1. Deep rest-UV JWST/NIRSpec spectroscopy of early galaxies: the demographics of CIV and N-emitters in the reionization era
- Author
-
Topping, Michael W., Stark, Daniel P., Senchyna, Peter, Chen, Zuyi, Zitrin, Adi, Endsley, Ryan, Charlot, Stéphane, Furtak, Lukas J., Maseda, Michael V., Plat, Adele, Smit, Renske, Mainali, Ramesh, Chevallard, Jacopo, Molyneux, Stephen, and Rigby, Jane R.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
JWST has recently discovered a subset of reionization era galaxies with ionized gas that is metal poor in oxygen and carbon but heavily-enriched in nitrogen. This abundance pattern is almost never seen in lower redshift galaxies but is commonly observed in globular cluster stars. We have recently demonstrated that this peculiar abundance pattern appears in a compact ($\simeq 20$ pc) metal-poor galaxy undergoing a strong burst of star formation. This galaxy was originally selected based on strong CIV emission, indicating a hard radiation field rarely seen locally. In this paper, we present JWST/NIRSpec observations of another reionization-era galaxy known to power strong CIV emission, the $z=7.04$ gravitationally-lensed galaxy A1703-zd6. The emission line spectrum reveals this is a metal poor galaxy ($12+\log(\rm O/H) = 7.47\pm0.19$) dominated by a young stellar population ($1.6^{+0.5}_{-0.4}$ Myr) that powers a very hard ionizing spectrum (CIV EW = 19.4 $\unicode{x212B}$, He II EW = 2.2 $\unicode{x212B}$). The ISM is highly-enriched in nitrogen ($\log(\rm N/O)=-0.6$) with very high electron densities ($8-19\times10^4$ cm$^{-3}$) and extreme ionization conditions rarely seen at lower redshift. We also find intense CIV emission (EW$\gtrsim20$ $\unicode{x212B}$) in two new $z\gtrsim 6$ metal poor galaxies. To put these results in context, we search for UV line emission in a sample of 737 $z\gtrsim 4$ galaxies with NIRSpec spectra, establishing that 40(30)% of systems with [OIII]+H$\beta$ EW $>2000\unicode{x212B}$ have NIV] (CIV) detections with EW$>5$ $\unicode{x212B}$ ($>10$ $\unicode{x212B}$). These results suggest high N/O ratios and hard ionizing sources appear in a brief phase following a burst of star formation in compact high density stellar complexes., Comment: 29 pages, 18 figures; submitted to ApJ
- Published
- 2024