysis, discovering how events on the battlefield influenced social media discussions, and what post attributes contributed to a high user engagement. With our setup we were able to find out how antiwar hashtags have been used to promote misleading content actually supporting the war against Ukraine. The analysis of the researched discussions shows a trend where usage of adjectives decreased over time since the war has started, whereas an increase for nouns and verbs usage over time. Information distortion has steadily been present in the content leading to bias and misleading data in social media discussions.
- Published
- 2023
- Full Text
- View/download PDF
5. Role of Regulatory Sandboxes and MLOps for AI-Enabled Public Sector Services.
- Author
-
Gonzalez Torres, Ana Paula and Sawhney, Nitin
- Abstract
This paper discusses how innovations in public sector AI-based services must comply with the Artificial Intelligence Act (AI Act) regulatory frameworks while enabling experimentation and participation of diverse stakeholders throughout the Artificial Intelligence (AI) lifecycle. The paper examines the implications of the emerging regulation, AI regulatory sandboxes and Machine Learning Operations (MLOps) as tools that facilitate compliance while enabling co-learning and active participation of multiple stakeholders. We propose a framework that fosters experimentation with automation pipelines and continuous monitoring for the deployment of future public sector AI-based services in a regulatory-compliant and technically innovative manner. AI regulatory sandboxes can be beneficial as a space for contained experimentation that goes beyond regulatory considerations to specific experimentation with the implementation of ML frameworks. While the paper presents a framework based on emerging regulations, tools and practices pertaining to the responsible use of AI, this must be validated through pilot experimentation with public and private stakeholders and regulators in different areas of high-risk AI-based services. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Mobile advertisement campaigns for boosting in‐store visits: A design framework and case study.
- Author
-
Keshanian, Kimia, Ramasubbu, Narayan, and Dutta, Kaushik
- Subjects
CELL phone advertising ,LOCATION marketing ,MOBILE banking industry ,ADVERTISING ,TELEVISION advertising ,RATE of return ,TARGET marketing ,QUALITY function deployment - Abstract
Brick‐and‐mortar retailers seek higher foot traffic in their stores to improve their sales opportunities. In this quest, location‐based advertising on mobile devices has emerged as an important marketing tool for targeting potential customers. The design of such advertising campaigns is complex, and their effectiveness depends on the ability to collect and examine data that aids in targeting the right customers at the right time and place. We develop a campaign design framework that explicitly accounts for the costs of acquiring and utilizing targeting data and the heterogeneous effects of such data in affecting the performance outcomes of mobile advertising campaigns. We illustrate the application of our campaign design framework through a real‐world case study of a mobile advertising campaign undertaken by a large global retail firm. Our findings suggest that the optimal set of attributes to use for effectively targeting the potential customers of a brick‐and‐mortar retail store varies with the distance between the customers' current locations and that of the store. As a result, mobile campaign design approaches that utilize all or a naive subset of data attributes for targeted advertising yield lower levels of return on investments, relative to our proposed approach. Based on our results, we discuss implications for the design and deployment of mobile advertising campaigns and for further research on targeted advertising. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
7. Automated visual inspection of manufactured parts using deep convolutional neural networks and transfer learning.
- Author
-
Weiher, Karsten, Rieck, Sebastian, Pankrath, Hannes, Beuss, Florian, Geist, Michael, Sender, Jan, and Fluegge, Wilko
- Abstract
Most manufacturing processes involve some form of visual quality control of the produced parts. Automated solutions can reduce the required manual work significantly while increasing reliability. However, common obstacles to the construction of smart visual inspection systems are the complexity of the inspected parts, varying types of defects, and small datasets. In this study, we apply state-of-the-art convolutional neural networks to classify infrared images of thermal conductive components manufactured in a real factory setting. Typically, training deep neural architectures requires very large datasets, but this effect is mitigated by using transfer learning. The dataset consists of 6,000 images with 4,200 defect samples and 1,800 intact samples, including different types of flaws and component models. We present a concept for implementing the automated visual inspection system, including dataset preparation, model training, and the inline application. The goal is to establish a Human-in-the-Loop approach, that maximizes accuracy and safety while keeping the required human work at a minimum. A key finding of our research is that dataset preparation and cleaning had a greater impact on the classification accuracy than the optimal choice of the model or training parameters. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
8. Beyond MLOps: The Lifecycle of Machine Learning-based Solutions.
- Author
-
Mucha, Tomasz, Sijia Ma, and Abhari, Kaveh
- Subjects
INTERNATIONAL organization ,MACHINE learning ,ARTIFICIAL intelligence ,AUTOMATION ,SOCIOTECHNICAL systems - Abstract
Organizations increasingly use machine learning (ML) to transform their operations. The technical complexity and unique challenges of ML lead to the emergence of ML operations (MLOps) practices. However, the research on MLOps is in its infancy and is fragmented across disciplines. We extend and integrate these conversations by developing a framework that accounts for the technical, organizational, behavioral, and temporal aspects of the overarching ML-based solution lifecycle. We identify the key components of ML-based solution lifecycle and their configuration through an in-depth study of Finland’s Artificial Intelligence Accelerator (FAIA) and follow-up semi-structured interviews with experts from multiple international organizations outside FAIA. This study contributes to the recent IS literature concerned with the sociotechnical aspects of ML. We bring new insights into the discussion on organizational learning, conjoined agency, and automation and augmentation. These insights extend and complement MLOps practices, thereby helping organizations better realize the potential of ML technology. [ABSTRACT FROM AUTHOR]
- Published
- 2022
9. Puesta en producción de modelos de aprendizaje automático y administración de su ciclo de vida (MLOps)
- Author
-
Garrigós Guerrero, Francisco Javier, Martínez Álvarez, José Javier, Electrónica, Tecnología de Computadoras y Proyectos, García Espinosa, Guillermo, Garrigós Guerrero, Francisco Javier, Martínez Álvarez, José Javier, Electrónica, Tecnología de Computadoras y Proyectos, and García Espinosa, Guillermo
- Abstract
MLOps es una metodología para la ingeniería ML (Machine Learning) que unifica el desarrollo del sistema ML (el elemento ML) con las operaciones del sistema ML (el elemento Ops). Aboga por formalizar y (cuando sea beneficioso) automatizar los pasos críticos de la construcción del sistema ML. MLOps proporciona un conjunto de procesos estandarizados y capacidades tecnológicas para construir, implementar y poner en funcionamiento sistemas ML de forma rápida y confiable. MLOps admite el desarrollo y la implementación de ML de la misma manera que DevOps y DataOps admiten la ingeniería de aplicaciones y la ingeniería de datos (análisis). La diferencia es que cuando implementa un servicio web, le importa la resiliencia, las consultas por segundo, el equilibrio de carga, etc. Cuando implementa un modelo ML, también debe preocuparse por los cambios en los datos, los cambios en el modelo y los usuarios que intentan trabajar con el sistema. MLOps es una metodología absolutamente novedosa (2020) y de escasa implementación en el tejido empresarial, en parte por lo reciente de sus conceptos, y en parte por la falta de un ecosistema de aplicaciones y métodos perfectamente establecidos que resulten de confianza para las compañías. Por el contrario, el ecosistema de herramientas y metodologías existente es variado y disperso, sin un líder establecido. Todo ello justifica el interés de realizar en este proyecto un análisis de las herramientas disponibles, metodologías y flujos de trabajo, para establecer las opciones más adecuadas en función de diferentes usos y organizaciones (grupo de investigación, PIME, gran empresa, etc).
- Published
- 2023
10. Investigate the challenges and opportunities of MLOps
- Author
-
Yau, Ting Chun and Yau, Ting Chun
- Abstract
MLOps is becoming a widespread practice in modern machine learning and data science. The word ”MLOps” combines machine learning technology and business operation process. Many business companies are applying machine learning techniques to improve their business targets and increase their profits. However, machine learning tasks involve complex applications and many technical stakeholders to perform a single system. It is not easy for non-technical operation staff to understand and proceed with the data science and machine learning processes without the aid of technical stakeholders. The communication effort between different stakeholders costs highly since the entire machine learning and operation processes are redundant and complicated. Therefore, MLOps provides insight for businesses to simplify the system workflow. MLOps pipeline automation simplified the processes in data, model, and production perspectives. This project researches several kinds of literature to identify the process of MLOps, including the phases and processes of MLOps, the necessary components for pipeline automation, and the concept of continuous integration and continuous delivery with the aid of MLOps. Also, two methods were selected to introduce a general MLOps pipeline design and implementation and the software tools and technologies selected in each MLOps process. Finally, a comparison section was provided to evaluate different software tools and technologies in five standard criteria., MLOps är på väg att bli en utbredd praxis inom modern maskininlärning och datavetenskap. Ordet ”MLOps” kombinerar maskininlärningsteknik (machine learning technology) och affärsprocess (business operation process). Många företag tillämpar maskininlärningstekniker för att förbättra sina affärsmål och öka sin vinst. Maskininlärningsuppgifter involverar dock komplexa applikationer och många tekniska intressenter. Det är inte lätt för icke-teknisk driftpersonal att förstå och gå vidare med datavetenskaps- och maskininlärningsprocesser utan hjälp av tekniska intressenter. Kommunikationsarbetet mellan olika intressenter är dyrt eftersom maskininlärnings- och driftprocesserna är repetitiva och komplicerade. MLOps förser företag med insikter som förenklar systemets arbetsflöde. Pipelineautomation med MLOps har förenklat processerna ur data-, modell- och produktionsperspektiv. Detta projekt undersöker flera typer av litteratur för att identifiera processen som MLOps tillämpar, inklusive faserna och processerna för MLOps, de nödvändiga komponenterna för pipeline automation samt konceptet kontinuerlig integration och kontinuerlig leverans med hjälp av MLOps. Dessutom valdes två metoder ut för att introducera en allmän MLOps-pipelinedesign och - implementation samt de mjukvaruverktyg och teknologier som valdes i varje MLOps-process. Slutligen tillhandahölls ett jämförelseavsnitt för att utvärdera olika mjukvaruverktyg och teknologier utifrån fem standardkriterier.
- Published
- 2023
11. Undersök utmaningarna och möjligheterna med MLOps
- Author
-
Yau, Ting Chun
- Subjects
Computer and Information Sciences ,Pipeline Automation ,MLOps ,Kontinuerlig leverans ,Continuous Integration ,Machine Learning Operations (MLOps) ,Kontinuerlig integration ,Data- och informationsvetenskap ,Continuous Delivery - Abstract
MLOps is becoming a widespread practice in modern machine learning and data science. The word ”MLOps” combines machine learning technology and business operation process. Many business companies are applying machine learning techniques to improve their business targets and increase their profits. However, machine learning tasks involve complex applications and many technical stakeholders to perform a single system. It is not easy for non-technical operation staff to understand and proceed with the data science and machine learning processes without the aid of technical stakeholders. The communication effort between different stakeholders costs highly since the entire machine learning and operation processes are redundant and complicated. Therefore, MLOps provides insight for businesses to simplify the system workflow. MLOps pipeline automation simplified the processes in data, model, and production perspectives. This project researches several kinds of literature to identify the process of MLOps, including the phases and processes of MLOps, the necessary components for pipeline automation, and the concept of continuous integration and continuous delivery with the aid of MLOps. Also, two methods were selected to introduce a general MLOps pipeline design and implementation and the software tools and technologies selected in each MLOps process. Finally, a comparison section was provided to evaluate different software tools and technologies in five standard criteria. MLOps är på väg att bli en utbredd praxis inom modern maskininlärning och datavetenskap. Ordet ”MLOps” kombinerar maskininlärningsteknik (machine learning technology) och affärsprocess (business operation process). Många företag tillämpar maskininlärningstekniker för att förbättra sina affärsmål och öka sin vinst. Maskininlärningsuppgifter involverar dock komplexa applikationer och många tekniska intressenter. Det är inte lätt för icke-teknisk driftpersonal att förstå och gå vidare med datavetenskaps- och maskininlärningsprocesser utan hjälp av tekniska intressenter. Kommunikationsarbetet mellan olika intressenter är dyrt eftersom maskininlärnings- och driftprocesserna är repetitiva och komplicerade. MLOps förser företag med insikter som förenklar systemets arbetsflöde. Pipelineautomation med MLOps har förenklat processerna ur data-, modell- och produktionsperspektiv. Detta projekt undersöker flera typer av litteratur för att identifiera processen som MLOps tillämpar, inklusive faserna och processerna för MLOps, de nödvändiga komponenterna för pipeline automation samt konceptet kontinuerlig integration och kontinuerlig leverans med hjälp av MLOps. Dessutom valdes två metoder ut för att introducera en allmän MLOps-pipelinedesign och - implementation samt de mjukvaruverktyg och teknologier som valdes i varje MLOps-process. Slutligen tillhandahölls ett jämförelseavsnitt för att utvärdera olika mjukvaruverktyg och teknologier utifrån fem standardkriterier.
- Published
- 2023
12. Machine Learning Operations (MLOps) and DevOps Integration with Artificial Intelligence: Techniques for Automated Model Deployment and Management
- Author
-
Tatineni, Sumanth, Chinamanagonda, Sandeep, Tatineni, Sumanth, and Chinamanagonda, Sandeep
- Abstract
The burgeoning field of Artificial Intelligence (AI) is revolutionizing numerous industries, with machine learning (ML) models forming the core of many intelligent systems. However, transitioning effective ML models from development to production environments poses significant challenges. This research investigates the integration of Machine Learning Operations (MLOps) and DevOps principles, leveraging Artificial Intelligence (AI) to automate critical aspects of model deployment, version control, and lifecycle management. By streamlining the entire machine learning workflow, this approach aims to enhance the efficiency, reliability, and governance of AI-powered solutions. The paper commences with a comprehensive overview of MLOps and DevOps, highlighting their distinct yet complementary roles. MLOps encompasses a set of practices designed specifically for the unique challenges associated with the development, deployment, and management of ML models. These challenges include data versioning, model interpretability, performance monitoring, and drift detection. DevOps, on the other hand, focuses on fostering collaboration and communication between development and operations teams within the software development lifecycle. Its core principles of continuous integration/continuous delivery (CI/CD) facilitate rapid application delivery and infrastructure management. The paper then delves into the potential of AI for bridging the gap between MLOps and DevOps. AI techniques hold immense promise for automating various stages of the machine learning workflow. One crucial area of focus is automated model deployment. Traditionally, deploying ML models involves manual configuration and scripting, a time-consuming and error-prone process. AI-powered automation platforms can streamline this process by intelligently selecting target environments, provisioning resources, and configuring infrastructure based on model requirements. This not only reduces deployment time but also minimiz
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.