Mark E. Rose, Iska Georgieva, Nicholas M. Law, John H. Livingston, Jon M. Jenkins, Carl Ziegler, Pía Cortés-Zuleta, Enric Palle, James S. Jenkins, Davide Gandolfi, Andrei Tokovinin, Vincent Van Eylen, Sara Seager, Jeffrey C. Smith, Joshua N. Winn, Savita Mathur, Roland Vanderspek, Cesar Briceno, Artie P. Hatzes, Matias Diaz, Szilard Csizmadia, Keivan G. Stassun, K. W. F. Lam, Massimiliano Esposito, Carina M. Persson, K. I. Collins, Felipe Murgas, Ana Glidden, Karen A. Collins, Andrew Vanderburg, Stephen A. Rinehart, George R. Ricker, Malcom Fridlund, Marshall C. Johnson, Z. M. Berdinas, Thiam-Guan Tan, Michael Fausnaugh, David W. Latham, M. G. Soto, Jose I. Vines, Eric D. Lopez, Eric L. N. Jensen, Andrew W. Mann, Rafael A. García, Tianjun Gan, Norio Narita, Paul Wilson, Alexandre Santerne, Daniel A. Yahalomi, Ismael Mireles, Robert L. Morris, L. González-Cuesta, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
The Neptune desert is a feature seen in the radius-mass-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here we report the {\it TESS} discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC\,8003-1117-1 (TOI-132). {\it TESS} photometry shows transit-like dips at the level of $\sim$1400 ppm occurring every $\sim$2.11 days. High-precision radial velocity follow-up with HARPS confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of $\sim$11.5 m s$^{-1}$, which, when combined with the stellar mass of $0.97\pm0.06$ $M_{\odot}$, provides a planetary mass of 22.83$^{+1.81}_{-1.80}$ $M_{\oplus}$. Modeling the {\it TESS} high-quality light curve returns a planet radius of 3.43$^{+0.13}_{-0.14}$ $R_{\oplus}$, and therefore the planet bulk density is found to be 3.11$^{+0.44}_{-0.450}$ g cm$^{-3}$. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3$^{+1.2}_{-2.3}$\%. TOI-132 b is a {\it TESS} Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding the Neptune desert., 12 pages, 10 figures, 4 tables. Submitted to MNRAS. Comments welcome. Missing labels, Typos fixed