1. Plant extract mediated in-situ synthesis of iron/manganese alginate hydrosphere and its excellent recovery of rare earth elements in mine wastewater.
- Author
-
Zhang C and Chen Z
- Subjects
- Adsorption, Waste Disposal, Fluid methods, Euphorbia chemistry, Wastewater chemistry, Alginates chemistry, Water Pollutants, Chemical analysis, Metals, Rare Earth, Iron chemistry, Mining, Manganese chemistry, Plant Extracts chemistry
- Abstract
The recovery of rare earth elements (REEs) is a major issue based on environmental governance and sustainable resource utilization. In this study, we developed a novel hydrogel material (Fe/Mn@ALG) by anchoring Fe/Mn NPs on alginate spheres, where Fe/Mn NPs were in-situ synthesized using Euphorbia cochinchensi leaf extract as reduced and protection agents. The Fe/Mn@ALG was applied directly to real mine wastewater, generating efficient and selective recovery of REEs with the coexistence of numerous competing metal ions. As results have shown, Fe/Mn@ALG was a useful adsorbent for REEs with an adsorption efficiency 78.62 % achieved, which was also confirmed by distribution coefficients (K
d ), up to 2451.66 mL·g-1 . Furthermore, Fe/Mn@ALG exhibited preferential response to REEs over other metal ions with the separation factor (SF) being up to 240. This great adsorption performance and selectivity toward REEs were attributed to its specific surface area, oxygen-rich functional groups and negatively charged surface in acid wastewater. Furthermore, REEs could be greatly desorbed from Fe/Mn@ALG with output concentration being three times higher than the initial concentration. Additionally, Fe/Mn@ALG maintained its good adsorption performance with efficiency reaching 72.24 % after five reuses. Overall, Fe/Mn@ALG can be considered as a promising candidate for wastewater remediation and sustainable management of resources., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF