1. Analyzing Misalignment Tolerances for Implicit Electric Field Conjugation
- Author
-
Liberman, Joshua, Haffert, Sebastiaan Y., Males, Jared R., and Milani, Kian
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Optics - Abstract
High contrast imaging of extrasolar planets and circumstellar disks requires extreme wavefront stability. Such stability can be achieved with active wavefront control (WFC). The next generation of ground- and space-based telescopes will require a robust form of WFC in order to image planets at small inner working angles and extreme flux ratios with respect to the host star. WFC algorithms such as implicit Electric Field Conjugation (iEFC) reduce stellar leakage by minimizing the electric field within a given region of an image, creating a dark hole. iEFC utilizes an empirical approach to sense and remove speckles in the focal plane. While iEFC is empirically calibrated and can handle optical model errors, there are still model assumptions made during the calibration. The performance of iEFC will degrade if the system changes due to slow, optomechanical drifts. In this work, we assess the iEFC performance impacts of pupil misalignments on the deformable mirror and focal plane misalignments on the detector. We base our analysis on the MagAO-X instrument, an extreme AO system installed on the Magellan-Clay telescope, to develop iEFC misalignment tolerancing requirements for both ground- and space-based missions. We present end-to-end physical optics simulations of the MagAO-X instrument, demonstrating iEFC alignment tolerance., Comment: 8 pages, 6 figures, SPIE Astronomical Telescopes + Instrumentation 2024
- Published
- 2024