1. The identification of a key gene highlights macrocyclic ring's role in trichothecene toxicity.
- Author
-
McCormick SP, Cardoza RE, Martínez-Reyes N, Vermillion K, Busman M, Rodríguez-González Á, Casquero PA, Proctor RH, and Gutiérrez S
- Subjects
- Plant Diseases microbiology, Gene Deletion, Macrocyclic Compounds pharmacology, Macrocyclic Compounds chemistry, Macrocyclic Compounds metabolism, Metabolomics, Genes, Fungal, Gene Expression Profiling, Trichothecenes metabolism, Trichothecenes chemistry
- Abstract
Trichothecenes are toxins produced by certain species from several fungal genera, including Aspergillus, Fusarium, Isaria, Paramyrothecium, Stachybotrys, Trichoderma, and Trichothecium. These toxins are of interest because they contribute to the toxigenicity, plant pathogenicity, and/or biological control activities of some fungi. All trichothecenes have the same core (12,13-epoxytrichothec-9-ene or EPT) structure but can differ from one another by the presence or absence of a macrocyclic ring formed from polyketide and isoprenoid substituents esterified to carbon atoms 4 and 15 of EPT, respectively. Genes required for formation and some modifications of EPT have been elucidated, but almost nothing is known about genes specific to the formation of the macrocyclic ring. Therefore, we used genomic, transcriptomic, metabolomic, and gene deletion analyses to identify genes that are required specifically for the formation of the macrocyclic ring. These analyses identified one gene, TRI24, that is predicted to encode an acyltransferase and that is required for macrocyclic ring formation during biosynthesis of macrocyclic trichothecenes by the fungus Paramyrothecium roridum. In addition, a TRI24 deletion mutant of P. roridum caused less severe disease symptoms on common bean and had less antifungal activity than its wild-type progenitor strain. We propose that the reduced aggressiveness and antifungal activity of the mutant resulted from its inability to produce trichothecenes with a macrocyclic ring. To our knowledge, this is the first report of a gene required specifically for the formation of the macrocyclic ring of trichothecenes and that loss of the macrocyclic ring of trichothecenes can alter the biological activities of a fungus. KEY POINTS: • TRI24 gene is found in all known macrocyclic trichothecene-producing fungi. • A tri24-deletion mutant exhibits a reduction in antifungal and plant disease activities. • TRI24 is the first described gene specific to macrocyclic trichothecene biosynthesis., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF