1. Redox Status and Protein Glutathionylation in Binase-Treated HPV16-Positive SiHa Carcinoma Cells.
- Author
-
Nadyrova, A. I., Petrushanko, I. Y., Mitkevich, V. A., and Ilinskaya, O. N.
- Subjects
- *
HUMAN papillomavirus , *BACILLUS pumilus , *REACTIVE oxygen species , *CANCER cells , *SQUAMOUS cell carcinoma - Abstract
Human papillomavirus type 16 (HPV16) belongs to viruses of the high-risk type and is associated by overexpression of E6 and E7 oncoproteins, which determine the oncogenic properties of the virus, such as immortalization and malignant transformation of proliferating epithelial cells. The biogenesis of redox-sensitive proteins E6 and E7 at the early stages of viral infection leads to blocking of the cell antioxidant defense system and ubiquintin-dependent degradation of p53 and Rb tumor suppressors. Maintaining high rates of tumor cell proliferation contributes to an increase in the level of reactive oxygen species (ROS) and a shift in the redox balance towards oxidative processes. Reduced glutathione (GSH) provides antioxidant protection to tumor cells through S-glutathionylation of thiol groups of redox-sensitive proteins, which leads to the appearance of multidrug-resistant forms of cancer. In this regard, drugs restoring redox balance and increasing susceptibility to antitumor therapy are of particular importance. We have established that, Bacillus pumilus RNase (binase) modulates the redox-dependent regulatory mechanisms that ensure tumor cell resistance to apoptosis in HPV-16-positive SiHa cells of cervical squamous cell carcinoma,. Binase in nontoxic concentrations initiates a number of pre-apoptogenic changes, i.e., decreases ROS and reduced glutathione (GSH) levels, suppresses the expression of the E6 oncoprotein, activates the expression of the p53 tumor suppressor, and reduces the mitochondrial potential of tumor cells. Binase-induced disruption of the integrity of the mitochondrial membrane is a signal for activation of the mitochondrial apoptosis pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF