69 results on '"Magee DA"'
Search Results
2. An autologous fibrinogen-based adhesive for use in otologic surgery
- Author
-
Silberstein, LE, primary, Williams, LJ, additional, Hughlett, MA, additional, Magee, DA, additional, and Weisman, RA, additional
- Published
- 1988
- Full Text
- View/download PDF
3. Pan-genomic analysis of bovine monocyte-derived macrophage gene expression in response to in vitro infection with Mycobacterium avium subspecies paratuberculosis
- Author
-
MacHugh David E, Taraktsoglou Maria, Killick Kate E, Nalpas Nicolas C, Browne John A, DE Park Stephen, Hokamp Karsten, Gormley Eamonn, and Magee David A
- Subjects
Veterinary medicine ,SF600-1100 - Abstract
Abstract Mycobacterium avium subspecies paratuberculosis is the causative agent of Johne’s disease, an intestinal disease of ruminants with major economic consequences. Infectious bacilli are phagocytosed by host macrophages upon exposure where they persist, resulting in lengthy subclinical phases of infection that can lead to immunopathology and disease dissemination. Consequently, analysis of the macrophage transcriptome in response to M. avium subsp. paratuberculosis infection can provide valuable insights into the molecular mechanisms that underlie Johne’s disease. Here, we investigate pan-genomic gene expression in bovine monocyte-derived macrophages (MDM) purified from seven age-matched females, in response to in vitro infection with M. avium subsp. paratuberculosis (multiplicity of infection 2:1) at intervals of 2 hours, 6 hours and 24 hours post-infection (hpi). Differentially expressed genes were identified by comparing the transcriptomes of the infected MDM to the non-infected control MDM at each time point (adjusted P-value threshold ≤ 0.10). 1050 differentially expressed unique genes were identified 2 hpi, with 974 and 78 differentially expressed unique genes detected 6 and 24 hpi, respectively. Furthermore, in the infected MDM the number of upregulated genes exceeded the number of downregulated genes at each time point, with the fold-change in expression for the upregulated genes markedly higher than that for the downregulated genes. Inspection and systems biology analysis of the differentially expressed genes revealed an enrichment of genes involved in the inflammatory response, cell signalling pathways and apoptosis. The transcriptional changes associated with cellular signalling and the inflammatory response may reflect different immuno-modulatory mechanisms that underlie host-pathogen interactions during infection.
- Published
- 2012
- Full Text
- View/download PDF
4. Polymorphism discovery and allele frequency estimation using high-throughput DNA sequencing of target-enriched pooled DNA samples
- Author
-
Mullen Michael P, Creevey Christopher J, Berry Donagh P, McCabe Matt S, Magee David A, Howard Dawn J, Killeen Aideen P, Park Stephen D, McGettigan Paul A, Lucy Matt C, MacHugh David E, and Waters Sinead M
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. Results In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952) of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612) were intronic and 9% (n = 464) were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS). Significant (P < 0.01) mean allele frequency differentials between the low and high fertility groups were observed for 720 SNPs (58 NSS). Allele frequencies for 43 of the SNPs were also determined by genotyping the 150 individual animals (Sequenom® MassARRAY). No significant differences (P > 0.1) were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total). Conclusions The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving interval plausibly harbouring causative variants contributing to heritable variation. To our knowledge, this is the first report describing sequencing of targeted genomic regions in any livestock species using groups with divergent phenotypes for an economically important trait.
- Published
- 2012
- Full Text
- View/download PDF
5. Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes
- Author
-
Killick Kate E, Browne John A, Park Stephen DE, Magee David A, Martin Irene, Meade Kieran G, Gordon Stephen V, Gormley Eamonn, O'Farrelly Cliona, Hokamp Karsten, and MacHugh David E
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts. Results Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≤ 0.05); with the number of gene transcripts showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the Ingenuity® Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection.
- Published
- 2011
- Full Text
- View/download PDF
6. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits
- Author
-
Mullen Michael P, Howard Dawn J, Berry Donagh P, Berkowicz Erik W, Magee David A, Sikora Klaudia M, Evans Ross D, MacHugh David E, and Spillane Charles
- Subjects
Genetics ,QH426-470 - Abstract
Abstract Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following adjustment for multiple-testing, significant association (q ≤ 0.05) remained between the rs41694646 SNP and four traits (animal stature, body depth, direct calving difficulty and milk yield) only. Notably, the single SNP in the bovine NESP55 gene (rs41694656) was associated (P ≤ 0.01) with somatic cell count--an often-cited indicator of resistance to mastitis and overall health status of the mammary system--and previous studies have demonstrated that the chromosomal region to where the GNAS domain maps underlies an important quantitative trait locus for this trait. This association, however, was not significant after adjustment for multiple testing. The three remaining SNPs assayed were not associated with any of the performance traits analysed in this study. Analysis of all pairwise linkage disequilibrium (r2) values suggests that most allele substitution effects for the assayed SNPs observed are independent. Finally, the polymorphic coding SNP in the putative bovine NESP55 gene was used to test the imprinting status of this gene across a range of foetal bovine tissues. Conclusions Previous studies in other mammalian species have shown that DNA sequence variation within the imprinted GNAS gene cluster contributes to several physiological and metabolic disorders, including obesity in humans and mice. Similarly, the results presented here indicate an important role for the imprinted GNAS cluster in underlying complex performance traits in cattle such as animal growth, calving, fertility and health. These findings suggest that GNAS domain-associated polymorphisms may serve as important genetic markers for future livestock breeding programs and support previous studies that candidate imprinted loci may act as molecular targets for the genetic improvement of agricultural populations. In addition, we present new evidence that the bovine NESP55 gene is epigenetically regulated as a maternally expressed imprinted gene in placental and intestinal tissues from 8-10 week old bovine foetuses.
- Published
- 2011
- Full Text
- View/download PDF
7. Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle
- Author
-
Magee David A, Childs Stuart, Berry Donagh P, Daly Mairead, Beecher Christine, McCarthy Tommie V, and Giblin Linda
- Subjects
Genetics ,QH426-470 - Abstract
Abstract Background Mastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2) and chemokine receptor 1 (CXCR1) genes and mammary health indictor traits in (a) 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b) 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population. Results TLR4-2021 associated (P < 0.05) with both milk protein and fat percentage in late lactation (P < 0.01) within the cow cohort. No association was observed between this polymorphism and either yield or composition of milk within the bull population. CXCR1-777 significantly associated (P < 0.05) with fat yield in the bull population and tended to associate (P < 0.1) with somatic cell score (SCS) in the cows genotyped. CD14-1908 A allele was found to associate with increased (P < 0.05) milk fat and protein yield and also tended to associate with increased (P < 0.1) milk yield. A SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P < 0.05) was also identified. Conclusion Of the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.
- Published
- 2010
- Full Text
- View/download PDF
8. DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle
- Author
-
Mullen Michael P, Howard Dawn J, Berry Donagh P, Berkowicz Erik W, Sikora Klaudia M, Magee David A, Evans Ross D, Spillane Charles, and MacHugh David E
- Subjects
Genetics ,QH426-470 - Abstract
Abstract Background Studies in mice and humans have shown that imprinted genes, whereby expression from one of the two parentally inherited alleles is attenuated or completely silenced, have a major effect on mammalian growth, metabolism and physiology. More recently, investigations in livestock species indicate that genes subject to this type of epigenetic regulation contribute to, or are associated with, several performance traits, most notably muscle mass and fat deposition. In the present study, a candidate gene approach was adopted to assess 17 validated single nucleotide polymorphisms (SNPs) and their association with a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. These SNPs are located proximal to, or within, the bovine orthologs of eight genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) that have been shown to be imprinted in cattle or in at least one other mammalian species (i.e. human/mouse/pig/sheep). Results Heterozygosities for all SNPs analysed ranged from 0.09 to 0.46 and significant deviations from Hardy-Weinberg proportions (P ≤ 0.01) were observed at four loci. Phenotypic associations (P ≤ 0.05) were observed between nine SNPs proximal to, or within, six of the eight analysed genes and a number of performance traits evaluated, including milk protein percentage, somatic cell count, culled cow and progeny carcass weight, angularity, body conditioning score, progeny carcass conformation, body depth, rump angle, rump width, animal stature, calving difficulty, gestation length and calf perinatal mortality. Notably, SNPs within the imprinted paternally expressed gene 3 (PEG3) gene cluster were associated (P ≤ 0.05) with calving, calf performance and fertility traits, while a single SNP in the zinc finger protein 215 gene (ZNF215) was associated with milk protein percentage (P ≤ 0.05), progeny carcass weight (P ≤ 0.05), culled cow carcass weight (P ≤ 0.01), angularity (P ≤ 0.01), body depth (P ≤ 0.01), rump width (P ≤ 0.01) and animal stature (P ≤ 0.01). Conclusions Of the eight candidate bovine imprinted genes assessed, DNA sequence polymorphisms in six of these genes (CALCR, GRB10, PEG3, RASGRF1, ZIM2 and ZNF215) displayed associations with several of the phenotypes included for analyses. The genotype-phenotype associations detected here are further supported by the biological function of these six genes, each of which plays important roles in mammalian growth, development and physiology. The associations between SNPs within the imprinted PEG3 gene cluster and traits related to calving, calf performance and gestation length suggest that this domain on chromosome 18 may play a role regulating pre-natal growth and development and fertility. SNPs within the bovine ZNF215 gene were associated with bovine growth and body conformation traits and studies in humans have revealed that the human ZNF215 ortholog belongs to the imprinted gene cluster associated with Beckwith-Wiedemann syndrome--a genetic disorder characterised by growth abnormalities. Similarly, the data presented here suggest that the ZNF215 gene may have an important role in regulating bovine growth. Collectively, our results support previous work showing that (candidate) imprinted genes/loci contribute to heritable variation in bovine performance traits and suggest that DNA sequence polymorphisms within these genes/loci represents an important reservoir of genomic markers for future genetic improvement of dairy and beef cattle populations.
- Published
- 2010
- Full Text
- View/download PDF
9. Lighting during grow-out and Salmonella in broiler flocks
- Author
-
Bailey Richard H, Magee Danny, Ann Hubbard Sue, Byrd J Allen, Volkova Victoriya V, and Wills Robert W
- Subjects
Veterinary medicine ,SF600-1100 - Abstract
Abstract Background Lighting is used during conventional broiler grow-out to modify bird behaviour to reach the goals of production and improve bird welfare. The protocols for lighting intensity vary. In a field study, we evaluated if the lighting practices impact the burden of Salmonella in broiler flocks. Methods Conventional grow-out flocks reared in the states of Alabama, Mississippi and Texas, USA in 2003 to 2006 were sampled 1 week before harvest (n = 58) and upon arrival for processing (n = 56) by collecting feathered carcass rinsate, crop and one cecum from each of 30 birds, and during processing by collecting rinsate of 30 carcasses at pre-chilling (n = 56) and post-chilling points (n = 54). Litter samples and drag swabs of litter were collected from the grow-out houses after bird harvest (n = 56). Lighting practices for these flocks were obtained with a questionnaire completed by the growers. Associations between the lighting practices and the burden of Salmonella in the flocks were tested while accounting for variation between the grow-out farms, their production complexes and companies. Results Longer relative duration of reduced lights during the grow-out period was associated with reduced detection of Salmonella on the exterior of birds 1 week before harvest and on the broiler carcasses at the post-chilling point of processing. In addition, starting reduced lights for ≥18 hours per day later in the grow-out period was associated with decreased detection of Salmonella on the exterior of broilers arriving for processing and in the post-harvest drag swabs of litter from the grow-out house. Conclusions The results of this field study show that lighting practices implemented during broiler rearing can impact the burden of Salmonella in the flock. The underlying mechanisms are likely to be interactive.
- Published
- 2010
- Full Text
- View/download PDF
10. Diagnosis, treatment and management of lipodystrophy: the physician perspective on the patient journey.
- Author
-
Patni N, Chard C, Araújo-Vilar D, Phillips H, Magee DA, and Akinci B
- Subjects
- Humans, Female, Male, Quality of Life, Physicians, Surveys and Questionnaires, Leptin therapeutic use, Leptin metabolism, Leptin analogs & derivatives, Lipodystrophy diagnosis, Lipodystrophy therapy
- Abstract
Background: Lipodystrophy syndromes are a heterogeneous group of rare, life-limiting diseases characterized by a selective loss of adipose tissue and severe metabolic complications. There is a paucity of information describing the experiences and challenges faced by physicians who have seen and treated patients with lipodystrophy. This study aimed to provide a better understanding of the physician's perspective regarding the patient journey in lipodystrophy, including diagnosis, the burden of disease, and treatment approaches., Methods: Thirty-three physicians from six countries who had seen or treated patients with lipodystrophy were interviewed using a semi-structured questionnaire. Interviews were transcribed, anonymized, and analyzed for themes and trends. Four main themes were developed: (1) the diagnostic journey in lipodystrophy including the disease features or 'triggers' that result in the onward referral of patients to specialist medical centers with experience in managing lipodystrophy; (2) the impact of lipodystrophy on patient quality of life (QoL); (3) the use of standard therapies and leptin replacement therapy (metreleptin) in lipodystrophy, and (4) barriers to metreleptin use., Results: Participants reported that, due to their rarity and phenotypic heterogeneity, lipodystrophy cases are frequently unrecognized, leading to delays in diagnosis and medical intervention. Early consultation with multidisciplinary specialist medical teams was recommended for suspected lipodystrophy cases. The development and progression of metabolic complications were identified as key triggers for the referral of patients to specialist centers for follow-up care. Participants emphasized the impact of lipodystrophy on patient QoL, including effects on mental health and self-image. Although participants routinely used standard medical therapies to treat specific metabolic complications associated with lipodystrophy, it was acknowledged that metreleptin was typically required in patients with congenital generalized lipodystrophy and in some acquired generalized and partial lipodystrophy cases. A lack of experience among some participants and restrictions to access remained as barriers to metreleptin use., Conclusions: To our knowledge, this is one of the first studies describing the qualitative experiences of physicians regarding the diagnosis and management of lipodystrophy. Other physician-centered studies may help increase the awareness of lipodystrophy among the wider medical community and support clinical approaches to this rare disease., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
11. High-resolution transcriptomics of bovine purified protein derivative-stimulated peripheral blood from cattle infected with Mycobacterium bovis across an experimental time course.
- Author
-
Correia CN, McHugo GP, Browne JA, McLoughlin KE, Nalpas NC, Magee DA, Whelan AO, Villarreal-Ramos B, Vordermeier HM, Gormley E, Gordon SV, and MacHugh DE
- Subjects
- Animals, Antigens, Bacterial, Biomarkers, Cattle, Interferons, Lectins, C-Type, Receptors, Cytokine, Transcription Factors, Transcriptome, Tuberculin, Anti-Infective Agents, Mycobacterium bovis, Mycobacterium tuberculosis, Tuberculosis, Bovine diagnosis, Tuberculosis, Bovine genetics
- Abstract
Objectives: Improved bovine tuberculosis (bTB) diagnostics with higher sensitivity and specificity are urgently required. A better understanding of the peripheral blood transcriptional response of Mycobacterium bovis-infected animals after bovine purified protein derivative (PPD-b) stimulation of whole blood-an important component of current bTB diagnostics-will provide new information for development of better diagnostics., Methods: RNA sequencing (RNA-seq) was used to study the peripheral blood transcriptome after stimulation with PPD-b across four time points (-1 wk pre-infection, and +1 wk, +2 wk, and +10 wk post-infection) from a 14-week M. bovis infection time course experiment with ten age-matched Holstein-Friesian cattle., Results: In vitro PPD-b stimulation of peripheral blood from M. bovis-infected and non-infected cattle elicited a strong transcriptional response. Comparison of PPD-b stimulated, and unstimulated samples revealed higher expression of genes encoding cytokine receptors, transcription factors, and interferon-inducible proteins. Lower expression was seen for genes encoding proteins involved in antimicrobial activity, C-type lectin receptors, inhibition of signal transduction, and genes encoding metal ion transporters., Conclusions: A transcriptional signature associated with the peripheral blood response to PPD-b stimulation consisting of 170 genes was identified exclusively in the post-infection time points. Therefore, this represents a panel of potential biomarkers of M. bovis infection., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
12. RNA-Seq Transcriptome Analysis of Peripheral Blood From Cattle Infected With Mycobacterium bovis Across an Experimental Time Course.
- Author
-
McLoughlin KE, Correia CN, Browne JA, Magee DA, Nalpas NC, Rue-Albrecht K, Whelan AO, Villarreal-Ramos B, Vordermeier HM, Gormley E, Gordon SV, and MacHugh DE
- Abstract
Bovine tuberculosis, caused by infection with members of the Mycobacterium tuberculosis complex, particularly Mycobacterium bovis , is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including RNA sequencing, has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analysed the transcriptome of bovine whole peripheral blood samples collected at -1 week pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points. Differentially expressed genes were catalogued and evaluated at each post-infection time point relative to the -1 week pre-infection time point and used for the identification of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially expressed gene sets were also used for examination of cellular pathways associated with the host response to M. bovis infection, construction of de novo gene interaction networks enriched for host differentially expressed genes, and time-series analyses to identify functionally important groups of genes displaying similar patterns of expression across the infection time course. A notable outcome of these analyses was identification of a 19-gene transcriptional biosignature of infection consisting of genes increased in expression across the time course from +1 week to +12 weeks post-infection., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 McLoughlin, Correia, Browne, Magee, Nalpas, Rue-Albrecht, Whelan, Villarreal-Ramos, Vordermeier, Gormley, Gordon and MacHugh.)
- Published
- 2021
- Full Text
- View/download PDF
13. A Population Genomics Analysis of the Native Irish Galway Sheep Breed.
- Author
-
McHugo GP, Browett S, Randhawa IAS, Howard DJ, Mullen MP, Richardson IW, Park SDE, Magee DA, Scraggs E, Dover MJ, Correia CN, Hanrahan JP, and MacHugh DE
- Abstract
The Galway sheep population is the only native Irish sheep breed and this livestock genetic resource is currently categorised as 'at-risk'. In the present study, comparative population genomics analyses of Galway sheep and other sheep populations of European origin were used to investigate the microevolution and recent genetic history of the breed. These analyses support the hypothesis that British Leicester sheep were used in the formation of the Galway. When compared to conventional and endangered breeds, the Galway breed was intermediate in effective population size, genomic inbreeding and runs of homozygosity. This indicates that, although the Galway breed is declining, it is still relatively genetically diverse and that conservation and management plans informed by genomic information may aid its recovery. The Galway breed also exhibited distinct genomic signatures of artificial or natural selection when compared to other breeds, which highlighted candidate genes that may be involved in production and health traits., (Copyright © 2019 McHugo, Browett, Randhawa, Howard, Mullen, Richardson, Park, Magee, Scraggs, Dover, Correia, Hanrahan and MacHugh.)
- Published
- 2019
- Full Text
- View/download PDF
14. The bovine alveolar macrophage DNA methylome is resilient to infection with Mycobacterium bovis.
- Author
-
O'Doherty AM, Rue-Albrecht KC, Magee DA, Ahting S, Irwin RE, Hall TJ, Browne JA, Nalpas NC, Walsh CP, Gordon SV, Wojewodzic MW, and MacHugh DE
- Subjects
- Animals, Cattle, CpG Islands, Epigenesis, Genetic, High-Throughput Nucleotide Sequencing, Host-Pathogen Interactions immunology, Macrophages, Alveolar immunology, Macrophages, Alveolar microbiology, Male, Sulfites chemistry, Transcriptome, Tuberculosis, Bovine immunology, Tuberculosis, Bovine microbiology, Whole Genome Sequencing, DNA Methylation, Epigenome, Host-Pathogen Interactions genetics, Macrophages, Alveolar metabolism, Mycobacterium bovis immunology, Tuberculosis, Bovine genetics
- Abstract
DNA methylation is pivotal in orchestrating gene expression patterns in various mammalian biological processes. Perturbation of the bovine alveolar macrophage (bAM) transcriptome, due to Mycobacterium bovis (M. bovis) infection, has been well documented; however, the impact of this intracellular pathogen on the bAM epigenome has not been determined. Here, whole genome bisulfite sequencing (WGBS) was used to assess the effect of M. bovis infection on the bAM DNA methylome. The methylomes of bAM infected with M. bovis were compared to those of non-infected bAM 24 hours post-infection (hpi). No differences in DNA methylation (CpG or non-CpG) were observed. Analysis of DNA methylation at proximal promoter regions uncovered >250 genes harbouring intermediately methylated (IM) promoters (average methylation of 33-66%). Gene ontology analysis, focusing on genes with low, intermediate or highly methylated promoters, revealed that genes with IM promoters were enriched for immune-related GO categories; this enrichment was not observed for genes in the high or low methylation groups. Targeted analysis of genes in the IM category confirmed the WGBS observation. This study is the first in cattle examining genome-wide DNA methylation at single nucleotide resolution in an important bovine cellular host-pathogen interaction model, providing evidence for IM promoter methylation in bAM.
- Published
- 2019
- Full Text
- View/download PDF
15. RNA Sequencing (RNA-Seq) Reveals Extremely Low Levels of Reticulocyte-Derived Globin Gene Transcripts in Peripheral Blood From Horses ( Equus caballus ) and Cattle ( Bos taurus ).
- Author
-
Correia CN, McLoughlin KE, Nalpas NC, Magee DA, Browne JA, Rue-Albrecht K, Gordon SV, and MacHugh DE
- Abstract
RNA-seq has emerged as an important technology for measuring gene expression in peripheral blood samples collected from humans and other vertebrate species. In particular, transcriptomics analyses of whole blood can be used to study immunobiology and develop novel biomarkers of infectious disease. However, an obstacle to these methods in many mammalian species is the presence of reticulocyte-derived globin mRNAs in large quantities, which can complicate RNA-seq library sequencing and impede detection of other mRNA transcripts. A range of supplementary procedures for targeted depletion of globin transcripts have, therefore, been developed to alleviate this problem. Here, we use comparative analyses of RNA-seq data sets generated from human, porcine, equine, and bovine peripheral blood to systematically assess the impact of globin mRNA on routine transcriptome profiling of whole blood in cattle and horses. The results of these analyses demonstrate that total RNA isolated from equine and bovine peripheral blood contains very low levels of globin mRNA transcripts, thereby negating the need for globin depletion and greatly simplifying blood-based transcriptomic studies in these two domestic species.
- Published
- 2018
- Full Text
- View/download PDF
16. Intragenic sequences in the trophectoderm harbour the greatest proportion of methylation errors in day 17 bovine conceptuses generated using assisted reproductive technologies.
- Author
-
O'Doherty AM, McGettigan P, Irwin RE, Magee DA, Gagne D, Fournier E, Al-Naib A, Sirard MA, Walsh CP, Robert C, and Fair T
- Subjects
- Animals, Genetic Loci genetics, Cattle embryology, Cattle genetics, DNA Methylation, Reproductive Techniques, Assisted, Trophoblasts metabolism
- Abstract
Background: Assisted reproductive technologies (ART) are widely used to treat fertility issues in humans and for the production of embryos in mammalian livestock. The use of these techniques, however, is not without consequence as they are often associated with inauspicious pre- and postnatal outcomes including premature birth, intrauterine growth restriction and increased incidence of epigenetic disorders in human and large offspring syndrome in cattle. Here, global DNA methylation profiles in the trophectoderm and embryonic discs of in vitro produced (IVP), superovulation-derived (SOV) and unstimulated, synchronised control day 17 bovine conceptuses (herein referred to as AI) were interrogated using the EmbryoGENE DNA Methylation Array (EDMA). Pyrosequencing was used to validate four loci identified as differentially methylated on the array and to assess the differentially methylated regions (DMRs) of six imprinted genes in these conceptuses. The impact of embryo-production induced DNA methylation aberrations was determined using Ingenuity Pathway Analysis, shedding light on the potential functional consequences of these differences., Results: Of the total number of differentially methylated loci identified (3140) 77.3 and 22.7% were attributable to SOV and IVP, respectively. Differential methylation was most prominent at intragenic sequences within the trophectoderm of IVP and SOV-derived conceptuses, almost a third (30.8%) of the differentially methylated loci mapped to intragenic regions. Very few differentially methylated loci were detected in embryonic discs (ED); 0.16 and 4.9% of the differentially methylated loci were located in the ED of SOV-derived and IVP conceptuses, respectively. The overall effects of SOV and IVP on the direction of methylation changes were associated with increased methylation; 70.6% of the differentially methylated loci in SOV-derived conceptuses and 57.9% of the loci in IVP-derived conceptuses were more methylated compared to AI-conceptuses. Ontology analysis of probes associated with intragenic sequences suggests enrichment for terms associated with cancer, cell morphology and growth., Conclusion: By examining (1) the effects of superovulation and (2) the effects of an in vitro system (oocyte maturation, fertilisation and embryo culture) we have identified that the assisted reproduction process of superovulation alone has the largest impact on the DNA methylome of subsequent embryos.
- Published
- 2018
- Full Text
- View/download PDF
17. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli.
- Author
-
Malone KM, Rue-Albrecht K, Magee DA, Conlon K, Schubert OT, Nalpas NC, Browne JA, Smyth A, Gormley E, Aebersold R, MacHugh DE, and Gordon SV
- Subjects
- Animals, Cattle, Humans, Proteomics, Immunity, Innate, Macrophages, Alveolar metabolism, Macrophages, Alveolar microbiology, Mycobacterium bovis genetics, Mycobacterium bovis immunology, Mycobacterium tuberculosis genetics, Mycobacterium tuberculosis immunology, Transcriptome, Tuberculosis, Bovine genetics, Tuberculosis, Bovine immunology, Tuberculosis, Pulmonary genetics, Tuberculosis, Pulmonary immunology, Tuberculosis, Pulmonary microbiology
- Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.
- Published
- 2018
- Full Text
- View/download PDF
18. Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed.
- Author
-
Browett S, McHugo G, Richardson IW, Magee DA, Park SDE, Fahey AG, Kearney JF, Correia CN, Randhawa IAS, and MacHugh DE
- Abstract
Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size ( N
e ) revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity ( FROH ) showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland.- Published
- 2018
- Full Text
- View/download PDF
19. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle.
- Author
-
Upadhyay MR, Chen W, Lenstra JA, Goderie CRJ, MacHugh DE, Park SDE, Magee DA, Matassino D, Ciani F, Megens HJ, van Arendonk JAM, and Groenen MAM
- Abstract
This corrects the article DOI: 10.1038/hdy.2016.79.
- Published
- 2017
- Full Text
- View/download PDF
20. Genome-Wide microRNA Binding Site Variation between Extinct Wild Aurochs and Modern Cattle Identifies Candidate microRNA-Regulated Domestication Genes.
- Author
-
Braud M, Magee DA, Park SD, Sonstegard TS, Waters SM, MacHugh DE, and Spillane C
- Abstract
The domestication of cattle from the now-extinct wild aurochs ( Bos primigenius ) involved selection for physiological and behavioral traits, with underlying genetic factors that remain largely unknown. Non-coding microRNAs have emerged as key regulators of the spatio-temporal expression of target genes controlling mammalian growth and development, including in livestock species. During the domestication process, selection of mutational changes in miRNAs and/or miRNA binding sites could have provided a mechanism to generate some of the traits that differentiate domesticated cattle from wild aurochs. To investigate this, we analyzed the open reading frame DNA sequence of 19,994 orthologous protein-coding gene pairs from extant Bos taurus genomes and a single extinct B. primigenius genome. We identified miRNA binding site polymorphisms in the 3' UTRs of 1,620 of these orthologous genes. These 1,620 genes with altered miRNA binding sites between the B. taurus and B. primigenius lineages represent candidate domestication genes. Using a novel Score Site ratio metric we have ranked these miRNA-regulated genes according to the extent of divergence between miRNA binding site presence, frequency and copy number between the orthologous genes from B. taurus and B. primigenius. This provides an unbiased approach to identify cattle genes that have undergone the most changes in miRNA binding (i.e., regulation) between the wild aurochs and modern-day cattle breeds. In addition, we demonstrate that these 1,620 candidate domestication genes are enriched for roles in pigmentation, fertility, neurobiology, metabolism, immunity and production traits (including milk quality and feed efficiency). Our findings suggest that directional selection of miRNA regulatory variants was important in the domestication and subsequent artificial selection that gave rise to modern taurine cattle.
- Published
- 2017
- Full Text
- View/download PDF
21. Iodine supplementation of the pregnant dam alters intestinal gene expression and immunoglobulin uptake in the newborn lamb.
- Author
-
McGovern FM, Magee DA, Browne JA, MacHugh DE, and Boland TM
- Subjects
- Animals, Animals, Newborn immunology, Colostrum immunology, Diet veterinary, Female, Immunoglobulin G immunology, Immunoglobulin G metabolism, Intestines physiology, Iodine metabolism, Parturition, Postpartum Period, Pregnancy, Animals, Newborn physiology, Colostrum metabolism, Dietary Supplements, Iodine pharmacology, Maternal Nutritional Physiological Phenomena, Sheep physiology
- Abstract
Excess iodine intake by the pregnant dam reduces lamb serum antibody concentration, specifically immunoglobulin G (IgG). An experiment was conducted to investigate the mechanisms under pinning the reduced serum IgG concentration at 24 h postpartum in the progeny of iodine supplemented dams. Forty-five mature twin bearing ewes (n=15/treatment) were allocated to one of three dietary treatments as follows: basal diet (Control); basal diet plus 26.6 mg of iodine per ewe per day as calcium iodate (CaIO3); or potassium iodide (KI). Ewes were individually housed and fed from d 119 of gestation until parturition. All lambs received colostrum at 1, 10 and 18 h postpartum via stomach tube. At 1 h postpartum lambs from the control and an iodine supplemented treatment (n=10 per treatment from control and CaIO3) were euthanised before colostrum consumption and ileal segments isolated to determine the gene expression profile of a panel of genes identified as having a role in antibody transfer. Preceding euthanasia, lambs were blood sampled for determination of serum IgG, total thyroxine and free tri-iodothyronine concentrations. Progeny of CaIO3 supplemented dams had lower tri-iodothyronine concentrations (P<0.01) at 1 h postpartum and lower serum IgG concentrations (P<0.001) at 24 h postpartum when compared with the progeny of control dams. Iodine (CaIO3) supplementation of the dam increased the relative expression (P<0.05) of the B2M, PIGR and MYC genes in the ileum of the lamb, before colostrum consumption; while the expression of THRB declined when compared with the progeny of C dams (P<0.01). In conclusion, the results of this study show that it is the actual inclusion of excess iodine in the diet of the ewe, regardless of the carrier element, that negatively affects passive transfer in the newborn lamb. This study presents novel data describing the relationship between maternal iodine nutrition and its effect on the thyroid hormone status and subsequent gene expression in the newborn lamb; which results in a failure of passive transfer and a decline in serum IgG concentration.
- Published
- 2016
- Full Text
- View/download PDF
22. GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data.
- Author
-
Rue-Albrecht K, McGettigan PA, Hernández B, Nalpas NC, Magee DA, Parnell AC, Gordon SV, and MacHugh DE
- Subjects
- RNA, Messenger, Computational Biology methods, Gene Ontology, Software, Supervised Machine Learning, Transcriptome
- Abstract
Background: Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors., Results: We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples., Conclusions: GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.
- Published
- 2016
- Full Text
- View/download PDF
23. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle.
- Author
-
Park SD, Magee DA, McGettigan PA, Teasdale MD, Edwards CJ, Lohan AJ, Murphy A, Braud M, Donoghue MT, Liu Y, Chamberlain AT, Rue-Albrecht K, Schroeder S, Spillane C, Tai S, Bradley DG, Sonstegard TS, Loftus BJ, and MacHugh DE
- Subjects
- Animals, England, Europe, Extinction, Biological, Genetic Variation, Genomics, Phylogeography, Ruminants classification, Ruminants genetics, Sequence Analysis, DNA, Cattle genetics, Evolution, Molecular
- Abstract
Background: Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals., Results: Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle., Conclusions: This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought.
- Published
- 2015
- Full Text
- View/download PDF
24. RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.
- Author
-
Nalpas NC, Magee DA, Conlon KM, Browne JA, Healy C, McLoughlin KE, Rue-Albrecht K, McGettigan PA, Killick KE, Gormley E, Gordon SV, and MacHugh DE
- Subjects
- Animals, Cats, Cattle, Computational Biology methods, DEAD-box RNA Helicases metabolism, Gene Expression Profiling, Gene Expression Regulation, High-Throughput Nucleotide Sequencing, Host-Pathogen Interactions immunology, Lysosomes metabolism, Macrophages, Alveolar immunology, Male, Molecular Sequence Annotation, Receptors, Cytoplasmic and Nuclear metabolism, Reproducibility of Results, Signal Transduction, Transcriptome, Tuberculosis, Bovine microbiology, Host-Pathogen Interactions genetics, Macrophages, Alveolar metabolism, Macrophages, Alveolar microbiology, Mycobacterium bovis immunology, Tuberculosis, Bovine genetics, Tuberculosis, Bovine immunology
- Abstract
Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.
- Published
- 2015
- Full Text
- View/download PDF
25. Genomic imprinting effects on complex traits in domesticated animal species.
- Author
-
O'Doherty AM, MacHugh DE, Spillane C, and Magee DA
- Abstract
Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs.
- Published
- 2015
- Full Text
- View/download PDF
26. DNA methylation dynamics at imprinted genes during bovine pre-implantation embryo development.
- Author
-
O'Doherty AM, Magee DA, O'Shea LC, Forde N, Beltman ME, Mamo S, and Fair T
- Subjects
- Animals, Cattle, Blastocyst, DNA Methylation, Embryonic Development genetics, Genomic Imprinting
- Abstract
Background: In mammals, maternal differentially methylated regions (DMRs) acquire DNA methylation during the postnatal growth stage of oogenesis, with paternal DMRs acquiring DNA methylation in the perinatal prospermatagonia. Following fusion of the male and female gametes, it is widely accepted that murine DNA methylation marks at the DMRs of imprinted genes are stable through embryogenesis and early development, until they are reprogrammed in primordial germ cells. However, the DNA methylation dynamics at DMRs of bovine imprinted genes during early stages of development remains largely unknown. The objective of this investigation was to analyse the methylation dynamics at imprinted gene DMRs during bovine embryo development, from blastocyst stage until implantation., Results: To this end, pyrosequencing technology was used to quantify DNA methylation at DMR-associated CpG dinucleotides of six imprinted bovine genes (SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19) using bisulfite-modified genomic DNA isolated from individual blastocysts (Day 7); ovoid embryos (Day 14); filamentous embryos (Day 17) and implanting conceptuses (Day 25). For all genes, the degree of DNA methylation was most variable in Day 7 blastocysts compared to later developmental stages (P < 0.05). Furthermore, mining of RNA-seq transcriptomic data and western blot analysis revealed a specific window of expression of DNA methylation machinery genes (including DNMT3A, DNMT3B, TRIM28/KAP1 and DNMT1) and proteins (DNMT3A, DNMT3A2 and DNMT3B) by bovine embryos coincident with imprint stabilization., Conclusion: The findings of this study suggest that the DNA methylation status of bovine DMRs might be variable during the early stages of embryonic development, possibly requiring an active period of imprint stabilization.
- Published
- 2015
- Full Text
- View/download PDF
27. Analysis of the Bovine Monocyte-Derived Macrophage Response to Mycobacterium avium Subspecies Paratuberculosis Infection Using RNA-seq.
- Author
-
Casey ME, Meade KG, Nalpas NC, Taraktsoglou M, Browne JA, Killick KE, Park SD, Gormley E, Hokamp K, Magee DA, and MacHugh DE
- Abstract
Johne's disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP), is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne's disease. Here, we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM) transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a 6-h infection time course with non-infected controls. We observed 245 and 574 differentially expressed (DE) genes in MAP-infected versus non-infected control samples (adjusted P value ≤0.05) at 2 and 6 h post-infection, respectively. Functional analyses of these DE genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix(®) microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.
- Published
- 2015
- Full Text
- View/download PDF
28. MicroRNA profiling of the bovine alveolar macrophage response to Mycobacterium bovis infection suggests pathogen survival is enhanced by microRNA regulation of endocytosis and lysosome trafficking.
- Author
-
Vegh P, Magee DA, Nalpas NC, Bryan K, McCabe MS, Browne JA, Conlon KM, Gordon SV, Bradley DG, MacHugh DE, and Lynn DJ
- Subjects
- Animals, Cattle, Cells, Cultured, Down-Regulation, Endocytosis immunology, Gene Expression genetics, Gene Expression immunology, Gene Expression Profiling methods, Immunity, Innate immunology, Interleukin-1 Receptor-Associated Kinases antagonists & inhibitors, Lysosomes immunology, Male, MicroRNAs genetics, MicroRNAs immunology, RNA, Bacterial genetics, RNA, Bacterial immunology, Real-Time Polymerase Chain Reaction methods, Sequence Analysis, RNA methods, Transfection methods, Transforming Growth Factor beta2 antagonists & inhibitors, Up-Regulation, Macrophages, Alveolar immunology, MicroRNAs physiology, Mycobacterium bovis immunology, Tuberculosis, Bovine immunology, Tuberculosis, Pulmonary immunology
- Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis, a major problem for global agriculture, spreads via an airborne route and is taken up by alveolar macrophages (AM) in the lung. Here, we describe the first next-generation sequencing (RNA-seq) approach to temporally profile miRNA expression in primary bovine AMs post-infection with M. bovis. One, six, and forty miRNAs were identified as significantly differentially expressed at 2, 24 and 48 h post-infection, respectively. The differential expression of three miRNAs (bta-miR-142-5p, bta-miR-146a, and bta-miR-423-3p) was confirmed by RT-qPCR. Pathway analysis of the predicted mRNA targets of differentially expressed miRNAs suggests that these miRNAs preferentially target several pathways that are functionally relevant for mycobacterial pathogenesis, including endocytosis and lysosome trafficking, IL-1 signalling and the TGF-β pathway. Over-expression studies using a bovine macrophage cell-line (Bomac) reveal the targeting of two key genes in the innate immune response to M. bovis, IL-1 receptor-associated kinase 1 (IRAK1) and TGF-β receptor 2 (TGFBR2), by miR-146. Taken together, our study suggests that miRNAs play a key role in tuning the complex interplay between M. bovis survival strategies and the host immune response.
- Published
- 2015
- Full Text
- View/download PDF
29. Definition of the cattle killer cell Ig-like receptor gene family: comparison with aurochs and human counterparts.
- Author
-
Sanderson ND, Norman PJ, Guethlein LA, Ellis SA, Williams C, Breen M, Park SD, Magee DA, Babrzadeh F, Warry A, Watson M, Bradley DG, MacHugh DE, Parham P, and Hammond JA
- Subjects
- Animals, Cattle, Chromosome Mapping, Chromosomes, Mammalian, Cloning, Molecular, Evolution, Molecular, Gene Library, Genetic Loci, Genome, Haplotypes, Humans, Immunoglobulins genetics, Molecular Sequence Data, Phenotype, Phylogeny, Receptors, IgG metabolism, Receptors, KIR classification, Receptors, KIR metabolism, Receptors, Natural Killer Cell metabolism, Sequence Analysis, DNA, Signal Transduction, Telomere, Multigene Family, Receptors, KIR genetics
- Abstract
Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig-like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle., (Copyright © 2014 The Authors.)
- Published
- 2014
- Full Text
- View/download PDF
30. Comparative functional genomics and the bovine macrophage response to strains of the mycobacterium genus.
- Author
-
Rue-Albrecht K, Magee DA, Killick KE, Nalpas NC, Gordon SV, and MacHugh DE
- Abstract
Mycobacterial infections are major causes of morbidity and mortality in cattle and are also potential zoonotic agents with implications for human health. Despite the implementation of comprehensive animal surveillance programs, many mycobacterial diseases have remained recalcitrant to eradication in several industrialized countries. Two major mycobacterial pathogens of cattle are Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis (MAP), the causative agents of bovine tuberculosis (BTB) and Johne's disease (JD), respectively. BTB is a chronic, granulomatous disease of the respiratory tract that is spread via aerosol transmission, while JD is a chronic granulomatous disease of the intestines that is transmitted via the fecal-oral route. Although these diseases exhibit differential tissue tropism and distinct complex etiologies, both M. bovis and MAP infect, reside, and replicate in host macrophages - the key host innate immune cell that encounters mycobacterial pathogens after initial exposure and mediates the subsequent immune response. The persistence of M. bovis and MAP in macrophages relies on a diverse series of immunomodulatory mechanisms, including the inhibition of phagosome maturation and apoptosis, generation of cytokine-induced necrosis enabling dissemination of infection through the host, local pathology, and ultimately shedding of the pathogen. Here, we review the bovine macrophage response to infection with M. bovis and MAP. In particular, we describe how recent advances in functional genomics are shedding light on the host macrophage-pathogen interactions that underlie different mycobacterial diseases. To illustrate this, we present new analyses of previously published bovine macrophage transcriptomics data following in vitro infection with virulent M. bovis, the attenuated vaccine strain M. bovis BCG, and MAP, and discuss our findings with respect to the differing etiologies of BTB and JD.
- Published
- 2014
- Full Text
- View/download PDF
31. Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis.
- Author
-
Killick KE, Magee DA, Park SD, Taraktsoglou M, Browne JA, Conlon KM, Nalpas NC, Gormley E, Gordon SV, MacHugh DE, and Hokamp K
- Abstract
Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette-Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.
- Published
- 2014
- Full Text
- View/download PDF
32. RNA-seq Transcriptional Profiling of Peripheral Blood Leukocytes from Cattle Infected with Mycobacterium bovis.
- Author
-
McLoughlin KE, Nalpas NC, Rue-Albrecht K, Browne JA, Magee DA, Killick KE, Park SD, Hokamp K, Meade KG, O'Farrelly C, Gormley E, Gordon SV, and MacHugh DE
- Abstract
Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including gene expression microarrays and RNA-sequencing (RNA-seq), has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analyzed the peripheral blood leukocyte (PBL) transcriptome of eight natural M. bovis-infected and eight age- and sex-matched non-infected control Holstein-Friesian animals using RNA-seq. In addition, we compared gene expression profiles generated using RNA-seq with those previously generated using the high-density Affymetrix(®) GeneChip(®) Bovine Genome Array platform from the same PBL-extracted RNA. A total of 3,250 differentially expressed (DE) annotated genes were detected in the M. bovis-infected samples relative to the controls (adjusted P-value ≤0.05), with the number of genes displaying decreased relative expression (1,671) exceeding those with increased relative expression (1,579). Ingenuity(®) Systems Pathway Analysis (IPA) of all DE genes revealed enrichment for genes with immune function. Notably, transcriptional suppression was observed among several of the top-ranking canonical pathways including Leukocyte Extravasation Signaling. Comparative platform analysis demonstrated that RNA-seq detected a larger number of annotated DE genes (3,250) relative to the microarray (1,398), of which 917 genes were common to both technologies and displayed the same direction of expression. Finally, we show that RNA-seq had an increased dynamic range compared to the microarray for estimating differential gene expression.
- Published
- 2014
- Full Text
- View/download PDF
33. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits.
- Author
-
Magee DA, Spillane C, Berkowicz EW, Sikora KM, and MacHugh DE
- Subjects
- Animals, Breeding methods, Epigenomics methods, Genomic Imprinting genetics, Livestock genetics, Livestock growth & development, Phenotype, Selection, Genetic genetics
- Abstract
The phenomenon of genomic imprinting, whereby a subset of mammalian genes display parent-of-origin-specific monoallelic expression, is one of the most active areas of epigenetics research. Over the past two decades, more than 100 imprinted mammalian genes have been identified, while considerable advances have been made in elucidating the molecular mechanisms governing imprinting. These studies have helped to unravel the epigenome--a separate layer of regulatory information contained in eukaryotic chromosomes that influences gene expression and phenotypes without involving changes to the underlying DNA sequence. Although most studies of genomic imprinting in mammals have focussed on mouse models or human biomedical disorders, there is burgeoning interest in the phenotypic effects of imprinted genes in domestic livestock species. In particular, research has focused on imprinted genes influencing foetal growth and development, which are associated with economically important production traits in cattle, sheep and pigs. These findings, when coupled with the data emerging from the various different livestock genome projects, have major implications for the future of animal breeding, health and management. Here, we review current scientific knowledge regarding genomic imprinting in livestock species and evaluate how this information can be used in modern livestock improvement programmes., (© 2014 Stichting International Foundation for Animal Genetics.)
- Published
- 2014
- Full Text
- View/download PDF
34. Innate cytokine profiling of bovine alveolar macrophages reveals commonalities and divergence in the response to Mycobacterium bovis and Mycobacterium tuberculosis infection.
- Author
-
Magee DA, Conlon KM, Nalpas NC, Browne JA, Pirson C, Healy C, McLoughlin KE, Chen J, Vordermeier HM, Gormley E, MacHugh DE, and Gordon SV
- Subjects
- Animals, Cattle, Cells, Cultured, Cytokines genetics, Gene Expression Profiling methods, Gene Expression Regulation immunology, Immunity, Innate genetics, Macrophages, Alveolar microbiology, Male, Mycobacterium bovis immunology, Mycobacterium tuberculosis immunology, RNA, Messenger genetics, Tuberculosis, Bovine genetics, Tuberculosis, Bovine microbiology, Virulence genetics, Cytokines biosynthesis, Macrophages, Alveolar immunology, Mycobacterium bovis pathogenicity, Mycobacterium tuberculosis pathogenicity, Tuberculosis, Bovine immunology
- Abstract
Despite sharing >99.9% genome sequence similarity at the nucleotide level, Mycobacterium tuberculosis and Mycobacterium bovis-the causative agents of human and bovine tuberculosis, respectively-exhibit distinct host preferences. M. bovis can cause disease in both cattle and humans yet rarely transmits between immuno-competent human hosts, while M. tuberculosis is a highly successful pathogen of humans that does not sustain in animal populations. Based on the key role played by alveolar macrophages during mycobacterial infection, we hypothesised that the immunological and pathological differences observed in cattle infected with virulent M. bovis and M. tuberculosis may have a basis in innate immune mechanisms; these differences, in turn, would be reflected at the macrophage mRNA and protein level. To investigate this, we have analysed the transcriptional profile of innate immune genes in bovine alveolar macrophages following 24 and 48 h infection with the genome-sequenced strains, M. bovis AF2122/97 and M. tuberculosis H37Rv. A bespoke multiplex ELISA was also used to quantify corresponding cytokine secretion in supernatants from the same infected alveolar macrophages. All cytokines showed similar significant patterns of expression (i.e., up- or down-regulation) at both the mRNA and protein levels in infected macrophages relative to parallel non-infected controls at the two time points (P ≤ 0.05). However, significant upregulation and downregulation of several innate immune genes-including TLR2, FOS, PIK3IP1, CCL4, IL1B, IL6 and TNF-and the CCL-4 protein was observed in the M. bovis-infected macrophages relative to the M. tuberculosis-infected macrophages 48 h post-infection (P ≤ 0.05). These results support the hypothesis that the divergent virulence of M. bovis and M. tuberculosis in cattle has a basis in innate immune mechanisms, which may contribute to host preference within the M. tuberculosis complex of strains., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
35. Profiling microRNA expression in bovine alveolar macrophages using RNA-seq.
- Author
-
Vegh P, Foroushani AB, Magee DA, McCabe MS, Browne JA, Nalpas NC, Conlon KM, Gordon SV, Bradley DG, MacHugh DE, and Lynn DJ
- Subjects
- Adaptive Immunity genetics, Animals, Bronchoalveolar Lavage Fluid cytology, Bronchoalveolar Lavage Fluid immunology, Immunity, Innate genetics, Lung cytology, Macrophages, Alveolar cytology, Male, MicroRNAs genetics, Sequence Analysis, RNA veterinary, Adaptive Immunity immunology, Cattle immunology, Immunity, Innate immunology, Lung immunology, Macrophages, Alveolar immunology, MicroRNAs immunology
- Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and are known to play a key role in regulating both adaptive and innate immunity. Bovine alveolar macrophages (BAMs) help maintain lung homeostasis and constitute the front line of host defense against several infectious respiratory diseases, such as bovine tuberculosis. Little is known, however, about the role miRNAs play in these cells. In this study, we used a high-throughput sequencing approach, RNA-seq, to determine the expression levels of known and novel miRNAs in unchallenged BAMs isolated from lung lavages of eight different healthy Holstein-Friesian male calves. Approximately 80 million sequence reads were generated from eight BAM miRNA Illumina sequencing libraries, and 80 miRNAs were identified as being expressed in BAMs at a threshold of at least 100 reads per million (RPM). The expression levels of miRNAs varied over a large dynamic range, with a few miRNAs expressed at very high levels (up to 800,000RPM), and the majority lowly expressed. Notably, many of the most highly expressed miRNAs in BAMs have known roles in regulating immunity in other species (e.g. bta-let-7i, bta-miR-21, bta-miR-27, bta-miR-99b, bta-miR-146, bta-miR-147, bta-miR-155 and bta-miR-223). The most highly expressed miRNA in BAMs was miR-21, which has been shown to regulate the expression of antimicrobial peptides in Mycobacterium leprae-infected human monocytes. Furthermore, the predicted target genes of BAM-expressed miRNAs were found to be statistically enriched for roles in innate immunity. In addition to profiling the expression of known miRNAs, the RNA-seq data was also analysed to identify potentially novel bovine miRNAs. One putatively novel bovine miRNA was identified. To the best of our knowledge, this is the first RNA-seq study to profile miRNA expression in BAMs and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type., (Copyright © 2013. Published by Elsevier B.V.)
- Published
- 2013
- Full Text
- View/download PDF
36. Whole-transcriptome, high-throughput RNA sequence analysis of the bovine macrophage response to Mycobacterium bovis infection in vitro.
- Author
-
Nalpas NC, Park SD, Magee DA, Taraktsoglou M, Browne JA, Conlon KM, Rue-Albrecht K, Killick KE, Hokamp K, Lohan AJ, Loftus BJ, Gormley E, Gordon SV, and MacHugh DE
- Subjects
- Animals, Cattle, Female, Gene Expression Regulation, Gene Library, High-Throughput Nucleotide Sequencing, Molecular Sequence Annotation, Mycobacterium bovis, Sequence Analysis, RNA, Host-Pathogen Interactions genetics, Macrophages microbiology, Transcriptome, Tuberculosis, Bovine genetics
- Abstract
Background: Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA., Results: A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology., Conclusions: This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA.
- Published
- 2013
- Full Text
- View/download PDF
37. Expression of key genes of the somatotropic axis in longissimus dorsi muscle of beef heifers phenotypically divergent for residual feed intake.
- Author
-
Kelly AK, Waters SM, McGee M, Browne JA, Magee DA, and Kenny DA
- Subjects
- Animal Feed analysis, Animal Nutritional Physiological Phenomena, Animals, Diet veterinary, Eating physiology, Female, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Cattle metabolism, Eating genetics, Gene Expression Regulation physiology, Muscle, Skeletal metabolism
- Abstract
This study evaluated the effect of residual feed intake (RFI) on the expression of constituent genes of the somatotropic axis in skeletal muscle across 2 diverse dietary regimes. Beef heifers (n=86; initial BW=191.8 kg; SD=37) fed a low-forage (LF) total mixed ration comprising 70:30 concentrate:corn silage (11.0 MJ ME/kg DM) were ranked on RFI. The 10 greatest- (high-RFI) and 10 lowest- (low-RFI) ranking animals were selected for the current study. Biopsies of the LM were harvested at the end of LF dietary period and again after a 6-wk period during which heifers were offered a high-forage grass-silage-only diet (9.7 MJ ME/kg DM). Real-time PCR was used to quantify mRNA transcripts of 11 genes including IGF-1, IGF-2, their receptors (IGF-1R and IGF-2R), 6 IGFBP, and GH receptor (GHR). There was no evidence of a RFI phenotype×diet interaction (P>0.10) for any of the genes examined. An effect (P=0.02) of RFI phenotype was evident for the abundance of GHR mRNA, with twofold greater expression detected in the low-RFI compared with the high-RFI phenotype. Additionally, mRNA expression of IGF-1R was upregulated (1.7-fold; P=0.04) for the low-RFI compared with high-RFI heifers. Residual feed intake was negatively associated with IGF-1R (r=-0.41; P<0.05) and GHR (r=-0.50; P<0.05) mRNA. Moderate negative correlation coefficients were also observed between feed conversion ratio (F:G) and gene expression levels for IGF-1R (r=-0.61; P<0.01) as well as for GHR (r=-0.49; P<0.05). Moreover, associations were detected between DMI with IGF-1R (r=-0.42; P=0.07) and IGF-2R (r=0.40; P=0.07). The IGF-1R mRNA was positively correlated with IGF-1 (r=0.34; P<0.05) and IGF-2 (r=0.71; P<0.001) mRNA. Associations between IGF-1R and IGF-2R with IGFBP5 and GHR were positive (ranging from, r=0.32 to 0.49). These data suggest that components of the somatotropic axis expressed within muscle tissue may be involved in the regulation of feed efficiency in beef cattle. This effect is apparently consistent across contrasting dietary regimens.
- Published
- 2013
- Full Text
- View/download PDF
38. PHLDA2 is an imprinted gene in cattle.
- Author
-
Sikora KM, Magee DA, Berkowicz EW, Lonergan P, Evans AC, Carter F, Comte A, Waters SM, MacHugh DE, and Spillane C
- Subjects
- Animals, Cattle metabolism, DNA, Complementary genetics, DNA, Complementary metabolism, Female, Fetus metabolism, Nuclear Proteins metabolism, Placenta, Polymorphism, Single Nucleotide, Pregnancy, RNA, Messenger genetics, RNA, Messenger metabolism, Reverse Transcriptase Polymerase Chain Reaction, Cattle genetics, Genomic Imprinting, Nuclear Proteins genetics
- Abstract
Genomic imprinting is an epigenetic non-Mendelian phenomenon found predominantly in placental mammals. Imprinted genes display differential expression in the offspring depending on whether the gene is maternally or paternally inherited. Currently, some 100 imprinted genes have been reported in mammals, and while some of these genes are imprinted across most mammalian species, others have been shown to be imprinted in only a few species. The PHLDA2 gene that codes for a pleckstrin homology-like domain, family A (member 2), protein has to date been shown to be a maternally expressed imprinted gene in humans, mice and pigs. Genes subject to imprinting can have major effects on mammalian growth, development and disease. For instance, disruption of imprinted genes can lead to aberrant growth syndromes in cloned domestic mammals, and it has been demonstrated that PHLDA2 mRNA expression levels are aberrant in the placenta of somatic clones of cattle. In this study, we demonstrate that PHLDA2 is expressed across a range of cattle foetal tissues and stages and provide the first evidence that PHLDA2 is a monoallelically expressed imprinted gene in cattle foetal tissues, and also in the bovine placenta., (© 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.)
- Published
- 2012
- Full Text
- View/download PDF
39. Single nucleotide polymorphisms in the imprinted bovine insulin-like growth factor 2 receptor gene (IGF2R) are associated with body size traits in Irish Holstein-Friesian cattle.
- Author
-
Berkowicz EW, Magee DA, Berry DP, Sikora KM, Howard DJ, Mullen MP, Evans RD, Spillane C, and MacHugh DE
- Subjects
- Animals, Female, Male, Body Size, Cattle genetics, Genomic Imprinting, Polymorphism, Single Nucleotide, Receptor, IGF Type 2 genetics
- Abstract
The regulation of the bioavailability of insulin-like growth factors (IGFs) is critical for normal mammalian growth and development. The imprinted insulin-like growth factor 2 receptor gene (IGF2R) encodes a transmembrane protein receptor that acts to sequester and degrade excess circulating insulin-like growth factor 2 (IGF-II) - a potent foetal mitogen - and is considered an important inhibitor of growth. Consequently, IGF2R may serve as a candidate gene underlying important growth- and body-related quantitative traits in domestic mammalian livestock. In this study, we have quantified genotype-phenotype associations between three previously validated intronic bovine IGF2R single nucleotide polymorphisms (SNPs) (IGF2R:g.64614T>C, IGF2R:g.65037T>C and IGF2R:g.86262C>T) and a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. Notably, all three polymorphisms analysed were associated (P ≤ 0.05) with at least one of a number of performance traits related to animal body size: angularity, body depth, chest width, rump width, and animal stature. In addition, the C-to-T transition at the IGF2R:g.65037T>C polymorphism was positively associated with cow carcass weight and angularity. Correction for multiple testing resulted in the retention of two genotype-phenotype associations (animal stature and rump width). None of the SNPs analysed were associated with any of the milk traits examined. Analysis of pairwise r(2) measures of linkage disequilibrium between all three assayed SNPs ranged between 0.41 and 0.79, suggesting that some of the observed SNP associations with performance may be independent. To our knowledge, this is one of the first studies demonstrating associations between IGF2R polymorphisms and growth- and body-related traits in cattle. These results also support the increasing body of evidence that imprinted genes harbour polymorphisms that contribute to heritable variation in phenotypic traits in domestic livestock species., (© 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.)
- Published
- 2012
- Full Text
- View/download PDF
40. Global gene expression and systems biology analysis of bovine monocyte-derived macrophages in response to in vitro challenge with Mycobacterium bovis.
- Author
-
Magee DA, Taraktsoglou M, Killick KE, Nalpas NC, Browne JA, Park SD, Conlon KM, Lynn DJ, Hokamp K, Gordon SV, Gormley E, and MacHugh DE
- Subjects
- Animals, Cattle, Female, Gene Expression Profiling, Genome, Granuloma metabolism, In Vitro Techniques, Macrophages cytology, Macrophages microbiology, Monocytes microbiology, Oligonucleotide Array Sequence Analysis, RNA metabolism, Signal Transduction, Systems Biology, Transcriptome, Tuberculosis, Bovine microbiology, Gene Expression Regulation, Monocytes cytology, Mycobacterium bovis metabolism
- Abstract
Background: Mycobacterium bovis, the causative agent of bovine tuberculosis, is a major cause of mortality in global cattle populations. Macrophages are among the first cell types to encounter M. bovis following exposure and the response elicited by these cells is pivotal in determining the outcome of infection. Here, a functional genomics approach was undertaken to investigate global gene expression profiles in bovine monocyte-derived macrophages (MDM) purified from seven age-matched non-related females, in response to in vitro challenge with M. bovis (multiplicity of infection 2:1). Total cellular RNA was extracted from non-challenged control and M. bovis-challenged MDM for all animals at intervals of 2 hours, 6 hours and 24 hours post-challenge and prepared for global gene expression analysis using the Affymetrix® GeneChip® Bovine Genome Array., Results: Comparison of M. bovis-challenged MDM gene expression profiles with those from the non-challenged MDM controls at each time point identified 3,064 differentially expressed genes 2 hours post-challenge, with 4,451 and 5,267 differentially expressed genes detected at the 6 hour and 24 hour time points, respectively (adjusted P-value threshold ≤ 0.05). Notably, the number of downregulated genes exceeded the number of upregulated genes in the M. bovis-challenged MDM across all time points; however, the fold-change in expression for the upregulated genes was markedly higher than that for the downregulated genes. Systems analysis revealed enrichment for genes involved in: (1) the inflammatory response; (2) cell signalling pathways, including Toll-like receptors and intracellular pathogen recognition receptors; and (3) apoptosis., Conclusions: The increased number of downregulated genes is consistent with previous studies showing that M. bovis infection is associated with the repression of host gene expression. The results also support roles for MyD88-independent signalling and intracellular PRRs in mediating the host response to M. bovis.
- Published
- 2012
- Full Text
- View/download PDF
41. Transcriptional profiling of immune genes in bovine monocyte-derived macrophages exposed to bacterial antigens.
- Author
-
Taraktsoglou M, Szalabska U, Magee DA, Browne JA, Sweeney T, Gormley E, and MacHugh DE
- Subjects
- Animals, Cattle genetics, Cattle microbiology, Cells, Cultured, Chemokines genetics, Chemokines immunology, Cytokines genetics, Cytokines immunology, Female, In Vitro Techniques, Lipopolysaccharides immunology, Myeloid Differentiation Factor 88 genetics, Myeloid Differentiation Factor 88 immunology, NF-kappa B genetics, NF-kappa B immunology, Reverse Transcriptase Polymerase Chain Reaction veterinary, Toll-Like Receptor 1 genetics, Toll-Like Receptor 1 immunology, Toll-Like Receptor 6 genetics, Toll-Like Receptor 6 immunology, Tuberculin immunology, Antigens, Bacterial immunology, Cattle immunology, Escherichia coli immunology, Macrophages microbiology, Macrophages physiology, Mycobacterium bovis immunology, Toll-Like Receptor 2 genetics, Toll-Like Receptor 2 immunology, Toll-Like Receptor 4 genetics, Toll-Like Receptor 4 immunology, Transcription, Genetic immunology
- Abstract
The involvement of Toll-like receptors (TLRs) and other immune signalling genes during challenge of bovine macrophages with bacterial products derived from disease-causing bacteria in cattle was investigated. An in vitro cell culture model of bovine monocyte derived macrophages (MDM) was established and these cells were exposed to purified protein derivative (PPD-b) derived from Mycobacterium bovis and to lipopolysaccharide (LPS) derived from Escherichia coli. Following 24h incubation, total RNA was extracted and expression of immune related genes was determined by real time quantitative reverse transcription PCR (qRT-PCR). Expression of a selection of genes spanning the TLR-2 and TLR-4 pathways, from the initial activation of the receptors to the production of pro-inflammatory cytokines and chemokines was determined. Results from repeat experiments using MDM from seven different age-matched dairy cattle showed that PPD-b treatment caused significant up-regulation of the TLR2 and TLR4 genes and the expression profile of TLR adaptor molecules suggested that this signalling is MYD88-dependent. Conversely, LPS caused significant up-regulation of TLR4 via a MYD88-independent signalling pathway. Significant up-regulation of genes involved with NF-κB signalling was also detected in PPD-b- and LPS-treated samples accompanied by the expression of pro-inflammatory cytokine (TNF, IL1B, IL6) and chemokine genes (IL8, CCL5, CCL3). Overall, LPS challenge resulted in a more marked up-regulation of immune-related genes. Furthermore, the magnitude fold-change difference in gene expression suggests, at least in part, that bovine macrophages produce IFN-γ as a result of LPS challenge., (Copyright © 2010 Elsevier B.V. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
42. Single Nucleotide Polymorphisms in the Insulin-Like Growth Factor 1 (IGF-1) Gene are Associated with Performance in Holstein-Friesian Dairy Cattle.
- Author
-
Mullen MP, Berry DP, Howard DJ, Diskin MG, Lynch CO, Giblin L, Kenny DA, Magee DA, Meade KG, and Waters SM
- Abstract
Insulin-like growth factor 1 (IGF-1) has been shown to be associated with fertility, growth, and development in cattle. The aim of this study was to (1) identify novel single nucleotide polymorphisms (SNPs) in the bovine IGF-1 gene and alongside previously identified SNPs (2) determine their association with traits of economic importance in Holstein-Friesian dairy cattle. Nine novel SNPs were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5' promoter, intronic, and 3' regulatory regions, encompassing ~5 kb of IGF-1. Genotyping and associations with daughter performance for milk production, fertility, survival, and measures of body size were undertaken on 848 Holstein-Friesian AI sires. Using multiple regression analysis nominal associations (P < 0.05) were identified between six SNPs (four novel and two previously identified) and milk composition, survival, body condition score, and body size. The C allele of AF017143 a previously published SNP (C-512T) in the promoter region of IGF-1 predicted to introduce binding sites for transcription factors HSF1 and ZNF217 was associated (P < 0.05) with increased cow carcass weight (i.e., an indicator of mature cow size). Novel SNPs were identified in the 3' region of IGF-1 were associated (P < 0.05) with functional survival and chest width. The remaining four SNPs, all located within introns of IGF-1 were associated (P < 0.05) with milk protein yield, milk fat yield, milk fat concentration, somatic cell score, carcass conformation, and carcass fat. Results of this study further demonstrate the multifaceted influences of IGF-1 on milk production and growth related traits in cattle.
- Published
- 2011
- Full Text
- View/download PDF
43. Single nucleotide polymorphisms at the imprinted bovine insulin-like growth factor 2 (IGF2) locus are associated with dairy performance in Irish Holstein-Friesian cattle.
- Author
-
Berkowicz EW, Magee DA, Sikora KM, Berry DP, Howard DJ, Mullen MP, Evans RD, Spillane C, and MacHugh DE
- Subjects
- Animals, Body Composition, Body Weight, Breeding, Cattle physiology, Fats analysis, Female, Fertility genetics, Gene Frequency, Genotype, Milk chemistry, Milk Proteins analysis, Phenotype, Cattle genetics, Genomic Imprinting, Insulin-Like Growth Factor II genetics, Lactation genetics, Polymorphism, Single Nucleotide genetics
- Abstract
The imprinted insulin-like growth factor 2 gene (IGF2) encodes a fetal mitogenic hormone protein (IGF-II) and has previously been shown to be associated with performance in dairy cattle. In this study we assessed genotype-phenotype associations between four single nucleotide polymorphisms (SNPs) located within the bovine IGF2 locus on chromosome 29 and a range of performance traits related to milk production, animal growth and body size, fertility and progeny survival in 848 progeny-tested Irish Holstein-Friesian sires. Two of the four SNPs (rs42196909 and IGF2.g-3815A>G), which were in strong linkage disequilibrium (r2 = 0·995), were associated with milk yield (P ≤ 0·01) and milk protein yield (P ≤ 0·05); the rs42196901 SNP was also associated (P ≤ 0·05) with milk fat yield. Associations (P ≤ 0·05) with milk fat percentage and milk protein percentage were observed at the rs42196901 and IGF2.g-3815A>G SNPs, respectively. The rs42196909 and IGF2.g-3815A>G SNPs were also associated with progeny carcass conformation (P ≤ 0·05), while an association (P ≤ 0·01) with progeny carcass weight was observed at the rs42194733 SNP locus. None of the four SNPs were associated with body size, fertility and progeny survival. These findings support previous work which suggests that the IGF2 locus is an important biological regulator of milk production in dairy cattle and add to an accumulating body of research showing that imprinted genes influence many complex performance traits in cattle.
- Published
- 2011
- Full Text
- View/download PDF
44. Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein-Friesian dairy cattle.
- Author
-
Waters SM, McCabe MS, Howard DJ, Giblin L, Magee DA, MacHugh DE, and Berry DP
- Subjects
- Animals, Female, Genome-Wide Association Study, Male, Regression Analysis, Cattle genetics, Cattle growth & development, Meat, Milk, Polymorphism, Single Nucleotide, Receptors, Somatotropin genetics
- Abstract
Variations in the growth hormone receptor (GHR) gene sequence are associated with performance traits in cattle. For example, the single nucleotide polymorphism (SNP) F279Y in transmembrane exon 8 has a strong association with milk yield. In this study, 32 previously unreported, putative novel SNPs (31 in the 5' non-coding region) were identified by resequencing ∼19 kb of the GHR gene in genomic DNA from 22 cattle of multiple breeds. A population of 848 Holstein-Friesian AI sires was subsequently genotyped for the 32 putative novel SNPs and seven published SNPs (including F279Y, one in exon 1A promoter and five in exon 10). Associations between each segregating SNP and genetic merit for performance were quantified in the 848 Holstein-Friesians using weighted animal linear mixed models. Six of the published SNPs and seven of the novel SNPs were associated with at least one of the traits--milk yield, fat yield, protein yield, fat percentage, protein percentage, somatic cell score, calving interval, survival and growth and size traits. Even when the allelic substitution effect (P < 0.001) of F279Y was accounted for, the allelic substitution effect of one of the novel SNPs (GHR4.2) in the 5' non-coding region of GHR was associated with a lactation milk yield of 37.46 kg (P < 0.001). GHR4.2 and F279Y were not in linkage disequilibrium (r(2) = 0.00, D' = 0.04) in the 848 Holstein-Friesians, indicating that their association with milk yield was independent., (© 2010 Teagasc, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.)
- Published
- 2011
- Full Text
- View/download PDF
45. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits.
- Author
-
Sikora KM, Magee DA, Berkowicz EW, Berry DP, Howard DJ, Mullen MP, Evans RD, Machugh DE, and Spillane C
- Subjects
- Animals, Cattle embryology, Cattle growth & development, Epigenesis, Genetic, Fertility genetics, Gene Expression Regulation, Gene Frequency, Milk, Polymorphism, Single Nucleotide, Reproduction genetics, Cattle genetics, GTP-Binding Protein alpha Subunits, Gs genetics, Genomic Imprinting
- Abstract
Background: Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192., Results: SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following adjustment for multiple-testing, significant association (q ≤ 0.05) remained between the rs41694646 SNP and four traits (animal stature, body depth, direct calving difficulty and milk yield) only. Notably, the single SNP in the bovine NESP55 gene (rs41694656) was associated (P ≤ 0.01) with somatic cell count--an often-cited indicator of resistance to mastitis and overall health status of the mammary system--and previous studies have demonstrated that the chromosomal region to where the GNAS domain maps underlies an important quantitative trait locus for this trait. This association, however, was not significant after adjustment for multiple testing. The three remaining SNPs assayed were not associated with any of the performance traits analysed in this study. Analysis of all pairwise linkage disequilibrium (r2) values suggests that most allele substitution effects for the assayed SNPs observed are independent. Finally, the polymorphic coding SNP in the putative bovine NESP55 gene was used to test the imprinting status of this gene across a range of foetal bovine tissues., Conclusions: Previous studies in other mammalian species have shown that DNA sequence variation within the imprinted GNAS gene cluster contributes to several physiological and metabolic disorders, including obesity in humans and mice. Similarly, the results presented here indicate an important role for the imprinted GNAS cluster in underlying complex performance traits in cattle such as animal growth, calving, fertility and health. These findings suggest that GNAS domain-associated polymorphisms may serve as important genetic markers for future livestock breeding programs and support previous studies that candidate imprinted loci may act as molecular targets for the genetic improvement of agricultural populations. In addition, we present new evidence that the bovine NESP55 gene is epigenetically regulated as a maternally expressed imprinted gene in placental and intestinal tissues from 8-10 week old bovine foetuses.
- Published
- 2011
- Full Text
- View/download PDF
46. Single nucleotide polymorphisms within the bovine DLK1-DIO3 imprinted domain are associated with economically important production traits in cattle.
- Author
-
Magee DA, Berry DP, Berkowicz EW, Sikora KM, Howard DJ, Mullen MP, Evans RD, Spillane C, and MacHugh DE
- Subjects
- Amino Acid Sequence, Animals, Cluster Analysis, Female, Gene Expression, Genotype, Linkage Disequilibrium, Male, Molecular Sequence Data, Multigene Family, Phenotype, Sequence Analysis, DNA, Cattle genetics, Genomic Imprinting, Milk chemistry, Polymorphism, Single Nucleotide, Quantitative Trait Loci
- Abstract
Previous studies show that DNA sequence variation within the mammalian DLK1-DIO3 imprinted domain influences production traits in domestic livestock, most notably the ovine callipyge phenotype. We assessed genotype-phenotype associations between 7 single nucleotide polymorphisms (SNPs) within the orthologous bovine DLK1-DIO3 domain and performance traits in 848 progeny-tested Holstein-Friesian dairy sires. One SNP (MEG3_01) located proximal to the maternally expressed 3 (MEG3/Gtl2) gene was associated with milk yield, subcutaneous fat levels, and progeny carcass conformation (P ≤ 0.01) and also tended to be associated with milk fat and protein yield (P ≤ 0.10). A single SNP (CLPG_01) within the putative CLPG1 locus was associated with progeny carcass fat (P ≤ 0.05), whereas a single SNP (PEG11_01) located proximal to the paternally expressed 11 (PEG11/Rtl) gene was associated with progeny carcass weight (P ≤ 0.05). The MEG3_01 SNP together with an additional 2 SNPs (MEG8_01 and MEG8_02) located proximal to the putative maternally expressed 8 (MEG8/Rian) ortholog were associated (P ≤ 0.05) with perinatal mortality. Finally, one SNP (MEG3_03) was associated (P ≤ 0.05) with gestation length, whereas both the CLPG_01 and MEG8_01 SNPs also tended to be associated with calving interval (P ≤ 0.10). Linkage disequilibrium analysis suggests that some phenotypic associations observed at these loci are independent. To our knowledge, this is one of the first studies demonstrating associations between the bovine DLK1-DIO3 domain and milk, carcass, fertility and, health traits in cattle. This imprinted domain may serve as a potential target for future genetic selection strategies.
- Published
- 2011
- Full Text
- View/download PDF
47. Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle.
- Author
-
Mullen MP, Berry DP, Howard DJ, Diskin MG, Lynch CO, Berkowicz EW, Magee DA, MacHugh DE, and Waters SM
- Subjects
- Animals, Cattle genetics, Cell Count veterinary, Dietary Fats analysis, Female, Male, Milk chemistry, Milk cytology, Milk metabolism, Milk Proteins analysis, Body Composition genetics, Cattle physiology, Fertility genetics, Growth Hormone genetics, Lactation genetics, Polymorphism, Single Nucleotide genetics
- Abstract
Growth hormone, produced in the anterior pituitary gland, stimulates the release of insulin-like growth factor-I from the liver and is of critical importance in the control of nutrient utilization and partitioning for lactogenesis, fertility, growth, and development in cattle. The aim of this study was to discover novel polymorphisms in the bovine growth hormone gene (GH1) and to quantify their association with performance using estimates of genetic merit on 848 Holstein-Friesian AI (artificial insemination) dairy sires. Associations with previously reported polymorphisms in the bovine GH1 gene were also undertaken. A total of 38 novel single nucleotide polymorphisms (SNP) were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5' promoter, intronic, exonic, and 3' regulatory regions, encompassing approximately 7 kb of the GH1 gene. Following multiple regression analysis on all SNP, associations were identified between 11 SNP (2 novel and 9 previously identified) and milk fat and protein yield, milk composition, somatic cell score, survival, body condition score, and body size. The G allele of a previously identified SNP in exon 5 at position 2141 of the GH1 sequence, resulting in a nonsynonymous substitution, was associated with decreased milk protein yield. The C allele of a novel SNP, GH32, was associated with inferior carcass conformation. In addition, the T allele of a previously characterized SNP, GH35, was associated with decreased survival. Both GH24 (novel) and GH35 were independently associated with somatic cell count, and 3 SNP, GH21, 2291, and GH35, were independently associated with body depth. Furthermore, 2 SNP, GH24 and GH63, were independently associated with carcass fat. Results of this study further demonstrate the multifaceted influences of GH1 on milk production, fertility, and growth-related traits in cattle., (Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2010
- Full Text
- View/download PDF
48. A catalogue of validated single nucleotide polymorphisms in bovine orthologs of mammalian imprinted genes and associations with beef production traits.
- Author
-
Magee DA, Berkowicz EW, Sikora KM, Berry DP, Park SD, Kelly AK, Sweeney T, Kenny DA, Evans RD, Wickham BW, Spillane C, and Machugh DE
- Abstract
Genetic (or 'genomic') imprinting, a feature of approximately 100 mammalian genes, results in monoallelic expression from one of the two parentally inherited chromosomes. To date, most studies have been directed on imprinted genes in murine or human models; however, there is burgeoning interest in the effects of imprinted genes in domestic livestock species. In particular, attention has focused on imprinted genes that influence foetal growth and development and that are associated with several economically important production traits in cattle, sheep and pigs. We have re-sequenced regions in 20 candidate bovine imprinted genes in order to validate single nucleotide polymorphisms (SNPs) that may influence important production traits in cattle. Putative SNPs detected via re-sequencing were subsequently re-formatted for high-throughput SNP genotyping in 185 cattle samples comprising 138 performance-tested European Bos taurus (all Limousin bulls), 29 African B. taurus and 18 Indian B. indicus samples. Analysis of the resulting genotypic data identified 117 validated SNPs. Preliminary genotype-phenotype association analyses using 83 SNPs that were polymorphic in the Limousin samples with minor allele frequencies ⩾0.05 revealed significant associations between two candidate bovine imprinted genes and a range of important beef production traits: average daily gain, average feed intake, live weight, feed conversion ratio, residual feed intake and residual gain. These genes were the Ras protein-specific guanine nucleotide releasing factor gene (RASGRF1) and the zinc finger, imprinted 2 gene (ZIM2). Despite the relatively small sample size used in these analyses, the observed associations with production traits are supported by the purported biological function of the RASGRF1 and ZIM2 gene products. These results support the hypothesis that imprinted genes contribute significantly to important complex production traits in cattle. Furthermore, these SNPs may be usefully incorporated into future marker-assisted and genomic selection breeding schemes.
- Published
- 2010
- Full Text
- View/download PDF
49. Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle.
- Author
-
Beecher C, Daly M, Childs S, Berry DP, Magee DA, McCarthy TV, and Giblin L
- Subjects
- Animals, Cattle, Female, Gene Frequency, Genotype, Male, Mastitis, Bovine genetics, Milk, Milk Proteins genetics, Phenotype, Sequence Analysis, DNA, Lactation genetics, Polymorphism, Genetic, Receptors, Interleukin-8A genetics, Toll-Like Receptor 2 genetics
- Abstract
Background: Mastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2) and chemokine receptor 1 (CXCR1) genes and mammary health indictor traits in (a) 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b) 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population., Results: TLR4-2021 associated (P < 0.05) with both milk protein and fat percentage in late lactation (P < 0.01) within the cow cohort. No association was observed between this polymorphism and either yield or composition of milk within the bull population. CXCR1-777 significantly associated (P < 0.05) with fat yield in the bull population and tended to associate (P < 0.1) with somatic cell score (SCS) in the cows genotyped. CD14-1908 A allele was found to associate with increased (P < 0.05) milk fat and protein yield and also tended to associate with increased (P < 0.1) milk yield. A SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P < 0.05) was also identified., Conclusion: Of the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.
- Published
- 2010
- Full Text
- View/download PDF
50. DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle.
- Author
-
Magee DA, Sikora KM, Berkowicz EW, Berry DP, Howard DJ, Mullen MP, Evans RD, Spillane C, and MacHugh DE
- Subjects
- Animals, Body Fat Distribution, Cattle growth & development, Cattle physiology, Milk, Cattle genetics, Genomic Imprinting, Polymorphism, Single Nucleotide
- Abstract
Background: Studies in mice and humans have shown that imprinted genes, whereby expression from one of the two parentally inherited alleles is attenuated or completely silenced, have a major effect on mammalian growth, metabolism and physiology. More recently, investigations in livestock species indicate that genes subject to this type of epigenetic regulation contribute to, or are associated with, several performance traits, most notably muscle mass and fat deposition. In the present study, a candidate gene approach was adopted to assess 17 validated single nucleotide polymorphisms (SNPs) and their association with a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. These SNPs are located proximal to, or within, the bovine orthologs of eight genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) that have been shown to be imprinted in cattle or in at least one other mammalian species (i.e. human/mouse/pig/sheep)., Results: Heterozygosities for all SNPs analysed ranged from 0.09 to 0.46 and significant deviations from Hardy-Weinberg proportions (P ≤ 0.01) were observed at four loci. Phenotypic associations (P ≤ 0.05) were observed between nine SNPs proximal to, or within, six of the eight analysed genes and a number of performance traits evaluated, including milk protein percentage, somatic cell count, culled cow and progeny carcass weight, angularity, body conditioning score, progeny carcass conformation, body depth, rump angle, rump width, animal stature, calving difficulty, gestation length and calf perinatal mortality. Notably, SNPs within the imprinted paternally expressed gene 3 (PEG3) gene cluster were associated (P ≤ 0.05) with calving, calf performance and fertility traits, while a single SNP in the zinc finger protein 215 gene (ZNF215) was associated with milk protein percentage (P ≤ 0.05), progeny carcass weight (P ≤ 0.05), culled cow carcass weight (P ≤ 0.01), angularity (P ≤ 0.01), body depth (P ≤ 0.01), rump width (P ≤ 0.01) and animal stature (P ≤ 0.01)., Conclusions: Of the eight candidate bovine imprinted genes assessed, DNA sequence polymorphisms in six of these genes (CALCR, GRB10, PEG3, RASGRF1, ZIM2 and ZNF215) displayed associations with several of the phenotypes included for analyses. The genotype-phenotype associations detected here are further supported by the biological function of these six genes, each of which plays important roles in mammalian growth, development and physiology. The associations between SNPs within the imprinted PEG3 gene cluster and traits related to calving, calf performance and gestation length suggest that this domain on chromosome 18 may play a role regulating pre-natal growth and development and fertility. SNPs within the bovine ZNF215 gene were associated with bovine growth and body conformation traits and studies in humans have revealed that the human ZNF215 ortholog belongs to the imprinted gene cluster associated with Beckwith-Wiedemann syndrome--a genetic disorder characterised by growth abnormalities. Similarly, the data presented here suggest that the ZNF215 gene may have an important role in regulating bovine growth. Collectively, our results support previous work showing that (candidate) imprinted genes/loci contribute to heritable variation in bovine performance traits and suggest that DNA sequence polymorphisms within these genes/loci represents an important reservoir of genomic markers for future genetic improvement of dairy and beef cattle populations.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.