1. Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
- Author
-
Nathalie Lassau, Samy Ammari, Emilie Chouzenoux, Hugo Gortais, Paul Herent, Matthieu Devilder, Samer Soliman, Olivier Meyrignac, Marie-Pauline Talabard, Jean-Philippe Lamarque, Remy Dubois, Nicolas Loiseau, Paul Trichelair, Etienne Bendjebbar, Gabriel Garcia, Corinne Balleyguier, Mansouria Merad, Annabelle Stoclin, Simon Jegou, Franck Griscelli, Nicolas Tetelboum, Yingping Li, Sagar Verma, Matthieu Terris, Tasnim Dardouri, Kavya Gupta, Ana Neacsu, Frank Chemouni, Meriem Sefta, Paul Jehanno, Imad Bousaid, Yannick Boursin, Emmanuel Planchet, Mikael Azoulay, Jocelyn Dachary, Fabien Brulport, Adrian Gonzalez, Olivier Dehaene, Jean-Baptiste Schiratti, Kathryn Schutte, Jean-Christophe Pesquet, Hugues Talbot, Elodie Pronier, Gilles Wainrib, Thomas Clozel, Fabrice Barlesi, Marie-France Bellin, and Michael G. B. Blum
- Subjects
Science - Abstract
The SARS-COV-2 pandemic has put pressure on intensive care units, so that predicting severe deterioration early is a priority. Here, the authors develop a multimodal severity score including clinical and imaging features that has significantly improved prognostic performance in two validation datasets compared to previous scores.
- Published
- 2021
- Full Text
- View/download PDF