23 results on '"Mannion OM"'
Search Results
2. Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment
- Author
-
Abu-Shawareb, H, Acree, R, Adams, P, Adams, J, Addis, B, Aden, R, Adrian, P, Afeyan, BB, Aggleton, M, Aghaian, L, Aguirre, A, Aikens, D, Akre, J, Albert, F, Albrecht, M, Albright, BJ, Albritton, J, Alcala, J, Alday, C, Alessi, DA, Alexander, N, Alfonso, J, Alfonso, N, Alger, E, Ali, SJ, Ali, ZA, Alley, WE, Amala, P, Amendt, PA, Amick, P, Ammula, S, Amorin, C, Ampleford, DJ, Anderson, RW, Anklam, T, Antipa, N, Appelbe, B, Aracne-Ruddle, C, Araya, E, Arend, M, Arnold, P, Arnold, T, Asay, J, Atherton, LJ, Atkinson, D, Atkinson, R, Auerbach, JM, Austin, B, Auyang, L, Awwal, AS, Ayers, J, Ayers, S, Ayers, T, Azevedo, S, Bachmann, B, Back, CA, Bae, J, Bailey, DS, Bailey, J, Baisden, T, Baker, KL, Baldis, H, Barber, D, Barberis, M, Barker, D, Barnes, A, Barnes, CW, Barrios, MA, Barty, C, Bass, I, Batha, SH, Baxamusa, SH, Bazan, G, Beagle, JK, Beale, R, Beck, BR, Beck, JB, Bedzyk, M, Beeler, RG, Behrendt, W, Belk, L, Bell, P, Belyaev, M, Benage, JF, Bennett, G, Benedetti, LR, Benedict, LX, Berger, R, Bernat, T, Bernstein, LA, Berry, B, Bertolini, L, Besenbruch, G, Betcher, J, Bettenhausen, R, Betti, R, Bezzerides, B, Bhandarkar, SD, Bickel, R, Biener, J, Biesiada, T, Bigelow, K, Bigelow-Granillo, J, Bigman, V, Bionta, RM, Birge, NW, Bitter, M, Black, AC, Bleile, R, Bleuel, DL, Bliss, E, Blue, B, Boehly, T, Boehm, K, Boley, CD, Bonanno, R, Bond, EJ, Bond, T, Bonino, MJ, Borden, M, Bourgade, J-L, Bousquet, J, Bowers, J, Bowers, M, Boyd, R, Bozek, A, Bradley, DK, Bradley, KS, Bradley, PA, Bradley, L, Brannon, L, Brantley, PS, Braun, D, Braun, T, Brienza-Larsen, K, Briggs, TM, Britten, J, Brooks, ED, Browning, D, Bruhn, MW, Brunner, TA, Bruns, H, Brunton, G, Bryant, B, Buczek, T, Bude, J, Buitano, L, Burkhart, S, Burmark, J, Burnham, A, Burr, R, Busby, LE, Butlin, B, Cabeltis, R, Cable, M, Cabot, WH, Cagadas, B, Caggiano, J, Cahayag, R, Caldwell, SE, Calkins, S, Callahan, DA, Calleja-Aguirre, J, Camara, L, Camp, D, Campbell, EM, Campbell, JH, Carey, B, Carey, R, Carlisle, K, Carlson, L, Carman, L, Carmichael, J, Carpenter, A, Carr, C, Carrera, JA, Casavant, D, Casey, A, Casey, DT, Castillo, A, Castillo, E, Castor, JI, Castro, C, Caughey, W, Cavitt, R, Celeste, J, Celliers, PM, Cerjan, C, Chandler, G, Chang, B, Chang, C, Chang, J, Chang, L, Chapman, R, Chapman, T, Chase, L, Chen, H, Chen, K, Chen, L-Y, Cheng, B, Chittenden, J, Choate, C, Chou, J, Chrien, RE, Chrisp, M, Christensen, K, Christensen, M, Christopherson, AR, Chung, M, Church, JA, Clark, A, Clark, DS, Clark, K, Clark, R, Claus, L, Cline, B, Cline, JA, Cobble, JA, Cochrane, K, Cohen, B, Cohen, S, Collette, MR, Collins, G, Collins, LA, Collins, TJB, Conder, A, Conrad, B, Conyers, M, Cook, AW, Cook, D, Cook, R, Cooley, JC, Cooper, G, Cope, T, Copeland, SR, Coppari, F, Cortez, J, Cox, J, Crandall, DH, Crane, J, Craxton, RS, Cray, M, Crilly, A, Crippen, JW, Cross, D, Cuneo, M, Cuotts, G, Czajka, CE, Czechowicz, D, Daly, T, Danforth, P, Darbee, R, Darlington, B, Datte, P, Dauffy, L, Davalos, G, Davidovits, S, Davis, P, Davis, J, Dawson, S, Day, RD, Day, TH, Dayton, M, Deck, C, Decker, C, Deeney, C, DeFriend, KA, Deis, G, Delamater, ND, Delettrez, JA, Demaret, R, Demos, S, Dempsey, SM, Desjardin, R, Desjardins, T, Desjarlais, MP, Dewald, EL, DeYoreo, J, Diaz, S, Dimonte, G, Dittrich, TR, Divol, L, Dixit, SN, Dixon, J, Dodd, ES, Dolan, D, Donovan, A, Donovan, M, Döppner, T, Dorrer, C, Dorsano, N, Douglas, MR, Dow, D, Downie, J, Downing, E, Dozieres, M, Draggoo, V, Drake, D, Drake, RP, Drake, T, Dreifuerst, G, DuBois, DF, DuBois, PF, Dunham, G, Dylla-Spears, R, Dymoke-Bradshaw, AKL, Dzenitis, B, Ebbers, C, Eckart, M, Eddinger, S, Eder, D, Edgell, D, Edwards, MJ, Efthimion, P, Eggert, JH, Ehrlich, B, Ehrmann, P, Elhadj, S, Ellerbee, C, Elliott, NS, Ellison, CL, Elsner, F, Emerich, M, Engelhorn, K, England, T, English, E, Epperson, P, Epstein, R, Erbert, G, Erickson, MA, Erskine, DJ, Erlandson, A, Espinosa, RJ, Estes, C, Estabrook, KG, Evans, S, Fabyan, A, Fair, J, Fallejo, R, Farmer, N, Farmer, WA, Farrell, M, Fatherley, VE, Fedorov, M, Feigenbaum, E, Feit, M, Ferguson, W, Fernandez, JC, Fernandez-Panella, A, Fess, S, Field, JE, Filip, CV, Fincke, JR, Finn, T, Finnegan, SM, Finucane, RG, Fischer, M, Fisher, A, Fisher, J, Fishler, B, Fittinghoff, D, Fitzsimmons, P, Flegel, M, Flippo, KA, Florio, J, Folta, J, Folta, P, Foreman, LR, Forrest, C, Forsman, A, Fooks, J, Foord, M, Fortner, R, Fournier, K, Fratanduono, DE, Frazier, N, Frazier, T, Frederick, C, Freeman, MS, Frenje, J, Frey, D, Frieders, G, Friedrich, S, Froula, DH, Fry, J, Fuller, T, Gaffney, J, Gales, S, Le Galloudec, B, Le Galloudec, KK, Gambhir, A, Gao, L, Garbett, WJ, Garcia, A, Gates, C, Gaut, E, Gauthier, P, Gavin, Z, Gaylord, J, Geissel, M, Génin, F, Georgeson, J, Geppert-Kleinrath, H, Geppert-Kleinrath, V, Gharibyan, N, Gibson, J, Gibson, C, Giraldez, E, Glebov, V, Glendinning, SG, Glenn, S, Glenzer, SH, Goade, S, Gobby, PL, Goldman, SR, Golick, B, Gomez, M, Goncharov, V, Goodin, D, Grabowski, P, Grafil, E, Graham, P, Grandy, J, Grasz, E, Graziani, F, Greenman, G, Greenough, JA, Greenwood, A, Gregori, G, Green, T, Griego, JR, Grim, GP, Grondalski, J, Gross, S, Guckian, J, Guler, N, Gunney, B, Guss, G, Haan, S, Hackbarth, J, Hackel, L, Hackel, R, Haefner, C, Hagmann, C, Hahn, KD, Hahn, S, Haid, BJ, Haines, BM, Hall, BM, Hall, C, Hall, GN, Hamamoto, M, Hamel, S, Hamilton, CE, Hammel, BA, Hammer, JH, Hampton, G, Hamza, A, Handler, A, Hansen, S, Hanson, D, Haque, R, Harding, D, Harding, E, Hares, JD, Harris, DB, Harte, JA, Hartouni, EP, Hatarik, R, Hatchett, S, Hauer, AA, Havre, M, Hawley, R, Hayes, J, Hayes, S, Hayes-Sterbenz, A, Haynam, CA, Haynes, DA, Headley, D, Heal, A, Heebner, JE, Heerey, S, Heestand, GM, Heeter, R, Hein, N, Heinbockel, C, Hendricks, C, Henesian, M, Heninger, J, Henrikson, J, Henry, EA, Herbold, EB, Hermann, MR, Hermes, G, Hernandez, JE, Hernandez, VJ, Herrmann, MC, Herrmann, HW, Herrera, OD, Hewett, D, Hibbard, R, Hicks, DG, Hill, D, Hill, K, Hilsabeck, T, Hinkel, DE, Ho, DD, Ho, VK, Hoffer, JK, Hoffman, NM, Hohenberger, M, Hohensee, M, Hoke, W, Holdener, D, Holdener, F, Holder, JP, Holko, B, Holunga, D, Holzrichter, JF, Honig, J, Hoover, D, Hopkins, D, Berzak Hopkins, L, Hoppe, M, Hoppe, ML, Horner, J, Hornung, R, Horsfield, CJ, Horvath, J, Hotaling, D, House, R, Howell, L, Hsing, WW, Hu, SX, Huang, H, Huckins, J, Hui, H, Humbird, KD, Hund, J, Hunt, J, Hurricane, OA, Hutton, M, Huynh, KH-K, Inandan, L, Iglesias, C, Igumenshchev, IV, Izumi, N, Jackson, M, Jackson, J, Jacobs, SD, James, G, Jancaitis, K, Jarboe, J, Jarrott, LC, Jasion, D, Jaquez, J, Jeet, J, Jenei, AE, Jensen, J, Jimenez, J, Jimenez, R, Jobe, D, Johal, Z, Johns, HM, Johnson, D, Johnson, MA, Gatu Johnson, M, Johnson, RJ, Johnson, S, Johnson, SA, Johnson, T, Jones, K, Jones, O, Jones, M, Jorge, R, Jorgenson, HJ, Julian, M, Jun, BI, Jungquist, R, Kaae, J, Kabadi, N, Kaczala, D, Kalantar, D, Kangas, K, Karasiev, VV, Karasik, M, Karpenko, V, Kasarky, A, Kasper, K, Kauffman, R, Kaufman, MI, Keane, C, Keaty, L, Kegelmeyer, L, Keiter, PA, Kellett, PA, Kellogg, J, Kelly, JH, Kemic, S, Kemp, AJ, Kemp, GE, Kerbel, GD, Kershaw, D, Kerr, SM, Kessler, TJ, Key, MH, Khan, SF, Khater, H, Kiikka, C, Kilkenny, J, Kim, Y, Kim, Y-J, Kimko, J, Kimmel, M, Kindel, JM, King, J, Kirkwood, RK, Klaus, L, Klem, D, Kline, JL, Klingmann, J, Kluth, G, Knapp, P, Knauer, J, Knipping, J, Knudson, M, Kobs, D, Koch, J, Kohut, T, Kong, C, Koning, JM, Koning, P, Konior, S, Kornblum, H, Kot, LB, Kozioziemski, B, Kozlowski, M, Kozlowski, PM, Krammen, J, Krasheninnikova, NS, Kraus, B, Krauser, W, Kress, JD, Kritcher, AL, Krieger, E, Kroll, JJ, Kruer, WL, Kruse, MKG, Kucheyev, S, Kumbera, M, Kumpan, S, Kunimune, J, Kustowski, B, Kwan, TJT, Kyrala, GA, Laffite, S, Lafon, M, LaFortune, K, Lahmann, B, Lairson, B, Landen, OL, Langenbrunner, J, Lagin, L, Land, T, Lane, M, Laney, D, Langdon, AB, Langer, SH, Langro, A, Lanier, NE, Lanier, TE, Larson, D, Lasinski, BF, Lassle, D, LaTray, D, Lau, G, Lau, N, Laumann, C, Laurence, A, Laurence, TA, Lawson, J, Le, HP, Leach, RR, Leal, L, Leatherland, A, LeChien, K, Lechleiter, B, Lee, A, Lee, M, Lee, T, Leeper, RJ, Lefebvre, E, Leidinger, J-P, LeMire, B, Lemke, RW, Lemos, NC, Le Pape, S, Lerche, R, Lerner, S, Letts, S, Levedahl, K, Lewis, T, Li, CK, Li, H, Li, J, Liao, W, Liao, ZM, Liedahl, D, Liebman, J, Lindford, G, Lindman, EL, Lindl, JD, Loey, H, London, RA, Long, F, Loomis, EN, Lopez, FE, Lopez, H, Losbanos, E, Loucks, S, Lowe-Webb, R, Lundgren, E, Ludwigsen, AP, Luo, R, Lusk, J, Lyons, R, Ma, T, Macallop, Y, MacDonald, MJ, MacGowan, BJ, Mack, JM, Mackinnon, AJ, MacLaren, SA, MacPhee, AG, Magelssen, GR, Magoon, J, Malone, RM, Malsbury, T, Managan, R, Mancini, R, Manes, K, Maney, D, Manha, D, Mannion, OM, Manuel, AM, Mapoles, E, Mara, G, Marcotte, T, Marin, E, Marinak, MM, Mariscal, C, Mariscal, DA, Mariscal, EF, Marley, EV, Marozas, JA, Marquez, R, Marshall, CD, Marshall, FJ, Marshall, M, Marshall, S, Marticorena, J, Martinez, D, Maslennikov, I, Mason, D, Mason, RJ, Masse, L, Massey, W, Masson-Laborde, P-E, Masters, ND, Mathisen, D, Mathison, E, Matone, J, Matthews, MJ, Mattoon, C, Mattsson, TR, Matzen, K, Mauche, CW, Mauldin, M, McAbee, T, McBurney, M, Mccarville, T, McCrory, RL, McEvoy, AM, McGuffey, C, Mcinnis, M, McKenty, P, McKinley, MS, McLeod, JB, McPherson, A, Mcquillan, B, Meamber, M, Meaney, KD, Meezan, NB, Meissner, R, Mehlhorn, TA, Mehta, NC, Menapace, J, Merrill, FE, Merritt, BT, Merritt, EC, Meyerhofer, DD, Mezyk, S, Mich, RJ, Michel, PA, Milam, D, Miller, C, Miller, D, Miller, DS, Miller, E, Miller, EK, Miller, J, Miller, M, Miller, PE, Miller, T, Miller, W, Miller-Kamm, V, Millot, M, Milovich, JL, Minner, P, Miquel, J-L, Mitchell, S, Molvig, K, Montesanti, RC, Montgomery, DS, Monticelli, M, Montoya, A, Moody, JD, Moore, AS, Moore, E, Moran, M, Moreno, JC, Moreno, K, Morgan, BE, Morrow, T, Morton, JW, Moses, E, Moy, K, Muir, R, Murillo, MS, Murray, JE, Murray, JR, Munro, DH, Murphy, TJ, Munteanu, FM, Nafziger, J, Nagayama, T, Nagel, SR, Nast, R, Negres, RA, Nelson, A, Nelson, D, Nelson, J, Nelson, S, Nemethy, S, Neumayer, P, Newman, K, Newton, M, Nguyen, H, Di Nicola, J-MG, Di Nicola, P, Niemann, C, Nikroo, A, Nilson, PM, Nobile, A, Noorai, V, Nora, R, Norton, M, Nostrand, M, Note, V, Novell, S, Nowak, PF, Nunez, A, Nyholm, RA, O'Brien, M, Oceguera, A, Oertel, JA, Okui, J, Olejniczak, B, Oliveira, J, Olsen, P, Olson, B, Olson, K, Olson, RE, Opachich, YP, Orsi, N, Orth, CD, Owen, M, Padalino, S, Padilla, E, Paguio, R, Paguio, S, Paisner, J, Pajoom, S, Pak, A, Palaniyappan, S, Palma, K, Pannell, T, Papp, F, Paras, D, Parham, T, Park, H-S, Pasternak, A, Patankar, S, Patel, MV, Patel, PK, Patterson, R, Patterson, S, Paul, B, Paul, M, Pauli, E, Pearce, OT, Pearcy, J, Pedrotti, B, Peer, A, Pelz, LJ, Penetrante, B, Penner, J, Perez, A, Perkins, LJ, Pernice, E, Perry, TS, Person, S, Petersen, D, Petersen, T, Peterson, DL, Peterson, EB, Peterson, JE, Peterson, JL, Peterson, K, Peterson, RR, Petrasso, RD, Philippe, F, Phipps, TJ, Piceno, E, Ping, Y, Pickworth, L, Pino, J, Plummer, R, Pollack, GD, Pollaine, SM, Pollock, BB, Ponce, D, Ponce, J, Pontelandolfo, J, Porter, JL, Post, J, Poujade, O, Powell, C, Powell, H, Power, G, Pozulp, M, Prantil, M, Prasad, M, Pratuch, S, Price, S, Primdahl, K, Prisbrey, S, Procassini, R, Pruyne, A, Pudliner, B, Qiu, SR, Quan, K, Quinn, M, Quintenz, J, Radha, PB, Rainer, F, Ralph, JE, Raman, KS, Raman, R, Rambo, P, Rana, S, Randewich, A, Rardin, D, Ratledge, M, Ravelo, N, Ravizza, F, Rayce, M, Raymond, A, Raymond, B, Reed, B, Reed, C, Regan, S, Reichelt, B, Reis, V, Reisdorf, S, Rekow, V, Remington, BA, Rendon, A, Requieron, W, Rever, M, Reynolds, H, Reynolds, J, Rhodes, J, Rhodes, M, Richardson, MC, Rice, B, Rice, NG, Rieben, R, Rigatti, A, Riggs, S, Rinderknecht, HG, Ring, K, Riordan, B, Riquier, R, Rivers, C, Roberts, D, Roberts, V, Robertson, G, Robey, HF, Robles, J, Rocha, P, Rochau, G, Rodriguez, J, Rodriguez, S, Rosen, M, Rosenberg, M, Ross, G, Ross, JS, Ross, P, Rouse, J, Rovang, D, Rubenchik, AM, Rubery, MS, Ruiz, CL, Rushford, M, Russ, B, Rygg, JR, Ryujin, BS, Sacks, RA, Sacks, RF, Saito, K, Salmon, T, Salmonson, JD, Sanchez, J, Samuelson, S, Sanchez, M, Sangster, C, Saroyan, A, Sater, J, Satsangi, A, Sauers, S, Saunders, R, Sauppe, JP, Sawicki, R, Sayre, D, Scanlan, M, Schaffers, K, Schappert, GT, Schiaffino, S, Schlossberg, DJ, Schmidt, DW, Schmitt, MJ, Schneider, DHG, Schneider, MB, Schneider, R, Schoff, M, Schollmeier, M, Schölmerich, M, Schroeder, CR, Schrauth, SE, Scott, HA, Scott, I, Scott, JM, Scott, RHH, Scullard, CR, Sedillo, T, Seguin, FH, Seka, W, Senecal, J, Sepke, SM, Seppala, L, Sequoia, K, Severyn, J, Sevier, JM, Sewell, N, Seznec, S, Shah, RC, Shamlian, J, Shaughnessy, D, Shaw, M, Shaw, R, Shearer, C, Shelton, R, Shen, N, Sherlock, MW, Shestakov, AI, Shi, EL, Shin, SJ, Shingleton, N, Shmayda, W, Shor, M, Shoup, M, Shuldberg, C, Siegel, L, Silva, FJ, Simakov, AN, Sims, BT, Sinars, D, Singh, P, Sio, H, Skulina, K, Skupsky, S, Slutz, S, Sluyter, M, Smalyuk, VA, Smauley, D, Smeltser, RM, Smith, C, Smith, I, Smith, J, Smith, L, Smith, R, Sohn, R, Sommer, S, Sorce, C, Sorem, M, Soures, JM, Spaeth, ML, Spears, BK, Speas, S, Speck, D, Speck, R, Spears, J, Spinka, T, Springer, PT, Stadermann, M, Stahl, B, Stahoviak, J, Stanton, LG, Steele, R, Steele, W, Steinman, D, Stemke, R, Stephens, R, Sterbenz, S, Sterne, P, Stevens, D, Stevers, J, Still, CB, Stoeckl, C, Stoeffl, W, Stolken, JS, Stolz, C, Storm, E, Stone, G, Stoupin, S, Stout, E, Stowers, I, Strauser, R, Streckart, H, Streit, J, Strozzi, DJ, Suratwala, T, Sutcliffe, G, Suter, LJ, Sutton, SB, Svidzinski, V, Swadling, G, Sweet, W, Szoke, A, Tabak, M, Takagi, M, Tambazidis, A, Tang, V, Taranowski, M, Taylor, LA, Telford, S, Theobald, W, Thi, M, Thomas, A, Thomas, CA, Thomas, I, Thomas, R, Thompson, IJ, Thongstisubskul, A, Thorsness, CB, Tietbohl, G, Tipton, RE, Tobin, M, Tomlin, N, Tommasini, R, Toreja, AJ, Torres, J, Town, RPJ, Townsend, S, Trenholme, J, Trivelpiece, A, Trosseille, C, Truax, H, Trummer, D, Trummer, S, Truong, T, Tubbs, D, Tubman, ER, Tunnell, T, Turnbull, D, Turner, RE, Ulitsky, M, Upadhye, R, Vaher, JL, VanArsdall, P, VanBlarcom, D, Vandenboomgaerde, M, VanQuinlan, R, Van Wonterghem, BM, Varnum, WS, Velikovich, AL, Vella, A, Verdon, CP, Vermillion, B, Vernon, S, Vesey, R, Vickers, J, Vignes, RM, Visosky, M, Vocke, J, Volegov, PL, Vonhof, S, Von Rotz, R, Vu, HX, Vu, M, Wall, D, Wall, J, Wallace, R, Wallin, B, Walmer, D, Walsh, CA, Walters, CF, Waltz, C, Wan, A, Wang, A, Wang, Y, Wark, JS, Warner, BE, Watson, J, Watt, RG, Watts, P, Weaver, J, Weaver, RP, Weaver, S, Weber, CR, Weber, P, Weber, SV, Wegner, P, Welday, B, Welser-Sherrill, L, Weiss, K, Widmann, K, Wheeler, GF, Whistler, W, White, RK, Whitley, HD, Whitman, P, Wickett, ME, Widmayer, C, Wiedwald, J, Wilcox, R, Wilcox, S, Wild, C, Wilde, BH, Wilde, CH, Wilhelmsen, K, Wilke, MD, Wilkens, H, Wilkins, P, Wilks, SC, Williams, EA, Williams, GJ, Williams, W, Williams, WH, Wilson, DC, Wilson, B, Wilson, E, Wilson, R, Winters, S, Wisoff, J, Wittman, M, Wolfe, J, Wong, A, Wong, KW, Wong, L, Wong, N, Wood, R, Woodhouse, D, Woodruff, J, Woods, DT, Woods, S, Woodworth, BN, Wooten, E, Wootton, A, Work, K, Workman, JB, Wright, J, Wu, M, Wuest, C, Wysocki, FJ, Xu, H, Yamaguchi, M, Yang, B, Yang, ST, Yatabe, J, Yeamans, CB, Yee, BC, Yi, SA, Yin, L, Young, B, Young, CS, Young, CV, Young, P, Youngblood, K, Zacharias, R, Zagaris, G, Zaitseva, N, Zaka, F, Ze, F, Zeiger, B, Zika, M, Zimmerman, GB, Zobrist, T, Zuegel, JD, Zylstra, AB, Indirect Drive ICF Collaboration, Collaboration, Indirect Drive ICF, AWE Plc, Lawrence Livermore National Laboratory, and U.S Department of Energy
- Subjects
General Physics ,02 Physical Sciences ,General Physics and Astronomy ,Indirect Drive ICF Collaboration ,01 Mathematical Sciences ,09 Engineering - Abstract
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.
- Published
- 2022
3. Time-of-flight vs time-of-arrival in neutron spectroscopic measurements for high energy density plasmas.
- Author
-
Grim GP, Mitrani JM, Chandler GA, Hahn KD, Jones MC, and Mannion OM
- Abstract
The neutron time-of-flight (nToF) diagnostic technique has a lengthy history in Inertial Confinement Fusion (ICF) and High Energy Density (HED) Science experiments. Its initial utility resulted from the simple relationship between the full width half maximum of the fusion peak signal in a distant detector and the burn averaged conditions of an ideal plasma producing the flux [Lehner and Pohl, Z. Phys. 207, 83-104 (1967)]. More recent precision measurements [Gatu-Johnson et al., Phys. Rev. E 94(8), 021202 (2016)] and theoretical studies [Munro, Nucl. Fusion 56, 035001 (2016)] have shown the spectrum to be more subtle and complicated, driving the desire for an absolute calibration of the spectrum to disambiguate plasma dynamics from the conditions producing thermonuclear reactions. In experiments where the neutron production history is not well measured, but the neutron signal is preceded by a concomitant flux of photons, the spectrum can be in situ calibrated using a set of collinear detectors to obtain a true "time-of-flight" measurement. This article presents the motivation and overview of this technique along with estimates of the experimental precision needed to make useful measurements in existing and future nToF systems such as the pulsed power Z-machine located in Albuquerque, NM, at Sandia National Laboratories., (© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).)
- Published
- 2024
- Full Text
- View/download PDF
4. Simultaneous analysis of collinear neutron time-of-flight (nToF) traces applied to pulsed fusion experiment.
- Author
-
Mitrani JM, Ampleford DJ, Chandler GA, Eckart MJ, Hahn KD, Jeet J, Kerr SM, Mannion OM, Moore AM, Schlossberg DJ, Youmans AE, and Grim GP
- Abstract
On pulsed fusion experiments, the neutron time of flight (nToF) diagnostic provides critical information on the fusion neutron energy spectrum. This work presents an analysis technique that uses two collinear nToF detectors, potentially to measure nuclear bang time and directional flow velocities. Two collinear detectors may be sufficient to disambiguate the contributions of nuclear bang time and directional flow velocities to the first moment of the neutron energy spectrum, providing an independent measurement of nuclear bang time. Preliminary results from measured nToF traces on the National Ignition Facility and additional applications of this technique are presented., (© 2024 Author(s). Published under an exclusive license by AIP Publishing.)
- Published
- 2024
- Full Text
- View/download PDF
5. Impact of mid-Z gas fill on dynamics and performance of shock-driven implosions at the OMEGA laser.
- Author
-
Gatu Johnson M, Adrian PJ, Appelbe BD, Crilly AJ, Forrest CJ, Glebov VY, Green LM, Haines BM, Kabadi NV, Kagan G, Keenan BD, Kunimune J, Li CK, Mannion OM, Petrasso RD, Séguin FH, Sio HW, Stoeckl C, Sutcliffe GD, Taitano WT, and Frenje JA
- Abstract
Shock-driven implosions with 100% deuterium (D_{2}) gas fill compared to implosions with 50:50 nitrogen-deuterium (N_{2}D_{2}) gas fill have been performed at the OMEGA laser facility to test the impact of the added mid-Z fill gas on implosion performance. Ion temperature (T_{ion}) as inferred from the width of measured DD-neutron spectra is seen to be 34%±6% higher for the N_{2}D_{2} implosions than for the D_{2}-only case, while the DD-neutron yield from the D_{2}-only implosion is 7.2±0.5 times higher than from the N_{2}D_{2} gas fill. The T_{ion} enhancement for N_{2}D_{2} is observed in spite of the higher Z, which might be expected to lead to higher radiative loss, and higher shock strength for the D_{2}-only versus N_{2}D_{2} implosions due to lower mass, and is understood in terms of increased shock heating of N compared to D, heat transfer from N to D prior to burn, and limited amount of ion-electron-equilibration-mediated additional radiative loss due to the added higher-Z material. This picture is supported by interspecies equilibration timescales for these implosions, constrained by experimental observables. The one-dimensional (1D) kinetic Vlasov-Fokker-Planck code ifp and the radiation hydrodynamic simulation codes hyades (1D) and xrage [1D, two-dimensional (2D)] are brought to bear to understand the observed yield ratio. Comparing measurements and simulations, the yield loss in the N_{2}D_{2} implosions relative to the pure D_{2}-fill implosion is determined to result from the reduced amount of D_{2} in the fill (fourfold effect on yield) combined with a lower fraction of the D_{2} fuel being hot enough to burn in the N_{2}D_{2} case. The experimental yield and T_{ion} ratio observations are relatively well matched by the kinetic simulations, which suggest interspecies diffusion is responsible for the lower fraction of hot D_{2} in the N_{2}D_{2} relative to the D_{2}-only case. The simulated absolute yields are higher than measured; a comparison of 1D versus 2D xrage simulations suggest that this can be explained by dimensional effects. The hydrodynamic simulations suggest that radiative losses primarily impact the implosion edges, with ion-electron equilibration times being too long in the implosion cores. The observations of increased T_{ion} and limited additional yield loss (on top of the fourfold expected from the difference in D content) for the N_{2}D_{2} versus D_{2}-only fill suggest it is feasible to develop the platform for studying CNO-cycle-relevant nuclear reactions in a plasma environment.
- Published
- 2024
- Full Text
- View/download PDF
6. Neutron source reconstruction using a generalized expectation-maximization algorithm on one-dimensional neutron images from the Z facility.
- Author
-
Ricketts SA, Mangan MA, Volegov P, Fittinghoff DN, Lewis WE, Mannion OM, Morel JE, Adams ML, and Ampleford DJ
- Abstract
Magnetized Liner Inertial Fusion experiments have been performed at the Z facility at Sandia National Laboratories. These experiments use deuterium fuel, which produces 2.45 MeV neutrons on reaching thermonuclear conditions. To study the spatial structure of neutron production, the one-dimensional imager of neutrons diagnostic was fielded to record axial resolved neutron images. In this diagnostic, neutrons passing through a rolled edge aperture form an image on a CR-39-based solid state nuclear track detector. Here, we present a modified generalized expectation-maximization algorithm to reconstruct an axial neutron emission profile of the stagnated fusion plasma. We validate the approach by comparing the reconstructed neutron emission profile to an x-ray emission profile provided by a time-integrated pinhole camera., (© 2024 Author(s). Published under an exclusive license by AIP Publishing.)
- Published
- 2024
- Full Text
- View/download PDF
7. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Allen A, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Archuleta TN, Arend M, Arnold P, Arnold T, Arsenlis A, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AAS, Aybar N, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger RL, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Boyle D, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs R, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman TD, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christiansen NS, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins GW, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Danly C, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Do A, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, Drury O, DuBois DF, DuBois PF, Dunham G, Durocher M, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Fehrenbach T, Feit M, Felker B, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geddes CGR, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani FR, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Higginson DP, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins LF, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Ivanovich I, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Krauland CM, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kur E, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lagin L, Lahmann B, Lairson B, Landen OL, Land T, Lane M, Laney D, Langdon AB, Langenbrunner J, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Manuel MJ, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez JI, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora RC, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Oesterle AL, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedretti A, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phillion D, Phipps TJ, Piceno E, Pickworth L, Ping Y, Pino J, Piston K, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo PW, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen MD, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmit PF, Smidt JM, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Smith R, Schölmerich M, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanley J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CH, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Stutz J, Summers L, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Wharton KB, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmann K, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff PJ, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Yu J, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.
- Published
- 2024
- Full Text
- View/download PDF
8. Evidence of non-Maxwellian ion velocity distributions in spherical shock-driven implosions.
- Author
-
Mannion OM, Taitano WT, Appelbe BD, Crilly AJ, Forrest CJ, Glebov VY, Knauer JP, McKenty PW, Mohamed ZL, Stoeckl C, Keenan BD, Chittenden JP, Adrian P, Frenje J, Kabadi N, Gatu Johnson M, and Regan SP
- Abstract
The ion velocity distribution functions of thermonuclear plasmas generated by spherical laser direct drive implosions are studied using deuterium-tritium (DT) and deuterium-deuterium (DD) fusion neutron energy spectrum measurements. A hydrodynamic Maxwellian plasma model accurately describes measurements made from lower temperature (<10 keV), hydrodynamiclike plasmas, but is insufficient to describe measurements made from higher temperature more kineticlike plasmas. The high temperature measurements are more consistent with Vlasov-Fokker-Planck (VFP) simulation results which predict the presence of a bimodal plasma ion velocity distribution near peak neutron production. These measurements provide direct experimental evidence of non-Maxwellian ion velocity distributions in spherical shock driven implosions and provide useful data for benchmarking kinetic VFP simulations.
- Published
- 2023
- Full Text
- View/download PDF
9. X-ray-imaging spectrometer (XRIS) for studies of residual kinetic energy and low-mode asymmetries in inertial confinement fusion implosions at OMEGA (invited).
- Author
-
Adrian PJ, Bachmann B, Betti R, Birkel A, Heuer PV, Johnson MG, Kabadi NV, Knauer JP, Kunimune J, Li CK, Mannion OM, Petrasso RD, Regan SP, Rinderknecht HG, Stoeckl C, Séguin FH, Sorce A, Shah RC, Sutcliffe GD, and Frenje JA
- Abstract
A system of x-ray imaging spectrometer (XRIS) has been implemented at the OMEGA Laser Facility and is capable of spatially and spectrally resolving x-ray self-emission from 5 to 40 keV. The system consists of three independent imagers with nearly orthogonal lines of sight for 3D reconstructions of the x-ray emission region. The distinct advantage of the XRIS system is its large dynamic range, which is enabled by the use of tantalum apertures with radii ranging from 50 μm to 1 mm, magnifications of 4 to 35×, and image plates with any filtration level. In addition, XRIS is capable of recording 1-100's images along a single line of sight, facilitating advanced statistical inference on the detailed structure of the x-ray emitting regions. Properties such as P0 and P2 of an implosion are measured to 1% and 10% precision, respectively. Furthermore, T
e can be determined with 5% accuracy.- Published
- 2022
- Full Text
- View/download PDF
10. Measurements of low-mode asymmetries in the areal density of laser-direct-drive deuterium-tritium cryogenic implosions on OMEGA using neutron spectroscopy.
- Author
-
Forrest CJ, Crilly A, Schwemmlein A, Gatu-Johnson M, Mannion OM, Appelbe B, Betti R, Glebov VY, Gopalaswamy V, Knauer JP, Mohamed ZL, Radha PB, Regan SP, Stoeckl C, and Theobald W
- Abstract
Areal density is one of the key parameters that determines the confinement time in inertial confinement fusion experiments, and low-mode asymmetries in the compressed fuel are detrimental to the implosion performance. The energy spectra from the scattering of the primary deuterium-tritium (DT) neutrons off the compressed cold fuel assembly are used to investigate low-mode nonuniformities in direct-drive cryogenic DT implosions at the Omega Laser Facility. For spherically symmetric implosions, the shape of the energy spectrum is primarily determined by the elastic and inelastic scattering cross sections for both neutron-deuterium and neutron-tritium kinematic interactions. Two highly collimated lines of sight, which are positioned at nearly orthogonal locations around the OMEGA target chamber, record the neutron time-of-flight signal in the current mode. An evolutionary algorithm is being used to extract a model-independent energy spectrum of the scattered neutrons from the experimental neutron time-of-flight data and is used to infer the modal spatial variations (l = 1) in the areal density. Experimental observations of the low-mode variations of the cold-fuel assembly (ρL
0 + ρL1 ) show good agreement with a recently developed model, indicating a departure from the spherical symmetry of the compressed DT fuel assembly. Another key signature that has been observed in the presence of a low-mode variation is the broadening of the kinematic end-point due to the anisotropy of the dense fuel conditions.- Published
- 2022
- Full Text
- View/download PDF
11. A new neutron time-of-flight detector for yield and ion-temperature measurements at the OMEGA Laser Facility.
- Author
-
Glebov VY, Forrest CJ, Kendrick J, Knauer JP, Mannion OM, McClow H, Regan SP, Stoeckl C, Stanley B, and Theobald W
- Abstract
A new neutron time-of-flight (nTOF) detector for deuterium-deuterium (DD)-fusion yield and ion-temperature measurements was designed, installed, and calibrated for the OMEGA Laser Facility. This detector provides an additional line of sight for DD neutron yield and ion-temperature measurements for yields exceeding 1 × 10
10 with higher precision than existing detectors. The nTOF detector consists of a 90-mm-diam, 20-mm-thick BC-422 scintillator and a gated Photek photomultiplier tube (PMT240). The PMT collects scintillating light through the 20-mm side of the scintillator without the use of a light guide. There is no lead shielding from hard x rays in order to allow the x-ray instrument response function of the detector to be measured easily. Instead, hard x-ray signals generated in implosion experiments are gated out by the PMT. The design provides a place for glass neutral-density filters between the scintillator and the PMT to avoid PMT saturation at high yields. The nTOF detector is installed in the OMEGA Target Bay along the P8A sub-port line of sight at a distance of 5.3 m from the target chamber center. In addition to DD measurements, the same detector can be used to measure the neutron yield and ion temperature from deuterium-tritium (DT) implosion targets in the 5 × 1010 to 2 × 1012 yield range. The design details and the calibration results of this nTOF detector for both D2 and DT implosions on OMEGA will be presented.- Published
- 2022
- Full Text
- View/download PDF
12. 3D Simulations Capture the Persistent Low-Mode Asymmetries Evident in Laser-Direct-Drive Implosions on OMEGA.
- Author
-
Colaïtis A, Turnbull DP, Igumenschev IV, Edgell D, Shah RC, Mannion OM, Stoeckl C, Jacob-Perkins D, Shvydky A, Janezic R, Kalb A, Cao D, Forrest CJ, Kwiatkowski J, Regan S, Theobald W, Goncharov VN, and Froula DH
- Abstract
Spherical implosions in inertial confinement fusion are inherently sensitive to perturbations that may arise from experimental constraints and errors. Control and mitigation of low-mode (long wavelength) perturbations is a key milestone to improving implosion performances. We present the first 3D radiation-hydrodynamic simulations of directly driven inertial confinement fusion implosions with an inline package for polarized crossed-beam energy transfer. Simulations match bang times, yields (separately accounting for laser-induced high modes and fuel age), hot spot flow velocities and direction, for which polarized crossed-beam energy transfer contributes to the systematic flow orientation evident in the OMEGA implosion database. Current levels of beam mispointing, imbalance, target offset, and asymmetry from polarized crossed-beam energy transfer degrade yields by more than 40%. The effectiveness of two mitigation strategies for low modes is explored.
- Published
- 2022
- Full Text
- View/download PDF
13. Bound on hot-spot mix in high-velocity, high-adiabat direct-drive cryogenic implosions based on comparison of absolute x-ray and neutron yields.
- Author
-
Shah RC, Cao D, Aghaian L, Bachmann B, Betti R, Campbell EM, Epstein R, Forrest CJ, Forsman A, Glebov VY, Goncharov VN, Gopalaswamy V, Harding DR, Hu SX, Igumenshchev IV, Janezic RT, Keaty L, Knauer JP, Kobs D, Lees A, Mannion OM, Mohamed ZL, Patel D, Rosenberg MJ, Shmayda WT, Stoeckl C, Theobald W, Thomas CA, Volegov P, Woo KM, and Regan SP
- Abstract
In laser-driven implosions for laboratory fusion, the comparison of hot-spot x-ray yield to neutron production can serve to infer hot-spot mix. For high-performance direct-drive implosions, this ratio depends sensitively on the degree of equilibration between the ion and electron fluids. A scaling for x-ray yield as a function of neutron yield and characteristic ion and electron hot-spot temperatures is developed on the basis of simulations with varying degrees of equilibration. We apply this model to hot-spot x-ray measurements of direct-drive cryogenic implosions typical of the direct-drive designs with best ignition metrics. The comparison of the measured x-ray and neutron yields indicates that hot-spot mix, if present, is below a sensitivity estimated as ∼2% by-atom mix of ablator plastic into the hot spot.
- Published
- 2022
- Full Text
- View/download PDF
14. Measurements of the temperature and velocity of the dense fuel layer in inertial confinement fusion experiments.
- Author
-
Mannion OM, Crilly AJ, Forrest CJ, Appelbe BD, Betti R, Glebov VY, Gopalaswamy V, Knauer JP, Mohamed ZL, Stoeckl C, Chittenden JP, and Regan SP
- Abstract
The apparent ion temperature and mean velocity of the dense deuterium tritium fuel layer of an inertial confinement fusion target near peak compression have been measured using backscatter neutron spectroscopy. The average isotropic residual kinetic energy of the dense deuterium tritium fuel is estimated using the mean velocity measurement to be ∼103 J across an ensemble of experiments. The apparent ion-temperature measurements from high-implosion velocity experiments are larger than expected from radiation-hydrodynamic simulations and are consistent with enhanced levels of shell decompression. These results suggest that high-mode instabilities may saturate the scaling of implosion performance with the implosion velocity for laser-direct-drive implosions.
- Published
- 2022
- Full Text
- View/download PDF
15. Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions.
- Author
-
Lees A, Betti R, Knauer JP, Gopalaswamy V, Patel D, Woo KM, Anderson KS, Campbell EM, Cao D, Carroll-Nellenback J, Epstein R, Forrest C, Goncharov VN, Harding DR, Hu SX, Igumenshchev IV, Janezic RT, Mannion OM, Radha PB, Regan SP, Shvydky A, Shah RC, Shmayda WT, Stoeckl C, Theobald W, and Thomas C
- Abstract
Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)10.1038/s41586-019-0877-0]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the ℓ=1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and ℓ=1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2×10^{14} fusion reactions.
- Published
- 2021
- Full Text
- View/download PDF
16. Thermal decoupling of deuterium and tritium during the inertial confinement fusion shock-convergence phase.
- Author
-
Kabadi NV, Simpson R, Adrian PJ, Bose A, Frenje JA, Gatu Johnson M, Lahmann B, Li CK, Parker CE, Séguin FH, Sutcliffe GD, Petrasso RD, Atzeni S, Eriksson J, Forrest C, Fess S, Glebov VY, Janezic R, Mannion OM, Rinderknecht HG, Rosenberg MJ, Stoeckl C, Kagan G, Hoppe M, Luo R, Schoff M, Shuldberg C, Sio HW, Sanchez J, Hopkins LB, Schlossberg D, Hahn K, and Yeamans C
- Abstract
A series of thin glass-shell shock-driven DT gas-filled capsule implosions was conducted at the OMEGA laser facility. These experiments generate conditions relevant to the central plasma during the shock-convergence phase of ablatively driven inertial confinement fusion (ICF) implosions. The spectral temperatures inferred from the DTn and DDn spectra are most consistent with a two-ion-temperature plasma, where the initial apparent temperature ratio, T_{T}/T_{D}, is 1.5. This is an experimental confirmation of the long-standing conjecture that plasma shocks couple energy directly proportional to the species mass in multi-ion plasmas. The apparent temperature ratio trend with equilibration time matches expected thermal equilibration described by hydrodynamic theory. This indicates that deuterium and tritium ions have different energy distributions for the time period surrounding shock convergence in ignition-relevant ICF implosions.
- Published
- 2021
- Full Text
- View/download PDF
17. An x-ray penumbral imager for measurements of electron-temperature profiles in inertial confinement fusion implosions at OMEGA.
- Author
-
Adrian PJ, Frenje J, Aguirre B, Bachmann B, Birkel A, Johnson MG, Kabadi NV, Lahmann B, Li CK, Mannion OM, Martin W, Mohamed ZL, Regan SP, Rinderknecht HG, Scheiner B, Schmitt MJ, Séguin FH, Shah RC, Sio H, Sorce C, Sutcliffe GD, and Petrasso RD
- Abstract
Hot-spot shape and electron temperature (T
e ) are key performance metrics used to assess the efficiency of converting shell kinetic energy into hot-spot thermal energy in inertial confinement fusion implosions. X-ray penumbral imaging offers a means to diagnose hot-spot shape and Te , where the latter can be used as a surrogate measure of the ion temperature (Ti ) in sufficiently equilibrated hot spots. We have implemented a new x-ray penumbral imager on OMEGA. We demonstrate minimal line-of-sight variations in the inferred Te for a set of implosions. Furthermore, we demonstrate spatially resolved Te measurements with an average uncertainty of 10% with 6 μm spatial resolution.- Published
- 2021
- Full Text
- View/download PDF
18. Application of an energy-dependent instrument response function to analysis of nTOF data from cryogenic DT experiments.
- Author
-
Mohamed ZL, Mannion OM, Knauer JP, Forrest CJ, Glebov VY, Stoeckl C, and Romanofsky MH
- Abstract
Neutron time-of-flight (nTOF) detectors are used to diagnose the conditions present in inertial confinement fusion (ICF) experiments and basic laboratory physics experiments performed on an ICF platform. The instrument response function (IRF) of these detectors is constructed by convolution of two components: an x-ray IRF and a neutron interaction response. The shape of the neutron interaction response varies with incident neutron energy, changing the shape of the total IRF. Analyses of nTOF data that span a broad range of energies must account for this energy-dependence in order to accurately infer plasma parameters and nuclear properties in ICF experiments. This work briefly reviews a matrix multiplication approach to convolution, which allows for an energy-dependent change in the shape of the IRF. This method is applied to synthetic data resembling symmetric cryogenic DT implosions to examine the effect of the energy-dependent IRF on the inferred areal density. The results of forward fits that infer ion temperatures and areal densities from nTOF data collected during cryogenic DT experiments on OMEGA are also discussed.
- Published
- 2021
- Full Text
- View/download PDF
19. Reconstructing 3D asymmetries in laser-direct-drive implosions on OMEGA.
- Author
-
Mannion OM, Woo KM, Crilly AJ, Forrest CJ, Frenje JA, Johnson MG, Glebov VY, Knauer JP, Mohamed ZL, Romanofsky MH, Stoeckl C, Theobald W, and Regan SP
- Abstract
Three-dimensional reconstruction algorithms have been developed, which determine the hot-spot velocity, hot-spot apparent ion temperature distribution, and fuel areal-density distribution present in laser-direct-drive inertial confinement fusion implosions on the OMEGA laser. These reconstructions rely on multiple independent measurements of the neutron energy spectrum emitted from the fusing plasma. Measurements of the neutron energy spectrum on OMEGA are made using a suite of quasi-orthogonal neutron time-of-flight detectors and a magnetic recoil spectrometer. These spectrometers are positioned strategically around the OMEGA target chamber to provide unique 3D measurements of the conditions of the fusing hot spot and compressed fuel near peak compression. The uncertainties involved in these 3D reconstructions are discussed and are used to identify a new nTOF diagnostic line of sight, which when built will reduce the uncertainty in the hot-spot apparent ion temperature distribution from 700 to <400 eV.
- Published
- 2021
- Full Text
- View/download PDF
20. Direct-drive laser fusion: status, plans and future.
- Author
-
Campbell EM, Sangster TC, Goncharov VN, Zuegel JD, Morse SFB, Sorce C, Collins GW, Wei MS, Betti R, Regan SP, Froula DH, Dorrer C, Harding DR, Gopalaswamy V, Knauer JP, Shah R, Mannion OM, Marozas JA, Radha PB, Rosenberg MJ, Collins TJB, Christopherson AR, Solodov AA, Cao D, Palastro JP, Follett RK, and Farrell M
- Abstract
Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.
- Published
- 2021
- Full Text
- View/download PDF
21. A novel photomultiplier tube neutron time-of-flight detector.
- Author
-
Glebov VY, Stoeckl C, Forrest CJ, Knauer JP, Mannion OM, Romanofsky MH, Sangster TC, and Regan SP
- Abstract
A traditional neutron time-of-flight (nTOF) detector used in inertial confinement fusion consists of a scintillator coupled with a photomultiplier tube (PMT). The instrument response function (IRF) of such a detector is dominated by the scintillator-light decay. In DT implosions with neutron yield larger than 10
13 , a novel detector consisting of a microchannel-plate (MCP) photomultiplier tube in a housing without a scintillator (PMT nTOF) can be used to measure DT yield, ion temperature, and neutron velocity. Most of the neutron signals in PMT nTOF detectors are produced from neutron interaction with a PMT window. The direct interaction of neutrons with the MCP provides negligible contribution. The elimination of the scintillator removes the scintillator decay from the instrument response function and makes the IRF of the PMT nTOF detector faster, which makes the ion temperature and neutron velocity measurements more accurate. Three PMT nTOF detectors were deployed in the OMEGA laser system for the first time to diagnose inertial confinement fusion plasma. The design details, characteristics, and calibration results of these detectors in DT implosions on OMEGA are presented. Recommendations on the use of different PMTs for specific applications are provided.- Published
- 2021
- Full Text
- View/download PDF
22. Tripled yield in direct-drive laser fusion through statistical modelling.
- Author
-
Gopalaswamy V, Betti R, Knauer JP, Luciani N, Patel D, Woo KM, Bose A, Igumenshchev IV, Campbell EM, Anderson KS, Bauer KA, Bonino MJ, Cao D, Christopherson AR, Collins GW, Collins TJB, Davies JR, Delettrez JA, Edgell DH, Epstein R, Forrest CJ, Froula DH, Glebov VY, Goncharov VN, Harding DR, Hu SX, Jacobs-Perkins DW, Janezic RT, Kelly JH, Mannion OM, Maximov A, Marshall FJ, Michel DT, Miller S, Morse SFB, Palastro J, Peebles J, Radha PB, Regan SP, Sampat S, Sangster TC, Sefkow AB, Seka W, Shah RC, Shmyada WT, Shvydky A, Stoeckl C, Solodov AA, Theobald W, Zuegel JD, Johnson MG, Petrasso RD, Li CK, and Frenje JA
- Abstract
Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.
- Published
- 2019
- Full Text
- View/download PDF
23. Calibration of a neutron time-of-flight detector with a rapid instrument response function for measurements of bulk fluid motion on OMEGA.
- Author
-
Mannion OM, Glebov VY, Forrest CJ, Knauer JP, Goncharov VN, Regan SP, Sangster TC, Stoeckl C, and Gatu Johnson M
- Abstract
A newly developed neutron time-of-flight (nTOF) diagnostic with a fast instrument response function has been fielded on the OMEGA laser in a highly collimated line of sight. By using a small plastic scintillator volume, the detector provides a narrow instrument response of 1.7 ns full width at half maximum while maintaining a large signal-to-noise ratio for neutron yields between 10
10 and 1014 . The OMEGA hardware timing system is used along with an optical fiducial to provide an absolute nTOF measurement to an accuracy of ∼56 ps. The fast instrument response enables the accurate measurement of the primary deuterium-tritium neutron peak shape, while the optical fiducial allows for an absolute neutron energy measurement. The new detector measures the neutron mean energy with an uncertainty of ∼7 keV, corresponding to a hot-spot velocity projection uncertainty of ∼12 km/s. Evidence of bulk fluid motion in cryogenic targets is presented with measurements of the neutron energy spectrum.- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.