4 results on '"Madumane, Kelebogile"'
Search Results
2. Potential Use of Compatible Osmolytes as Drought Tolerance Indicator in Local Watermelon (Citrullus lanatus) Landraces.
- Author
-
Sewelo, Lesego T., Madumane, Kelebogile, Nkane, Metseyabeng N., Tait, Motlalepula, and Malambane, Goitseone
- Subjects
DROUGHT tolerance ,WATERMELONS ,CHLOROPHYLL spectra ,ARID regions ,CITRULLINE ,CONTAINER gardening - Abstract
Watermelons are one of the most important crop species, and they are enjoyed across the globe; however, the cultivation of watermelon commercial varieties in arid regions is challenging, as they are highly susceptible to water deficit. Conversely, their wild relatives and traditional landraces have shown a higher tolerance to water deficit, which makes them important study material. Therefore, this study was undertaken to evaluate the potential roles of two compatible osmolytes (citrulline and arginine) in the tolerance of local watermelon accessions to drought stress. Four commonly cultivated watermelon accessions were used in this study to evaluate their response when exposed to water deficit stress. The accessions were planted in stress boxes in the greenhouse and allowed to grow until the fourth leaf was fully open and then the water deficit stress was initiated by withholding water for a period of nine days, before rewatering for three days. Data and leaf samples were collected at three-day intervals. The common drought indicators that were assessed, like chlorophyll fluorescence, showed that Clm-08 (wild watermelon) had significantly different results when compared to the other accessions; the Fv/Fm values for days 3, 6, and 9 were significantly higher than those of the other accessions, while phiNPQ was higher in the Clm-08 with average values of 0.41 and 0.41 on days 6 and 9 of the drought stress, respectively. This suggests that the wild watermelon responded differently to drought stress when compared with the other accessions. Arginine and citrulline are important osmolytes that play an important role in stress tolerance, and the results of the current study correlate with the common physiological indicators. The expression pattern for both the biochemical and molecular analyses of the two compatible osmolytes was higher in Clm-08 in comparison with that of the other accessions. The gene expressions of the enzymes in the citrulline and arginine pathways were higher in Clm-08; Cla022915 (CPS) recorded a 6-fold increase on day 6 and Cla002611 (ASS) recorded an 11-fold increase. This suggests that citrulline and arginine play an important role in watermelon tolerance to drought stress. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Morphological, Physiological, and Molecular Stomatal Responses in Local Watermelon Landraces as Drought Tolerance Mechanisms.
- Author
-
Madumane, Kelebogile, Sewelo, Lesego T., Nkane, Metseyabeng N., Batlang, Utlwang, and Malambane, Goitseone
- Subjects
DROUGHT tolerance ,WATERMELONS ,STOMATA ,DROUGHT-tolerant plants ,GENOTYPES - Abstract
Drought-tolerant plants have become a convenient model to study the mechanisms underlying drought tolerance in order to improve susceptible domesticated relatives. Various studies have shown that local landraces possess superior qualities that help them survive in harsh environmental conditions. One of the key mechanisms that helps with tolerance in crops is timely stomatal regulation. In this study, the physiological, morphological, and molecular stomatal responses in three drought-tolerant landraces (Clm-01–03) and hybrid (Clm-04) watermelons were evaluated under drought stress. The watermelon plants were grown under a water deficit (complete withholding of water) and non-stress conditions. The highest SPAD values were recorded for the Clm-03 and Clm-02 (50 ± 3) watermelon genotypes, and the lowest for Clm-04 (27 ± 0.37), showing this genotype's tolerance and ability to maintain its systems during drought stress. Fluorescence parameters also gave important clues to the tolerant genotypes of Clm-02 and Clm-03 under drought stress, while the domesticated genotype showed a slow response to fluorescence parameters, which could lead to damage to the photosynthesis apparatus. During the drought period, the wild watermelon was found to have a limited stomatal opening as the drought progressed, and on day 9, it had the smallest opening of 23.1 ± 1.2 µm compared to any other genotype; most importantly, upon re-watering, it showed more rapid recovery than any other genotype. This was also expressed by mRNA quantification of stomatal aperture TFs, with an eight-fold increase in Cla004380 TFs recorded for wild watermelon. All of these mechanisms have been attributed to the tolerance mechanisms of the drought-tolerant watermelon genotype. This study provides important insight into the stomatal responses of probable tolerant watermelon accessions and suggests that improving the stomatal aperture of susceptible domesticated species would also improve their tolerance. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review
- Author
-
Malambane, Goitseone, Madumane, Kelebogile, Sewelo, Lesego T., and Batlang, Utlwang
- Subjects
Plant Science - Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.