1. Dynamic peculiarities of interphase boundaries and domain walls for non-spin domains
- Author
-
Bakaleinikov, L.A. and Gordon, A.
- Subjects
Magnetization -- Models ,Phase transformations (Statistical physics) -- Models ,Oscillation -- Models ,Differential equations, Partial -- Usage ,Physics - Abstract
The analysis of magnetization oscillations (de Haas--van Alphen effect; dHvA effect) and features of the Fermi surface shape in three (3D)- and two-dimensional (2D) metals shows that the dynamic phenomena--the dynamics of domain walls and interphase boundaries during diamagnetic phase transitions--are described by a new nonlinear partial differential equation. The equation is a result of the inclusion of the case of multiple extremal cross sections of the Fermi surface in these metals. Our consideration indicates the possibility of the appearance of metastable non-spin domains (Condon domains) and first-order phase transitions to the ordered phase in the regime of dHvA oscillations for the two-frequency case. Sine-Gordon, Klein-Gordon, double sine-Gordon, time-dependent Ginzburg-Landau equations, and the telegraph equation are limiting cases of the derived equation. We show that particular moving kink-soliton solutions of the equation describe traveling wave fronts being moving domain walls and interphase boundaries in the Condon domain phase. Key words: nonlinear partial different equations, kink-soliton solutions, electron gas in quantizing magnetic fields, de Haas--van Alphen oscillations, Condon domains, diamagnetic phase transitions. L'analyse des oscillations de magnetisation (effet dHvA) et des caracteristiques de la forme de la surface de Fermi dans les metaux a 2D et 3D montre que les phenomenes dynamiques (la dynamique des murs de domaine et des frontieres d'interface pendant les transitions de phase diamagnetiques) sont decrits par une nouvelle equation differentielle partielle non lineaire. L'equation resulte de l'inclusion de sections efficaces extremes multiples de la surface de Fermi dans ces metaux. Notre examen indique la possibilite d'apparition de domaines non-spin metastables (domaines de Condon) et de transitions de phase du premier ordre vers la phase ordonnee dans le regime des oscillations dHvA pour le cas a deus frequences. Les equations de sine-Gordon, de Klein-Gordon, de double sine-Gordon, de Ginzburg-Landau dependante du temps et des telegraphes sont les cas limites de l'equation obtenue. Nous montrons que des solutions particulieres en soliton replie decrivent des fronts d'onde en mouvement qui sont des murs de domaine en mouvement et des frontieres d'interface dans le domaine de phase de Condon. [Traduit par la Redaction] Mots-cles : equation differentielle partielle non lineaire, solutions en soliton replie, gaz electronique dans la quantification les champs magnetiques, oscillations de Haas--van Alpen, domaines de Condon., 1. Introduction The occurrence and peculiarities of non-spin magnetic Condon domains in three-dimensional (3D) and two-dimensional (2D) nonmagnetic metals have been investigated for a half century [1-10]. Recent works have [...]
- Published
- 2022
- Full Text
- View/download PDF