Stefano Secci, Marco Fiore, Razvan Stanica, Angelo Furno, Marco Premoli, Alberto Ceselli, Università degli Studi di Milano [Milano] (UNIMI), Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), Laboratoire d'Ingénierie Circulation Transport (LICIT UMR TE), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École Nationale des Travaux Publics de l'État (ENTPE)-Université de Lyon, Phare, Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ALGorithmes et Optimisation pour Réseaux Autonomes (AGORA), CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria), Università degli Studi di Milano = University of Milan (UNIMI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
IFIP Networking 2018, Zürich, SUISSE, 14-/05/2018 - 16/05/2018; International audience; Orchestrating network and computing resources in Mobile Edge Computing (MEC) is an important item in the networking research agenda. In this paper, we propose a novel algorithmic approach to solve the problem of dynamically assigning base stations to MEC facilities, while taking into consideration multiple time-periods, and computing load switching and access latency costs. In particular, leveraging on an existing state of the art on mobile data analytics, we propose a methodology to integrate arbitrary time-period aggregation methods into a network optimization framework. We notably apply simple consecutive time period aggregation and agglomerative hierarchical clustering. Even if the aggregation and optimization methods represent techniques which are different in nature, and whose aim is partially overlapping, we show that they can be integrated in an efficient way. By simulation on real mobile cellular datasets, we show that, thanks to the clustering, we can scale with the number of time-periods considered, that our approach largely outperforms the case without time-period aggregations in terms of MEC access latency, and at which extent the use of clustering and time aggregation affects computing time and solution quality.