1. Multiscale Models of CVD Process: Review and Prospective
- Author
-
Yu Tian, Zefan Yan, Lin Jiang, Rongzheng Liu, Bing Liu, Youlin Shao, Xu Yang, and Malin Liu
- Subjects
CVD ,mechanism ,numerical simulation ,multiscale ,inter-scale coupling ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
Chemical vapor deposition (CVD) is a crucial technique in the preparation of high-quality thin films and coatings, and is widely used in various industries including semiconductor, optics, and nuclear fuel, due to its operation simplicity and high growth rate. The complexity of the CVD process arises from numerous parameters, such as precursor chemistry, temperature, pressure, gas flow dynamics, and substrate characteristics. These multiscale parameters make the optimization of the CVD process a challenging task. Numerical simulations are widely used to model and analyze the CVD complex systems, and can be divided into nanoscale, mesoscale, and macroscale methods. Numerical simulation is aimed at optimizing the CVD process, but the inter-scale parameters still need to be extracted in modeling processes. However, multiscale coupling modeling becomes a powerful method to solve these challenges by providing a comprehensive framework that integrates phenomena occurring at different scales. This review presents an overview of the CVD process, the common critical parameters, and an in-depth analysis of CVD models in different scales. Then various multiscale models are discussed. This review highlights the models in different scales, integrates these models into multiscale frameworks, discusses typical multiscale coupling CVD models applied in practice, and summarizes the parameters that can transfer information between different scales. Finally, the schemes of multiscale coupling are given as a prospective view. By offering a comprehensive view of the current state of multiscale CVD models, this review aims to bridge the gap between theory and practice, and provide insights that could lead to a more efficient and precise control of the CVD process.
- Published
- 2024
- Full Text
- View/download PDF