41 results on '"Marie Hélène Le Du"'
Search Results
2. Mechanism of MRX inhibition by Rif2 at telomeres
- Author
-
Florian Roisné-Hamelin, Sabrina Pobiega, Kévin Jézéquel, Simona Miron, Jordane Dépagne, Xavier Veaute, Didier Busso, Marie-Hélène Le Du, Isabelle Callebaut, Jean-Baptiste Charbonnier, Philippe Cuniasse, Sophie Zinn-Justin, and Stéphane Marcand
- Subjects
Science - Abstract
Different proteins localised at telomeres ensure chromosome end stability to prevent double strand-end break recognition. Here the authors provide new insight into how in S. cerevisiae the interaction between Rif2 and Rad50 inhibits MRX functions at telomeres.
- Published
- 2021
- Full Text
- View/download PDF
3. Introduction à la cristallographie biologique
- Author
-
Marie-Hélène Le Du, Pierre Legrand, Serena Sirigu, Sylvain Ravy
- Published
- 2021
4. BRCA2 binding through a cryptic repeated motif to HSF2BP oligomers does not impact meiotic recombination
- Author
-
Marie-Hélène Le Du, Maarten W. Paul, Roland Kanaar, Esther Sleddens-Linkels, Rania Ghouil, Alberto M. Pendás, Pierre Legrand, Lieke Koornneef, Yvette van Loon, Natalia Felipe-Medina, Jasper Veerman, Alex N. Zelensky, Jeroen Essers, Willy M. Baarends, Sari E. van Rossum-Fikkert, Sophie Zinn-Justin, Alex Maas, Simona Miron, Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, Junta de Castilla y León, Asociación Española Contra el Cáncer, Fundación CRIS contra el Cáncer, European Commission, Developmental Biology, Molecular Genetics, Radiation Oncology, Cell biology, and Surgery
- Subjects
Male ,Magnetic Resonance Spectroscopy ,endocrine system diseases ,DNA recombination ,Science ,RAD51 ,General Physics and Astronomy ,Reproductive biology ,Cell Cycle Proteins ,Crystallography, X-Ray ,General Biochemistry, Genetics and Molecular Biology ,Article ,03 medical and health sciences ,Exon ,Mice ,0302 clinical medicine ,Meiosis ,biology.animal ,Recombinase ,Animals ,Humans ,Protein Interaction Domains and Motifs ,skin and connective tissue diseases ,Tumour-suppressor proteins ,Homologous Recombination ,Spermatogenesis ,neoplasms ,Cells, Cultured ,030304 developmental biology ,X-ray crystallography ,Sequence Deletion ,Phenocopy ,BRCA2 Protein ,0303 health sciences ,Multidisciplinary ,biology ,Chemistry ,General Chemistry ,female genital diseases and pregnancy complications ,Cell biology ,Armadillo ,Models, Animal ,DMC1 ,Female ,Homologous recombination ,030217 neurology & neurosurgery - Abstract
© The Author(s) 2021., BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity — the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR., AP: Ministry of Economy and Competitiveness of Spain (BFU2015–71371-R), the Instituto de Salud Carlos III through CIBERONC, Junta de Castilla y León (CSI146P20), the Scientific Foundation of the Spanish Association Against Cancer (AECC), ALMOM, ACMUMA and the CRIS Cancer Foundation. JCM is funded by the Instituto de Salud Carlos III through a Miguel Servet program (CP12/03073 and CPII17/00015) and receives research support from the same institution (PI18/00796). LGS is recipient of a predoctoral contract (BES-2016-077748). IRP is recipient of a predoctoral contract (CSI030–18). SGA is recipient of a predoctoral contract from the MINECO (BES-2013-065223). Work carried out in our laboratory receives support from the European Community through the Regional Development Funding Program (FEDER).
- Published
- 2021
- Full Text
- View/download PDF
5. Molecular basis of the dual role of the Mlh1-Mlh3 endonuclease in MMR and in meiotic crossover formation
- Author
-
Lepakshi Ranjha, Pierre Chervy, Valérie Borde, Marie-Hélène Le Du, Laurent Maloisel, Jean-Baptiste Charbonnier, Giordano Reginato, Aurélien Thureau, Virginie Ropars, Emmanuelle Martini, Pierre Legrand, Jessica Andreani, Aurore Sanchez, Céline Adam, Petr Cejka, Jingqi Dai, Raphael Guerois, Carine Tellier-Lebegue, Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Models, Molecular ,congenital, hereditary, and neonatal diseases and abnormalities ,Saccharomyces cerevisiae Proteins ,DNA Repair ,[SDV]Life Sciences [q-bio] ,Saccharomyces cerevisiae ,Context (language use) ,MLH3 ,MLH1 ,environment and public health ,DNA Mismatch Repair ,03 medical and health sciences ,Holliday junction ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,Binding Sites ,biology ,Chemistry ,030302 biochemistry & molecular biology ,fungi ,Recombinational DNA Repair ,Biological Sciences ,biology.organism_classification ,Endonucleases ,Cell biology ,DNA-Binding Proteins ,enzymes and coenzymes (carbohydrates) ,Meiosis ,MutL Proteins ,DNA mismatch repair ,CTD ,Homologous recombination ,MutL Protein Homolog 1 - Abstract
International audience; In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ’s dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.
- Published
- 2021
- Full Text
- View/download PDF
6. Introduction à la cristallographie biologique
- Author
-
Pierre Legrand, Marie-Hélène Le Du, and Serena Sirigu
- Abstract
Dans le monde du vivant, les mecanismes mis en jeu pour respirer, digerer, grandir ou bouger un bras, impliquent des molecules constituees de milliers d’atomes, ce sont les macromolecules. Ces macromolecules circulent, interagissent et se contorsionnent en permanence. Visualiser ces macromolecules a l’echelle atomique constitue une aide incomparable pour comprendre comment elles fonctionnent, comment elles dysfonctionnent, et pour concevoir des medicaments, inhibiteurs ou activateurs. Quand on utilise la structure tridimensionnelle d’une macromolecule, il est essentiel de garder un œil critique, et pour cela, il faut comprendre comment cette structure a ete obtenue. La cristallographie aux rayons X est une methode historique qui utilise des rayons X et des cristaux pour determiner la structure tridimensionnelle des molecules a l’echelle atomique. Elle est egalement la methode la plus repandue. Ce livre s’adresse d’abord aux biologistes, mais aussi a toute personne interessee par la biologie structurale. Les auteurs vous proposent une initiation aux differentes etapes de la cristallographie biologique qui mene de la cristallisation a la structure tridimensionnelle d’une macromolecule. Ce livre fait suite au MOOC « Voyage au cœur du vivant avec des rayons X : la cristallographie ». Il peut en etre le compagnon ou etre utilise seul. Grace aux videos accessibles par les codes QR de chaque fin de chapitre, des lieux d’ordinaire fermes au public sont ouverts pour vous offrir un voyage unique au cœur du vivant.
- Published
- 2021
- Full Text
- View/download PDF
7. Di-phosphorylated BAF shows altered structural dynamics and binding to DNA, but interacts with its nuclear envelope partners
- Author
-
Virginie Ropars, Guillaume Hoffmann, Sophie Zinn-Justin, Marie-Hélène Le Du, Philippe Cuniasse, Ambre Petitalot, Robert Thai, Camille Samson, Agathe Marcelot, Stevens Dubois, José A. Márquez, Simona Miron, François-Xavier Theillet, Département Plateforme (PF I2BC), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Service d'Ingénierie Moléculaire pour la Santé (ex SIMOPRO) (SIMoS), Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), High Throughput Crystallization Laboratory, European Molecular Biology Laboratory Grenoble Outstation, European Molecular Biology Laboratory, ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), European Project: 653706,H2020,H2020-INFRAIA-2014-2015,iNEXT(2015), European Project: 871037,iNEXT-Discovery (H2020-EU.1.4.1.2), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and European Molecular Biology Laboratory [Grenoble] (EMBL)
- Subjects
AcademicSubjects/SCI00010 ,Emerin ,Protein Serine-Threonine Kinases ,Biology ,Protein Structure, Secondary ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Genetics ,Humans ,Amino Acid Sequence ,Phosphorylation ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Ternary complex ,Gene ,030304 developmental biology ,0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Kinase ,Gene regulation, Chromatin and Epigenetics ,Intracellular Signaling Peptides and Proteins ,Membrane Proteins ,Nuclear Proteins ,DNA ,Cell cycle ,Lamin Type A ,3. Good health ,Cell biology ,DNA-Binding Proteins ,chemistry ,ddc:540 ,Protein Processing, Post-Translational ,030217 neurology & neurosurgery ,Lamin ,Protein Binding - Abstract
Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.
- Published
- 2021
- Full Text
- View/download PDF
8. Introduction to Biological Crystallography
- Author
-
Marie-Hélène Le Du, Pierre Legrand, Serena Sirigu, Sylvain Ravy, Marie-Hélène Le Du, Pierre Legrand, Serena Sirigu, and Sylvain Ravy
- Abstract
In the living world, the mechanisms that make us breathe, digest, grow or move an arm involve molecules made up of thousands of atoms, called macromolecules. These macromolecules are constantly circulating, interacting and deforming. Visualising these macromolecules at the atomic level is a unique tool for understanding their function and for designing drugs, inhibitors or activators. When using the three-dimensional structure of a macromolecule, it is essential to keep a critical eye. To do this, we need to understand how the structure was obtained. X-ray crystallography is a historical method of using X-rays and crystals to determine the three-dimensional atomic structure of molecules. It is also the most widely used.The main audience for this book is biological scientists, although it will appeal to anyone interested in structural biology. It introduces the different steps involved in biological crystallography, from crystallisation to the determination of the three-dimensional structure of a macromolecule. Thanks to the videos available through the QR codes at the end of each chapter, sites normally closed to the public are opened up to offer you a unique journey to the heart of life.
- Published
- 2024
9. A cryptic BRCA2 repeated motif binds to HSF2BP oligomers with no impact on meiotic recombination
- Author
-
Roland Kanaar, Pierre Legrand, Alex Maas, Simona Miron, Maarten W. Paul, Rania Ghouil, Lieke Koornneef, Alberto M. Pendás, Jasper Veerman, Esther Sleddens-Linkels, Sari E. van Rossum-Fikkert, Marie-Hélène Le Du, Sophie Zinn-Justin, Willy M. Baarends, Alex N. Zelensky, Jeroen Essers, Natalia Felipe-Medina, and Yvette van Loon
- Subjects
Coiled coil ,endocrine system diseases ,Chemistry ,RAD51 ,female genital diseases and pregnancy complications ,Germline ,Cell biology ,Exon ,Meiosis ,Recombinase ,DMC1 ,skin and connective tissue diseases ,Homologous recombination ,neoplasms - Abstract
BRCA2 plays a prominent role in meiotic homologous recombination (HR). Loss of BRCA2 or several of its meiotic partners causes fertility defects. One of these partners, HSF2BP, was recently discovered as expressed physiologically in germline and ectopically produced in cancer cells. It has an N-terminal coiled coil motif involved in direct binding to the protein BRME1, and both HSF2BP and BRME1 are essential for meiotic HR during spermatogenesis. It also interacts through its C-terminal Armadillo (ARM) domain with a conserved region of BRCA2 of unknown function. We analyzed the structural properties and functional consequences of the BRCA2-HSF2BP interaction and tested the emerging model of its involvement in meiosis. We solved the crystal structure of the complex between the BRCA2 fragment that is disordered in solution and the HSF2BP dimeric ARM domain. This revealed two previously unrecognized BRCA2 repeats that each interact with one ARM monomer from two different dimers. BRCA2 binding triggers ARM tetramerization, resulting in a complex containing two BRCA2 fragments connecting two ARM dimers. The 3D structures of the BRCA2 repeats are superimposable, revealing conserved contacts between the BRCA2 residues defining the repeats and the HSF2BP residues lining the groove of the ARM. This large interface is responsible for the nanomolar affinity of the interaction, significantly stronger than any other measured interaction involving BRCA2. Deleting exon 12 from Brca2, encoding the first repeat, disrupted BRCA2 binding to HSF2BP in vitro and in cells. However, Brca2Δ12/Δ12 mice with the same deletion were fertile and did not show any meiotic defects, contrary to the prediction from the model positing that HSF2BP acts as a meiotic localizer of BRCA2. We conclude that the high-affinity interaction between BRCA2 and HSF2BP and the resulting HSF2BP oligomerization are not required for RAD51 and DMC1 recombinase localization to meiotic double strand breaks and for productive meiotic HR.
- Published
- 2020
- Full Text
- View/download PDF
10. Conception sur une base rationnelle de peptides de haute affinité inhibant l'histone chaperon ASF1
- Author
-
Carl Mann, Raphael Guerois, May Bakail, Ekaterina Boyarchuk, Albane Gaubert, Marie-Cécile Gaillard, Zachary A. Gurard-Levin, Françoise Ochsenbein, Brice Murciano, Claire Frederic, Gwenaëlle Moal, Geneviève Almouzni, Jean-Yves Thuret, Régis Courbeyrette, Morgane Agez, Marie-Hélène Le Du, Nicolas Richet, Jessica Andreani, Adeline Poitou, Nadia Cherradi, Berengère Guichard, Guillaume Pinna, Caroline Roelants, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Assemblage moléculaire et intégrité du génome (AMIG), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), PARi (PARI), Département Plateforme (PF I2BC), Sénescence et stabilité génomique (SEN), Département Biologie des Génomes (DBG), Enveloppe Nucléaire, Télomères et Réparation de l’ADN (INTGEN), Laboratoire de Biologie Structurale et Radiobiologie (LBSR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Sorbonne Université - Faculté de Médecine (SU FM), Sorbonne Université (SU), Vaccination Antiparasitaire : Laboratoire de Biologie Cellulaire et Moléculaire (LBCM), Université Montpellier 1 (UM1)-Université de Montpellier (UM), Institut de Biologie et de Technologies de Saclay (IBITECS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Invasion mechanisms in angiogenesis and cancer (IMAC), Biologie du Cancer et de l'Infection (BCI ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut National de la Santé et de la Recherche Médicale (INSERM), Dynamique du noyau [Institut Curie], Institut Curie [Paris]-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
[SDV]Life Sciences [q-bio] ,Clinical Biochemistry ,Cell Cycle Proteins ,01 natural sciences ,Biochemistry ,[SHS]Humanities and Social Sciences ,Histones ,Epitopes ,Mice ,Cell Movement ,Neoplasms ,Drug Discovery ,Cancer ,Mice, Inbred BALB C ,biology ,Chromatin ,Cell biology ,Histone ,Molecular Medicine ,Thermodynamics ,Peptide Inhibitor ,Female ,Epigenetics ,Protein Binding ,DNA repair ,X-Ray Crystallography ,Cell Penetrating Peptide ,Protein–protein interaction ,Rosetta Design ,Cell Line, Tumor ,Animals ,Humans ,Transplantation, Homologous ,Amino Acid Sequence ,Molecular Biology ,Cell Proliferation ,Pharmacology ,Binding Sites ,010405 organic chemistry ,Cell growth ,Rational design ,Cell Cycle Checkpoints ,MESH: Amino Acid Sequence ,Drug Design ,Histones / metabolism ,Neoplasms / drug therapy ,0104 chemical sciences ,Protein-Protein Interaction ,Kinetics ,biology.protein ,Cell-penetrating peptide ,Peptides ,Molecular Chaperones - Abstract
International audience; Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.; La fonction anti-silencing 1 (ASF1) est un chaperon d'histone H3-H4 conservé, impliqué dans la dynamique des histones pendant la réplication, la transcription et la réparation de l'ADN. Surexprimée dans les tissus en prolifération, y compris dans de nombreuses tumeurs, l'ASF1 est devenue une cible thérapeutique prometteuse. Ici, nous combinons des approches structurelles, informatiques et biochimiques pour concevoir des peptides qui inhibent l'interaction ASF1-histone. En partant de la structure du complexe ASF1-histone humain, nous avons mis au point une stratégie de conception rationnelle combinant la fixation des épitopes et l'optimisation des contacts d'interface pour identifier un puissant inhibiteur peptidique avec une constante de dissociation de 3 nM. Lorsqu'ils sont introduits dans des cellules en culture, les inhibiteurs entravent la prolifération cellulaire, perturbent la progression du cycle cellulaire et réduisent la migration et l'invasion des cellules d'une manière proportionnelle à leur affinité pour l'ASF1. Enfin, nous constatons que l'injection directe du plus puissant inhibiteur du peptide ASF1 dans les allogreffes de souris réduit la croissance des tumeurs. Nos résultats ouvrent de nouvelles voies pour utiliser les inhibiteurs de l'ASF1 comme des pistes prometteuses pour le traitement du cancer.
- Published
- 2019
- Full Text
- View/download PDF
11. The Multifaceted Roles of Ku70/80
- Author
-
Virginie Ropars, Murielle Seif El Dahan, Florence Iehl, Paloma Fernandez-Varela, Marie-Hélène Le Du, Sayma Zahid, and Jean-Baptiste Charbonnier
- Subjects
double-strand break ,DNA Repair ,QH301-705.5 ,DNA repair ,Review ,Genome ,Catalysis ,Evolution, Molecular ,Inorganic Chemistry ,chemistry.chemical_compound ,Genome editing ,Animals ,Humans ,Biology (General) ,Physical and Theoretical Chemistry ,Ku Autoantigen ,DNA repair machinery ,QD1-999 ,Molecular Biology ,Spectroscopy ,Polymerase ,chemistry.chemical_classification ,Ku70 ,DNA ligase ,biology ,fungi ,Organic Chemistry ,protein-DNA interactions ,General Medicine ,telomeres ,Computer Science Applications ,Cell biology ,Telomere ,Chemistry ,enzymes and coenzymes (carbohydrates) ,chemistry ,c-NHEJ ,biology.protein ,Protein Processing, Post-Translational ,DNA - Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
- Published
- 2021
- Full Text
- View/download PDF
12. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases
- Author
-
Ana-Andreea Arteni, Virginie Ropars, Marie-Hélène Le Du, Ambre Petitalot, Florian Celli, Camille Samson, Naïma Nhiri, Eric Jacquet, Sophie Zinn-Justin, Isaline Herrada, Brigitte Buendia, Enveloppe Nucléaire, Télomères et Réparation de l’ADN (INTGEN), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Cryo-microscopie électronique (CRYOEM), Département Plateforme (PF I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and ANR-10-INBS-05-01/10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010)
- Subjects
0301 basic medicine ,Models, Molecular ,Nuclear Envelope ,[SDV]Life Sciences [q-bio] ,Protein domain ,Emerin ,Genes, Recessive ,Plasma protein binding ,Biology ,medicine.disease_cause ,Crystallography, X-Ray ,Progeroid syndromes ,03 medical and health sciences ,Progeria ,Protein Domains ,Structural Biology ,Genetics ,medicine ,Humans ,Gene ,Mutation ,Membrane Proteins ,Nuclear Proteins ,medicine.disease ,Lamin Type A ,Chromatin ,Cell biology ,DNA-Binding Proteins ,030104 developmental biology ,Multiprotein Complexes ,Protein Multimerization ,Lamin ,Protein Binding - Abstract
International audience; Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF's ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.
- Published
- 2018
- Full Text
- View/download PDF
13. Substrate and Reaction Specificity of Mycobacterium tuberculosis Cytochrome P450 CYP121
- Author
-
Steven Dubois, Guillaume Grach, Alain Lecoq, Robert Thai, Marie-Hélène Le Du, Matthieu Fonvielle, Muriel Gondry, Pascal Belin, Mickaël Jacquet, and Olivier Lequin
- Subjects
chemistry.chemical_classification ,0303 health sciences ,Chemistry ,Stereochemistry ,Aryl ,Substrate (chemistry) ,Cell Biology ,Nuclear magnetic resonance spectroscopy ,Plasma protein binding ,010402 general chemistry ,Ligand (biochemistry) ,01 natural sciences ,Biochemistry ,Enzyme structure ,3. Good health ,0104 chemical sciences ,03 medical and health sciences ,chemistry.chemical_compound ,Oxidoreductase ,Molecular Biology ,Binding selectivity ,030304 developmental biology - Abstract
Cytochrome P450 CYP121 is essential for the viability of Mycobacterium tuberculosis. Studies in vitro show that it can use the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) as a substrate. We report an investigation of the substrate and reaction specificities of CYP121 involving analysis of the interaction between CYP121 and 14 cYY analogues with various modifications of the side chains or the diketopiperazine (DKP) ring. Spectral titration experiments show that CYP121 significantly bound only cyclodipeptides with a conserved DKP ring carrying two aryl side chains in l-configuration. CYP121 did not efficiently or selectively transform any of the cYY analogues tested, indicating a high specificity for cYY. The molecular determinants of this specificity were inferred from both crystal structures of CYP121-analog complexes solved at high resolution and solution NMR spectroscopy of the analogues. Bound cYY or its analogues all displayed a similar set of contacts with CYP121 residues Asn85, Phe168, and Trp182. The propensity of the cYY tyrosyl to point toward Arg386 was dependent on the presence of the DKP ring that limits the conformational freedom of the ligand. The correct positioning of the hydroxyl of this tyrosyl was essential for conversion of cYY. Thus, the specificity of CYP121 results from both a restricted binding specificity and a fine-tuned P450 substrate relationship. These results document the catalytic mechanism of CYP121 and improve our understanding of its function in vivo. This work contributes to progress toward the design of inhibitors of this essential protein of M. tuberculosis that could be used for antituberculosis therapy.
- Published
- 2013
- Full Text
- View/download PDF
14. TRF2-Mediated Control of Telomere DNA Topology as a Mechanism for Chromosome-End Protection
- Author
-
Marie-Hélène Le Du, Simona Miron, Bei Pei, Hong Wang, Eric Gilson, Parminder Kaur, Arturo Londoño-Vallejo, Jing Ye, Emilie Jaune, Aaron Mendez-Bermudez, Sabrina Pisano, Marie-Josèphe Giraud-Panis, Vincent Fraisier, Julien Cherfils-Vicini, Nadir Djerbi, Eric Aeby, Delphine Benarroch-Popivker, Serge Bauwens, Kevin Foucher, Chrysa M Latrick, Liudmyla Lototska, Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Physics Department, North Carolina State University [Raleigh] (NC State), University of North Carolina System (UNC)-University of North Carolina System (UNC), Compartimentation et dynamique cellulaires (CDC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC), Swiss Institute for Experimental Cancer Research - Lausanne (ISREC), Swiss Institute for Experimental Cancer Research, Enveloppe Nucléaire, Télomères et Réparation de l’ADN (INTGEN), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Dynamique de l'information génétique : bases fondamentales et cancer (DIG CANCER), Dpt génétique médicale [CHU Nice], Centre Hospitalier Universitaire de Nice (CHU Nice), ANR-10-BLAN-1512,TELOLOOP,Rôle de la protéine TRF2 et de ses partenaires dans la formation et la stabilité de la t-loop des télomères humains(2010), ANR-11-LABX-0028,SIGNALIFE,Réseau d'Innovation sur les Voies de Signalisation en Sciences de la Vie(2011), Institut de Recherche sur le Cancer et le Vieillissement ( IRCAN ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), North Carolina State University [Raleigh] ( NCSU ), Compartimentation et dynamique cellulaires ( CDC ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -INSTITUT CURIE-Centre National de la Recherche Scientifique ( CNRS ), Swiss Institute for Experimental Cancer Research - Lausanne ( ISREC ), Enveloppe Nucléaire, Télomères et Réparation de l’ADN ( INTGEN ), Département Biochimie, Biophysique et Biologie Structurale ( B3S ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Dynamique de l'information génétique : bases fondamentales et cancer ( DIG CANCER ), CHU Nice, ANR-1582-30020690,TELOLOOP,ANR-1582-30020690, ANR : LABEX SIGNALIFE,ANR-11-LABX-0028-01, Université Nice Sophia Antipolis (1965 - 2019) (UNS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Centre National de la Recherche Scientifique (CNRS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Telomeres and Cancer Laboratory, Institut Curie [Paris], School of Mechanical Engineering, Sungkyunkwan University [Suwon] (SKKU), Laboratoire de Biologie Moléculaire de la Cellule (LBMC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon
- Subjects
Models, Molecular ,0301 basic medicine ,DNA End-Joining Repair ,[SDV]Life Sciences [q-bio] ,Ataxia Telangiectasia Mutated Proteins ,TRF2 ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,medicine.disease_cause ,Shelterin Complex ,chemistry.chemical_compound ,Telomeric Repeat Binding Protein 2 ,Base Pairing ,ComputingMilieux_MISCELLANEOUS ,Telomere-binding protein ,Mutation ,telomere ,RAP1 ,DNA topology ,DNA wrapping ,Signal Transduction ,DNA damage ,Base pair ,Telomere-Binding Proteins ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Topology ,Article ,03 medical and health sciences ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,medicine ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Molecular Biology ,[ SDV ] Life Sciences [q-bio] ,Lysine ,DNA ,Cell Biology ,Shelterin ,Molecular biology ,Protein Structure, Tertiary ,Telomere ,enzymes and coenzymes (carbohydrates) ,030104 developmental biology ,chemistry ,Nucleic Acid Conformation ,DNA Damage ,HeLa Cells - Abstract
International audience; The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.
- Published
- 2016
- Full Text
- View/download PDF
15. The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA
- Author
-
Rachel Lescasse, Patrick Weber, Javier Pérez, Marie-Hélène Le Du, Simona Miron, Bertrand Raynal, Sylvaine Gasparini, Gabriel David, B. Matot, Sophie Zinn-Justin, Bertrand Castaing, Yann-Vaï Le Bihan, Protéines membranaires transductrices d'énergie (PMTE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Service d'Instabilité Génétique Réparation Recombinaison (SIGRR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Cristallogenèse et Diffraction des Rayons X (Plate-forme/PF6), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Biophysique des macromolécules et de leurs interactions (Plate-forme), Institut Pasteur [Paris] (IP), Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, French ‘Agence National pour la Recherche’ (ANR-06-BLAN-0076). Funding for open access charge: Commissariat à l'Energie Atomique., ANR-06-BLAN-0076,NHEJ&TELO,Double-strand break repair and genome stability: the Non-Homologous End Joining pathway and its suppression at telomeres(2006), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de Physique des Solides (LPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Chemistry, Food Chemsitry, University of Hamburg, and Laboratoire de Biologie Structurale et Radiobiologie (LBSR)
- Subjects
Models, Molecular ,BUDDING YEAST ,Crystallography, X-Ray ,Shelterin Complex ,MESH: Telomere-Binding Proteins ,MESH: Protein Structure, Tertiary ,chemistry.chemical_compound ,MESH: Saccharomyces cerevisiae Proteins ,0302 clinical medicine ,X-Ray Diffraction ,Transcription (biology) ,Structural Biology ,ANGLE SCATTERING DATA ,MESH: Nuclear Magnetic Resonance, Biomolecular ,Silent Information Regulator Proteins, Saccharomyces cerevisiae ,Genetics ,Telomere-binding protein ,0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,biology ,YEAST RAP1 ,MESH: DNA ,MESH: X-Ray Diffraction ,ASSOCIATION ,MESH: Transcription Factors ,SEPARATION ,REPRESSOR ACTIVATOR PROTEIN-1 ,MESH: Models, Molecular ,Binding domain ,endocrine system ,Saccharomyces cerevisiae Proteins ,HMG-box ,Saccharomyces cerevisiae ,Telomere-Binding Proteins ,03 medical and health sciences ,Scattering, Small Angle ,TARGET SITES ,MESH: Silent Information Regulator Proteins, Saccharomyces cerevisiae ,Nuclear Magnetic Resonance, Biomolecular ,MESH: Scattering, Small Angle ,030304 developmental biology ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,DNA-binding domain ,DNA ,MESH: Crystallography, X-Ray ,biology.organism_classification ,Protein Structure, Tertiary ,DNA binding site ,BIOLOGICAL MACROMOLECULES ,enzymes and coenzymes (carbohydrates) ,chemistry ,TELOMERE LENGTH ,Biophysics ,TRANSCRIPTIONAL ACTIVATION ,030217 neurology & neurosurgery ,Transcription Factors - Abstract
International audience; Rap1 is an essential DNA-binding factor from the yeast Saccharomyces cerevisiae involved in transcription and telomere maintenance. Its binding to DNA targets Rap1 at particular loci, and may optimize its ability to form functional macromolecular assemblies. It is a modular protein, rich in large potentially unfolded regions, and comprising BRCT, Myb and RCT well-structured domains. Here, we present the architectures of Rap1 and a Rap1/DNA complex, built through a step-by-step integration of small angle X-ray scattering, X-ray crystallography and nuclear magnetic resonance data. Our results reveal Rap1 structural adjustment upon DNA binding that involves a specific orientation of the C-terminal (RCT) domain with regard to the DNA binding domain (DBD). Crystal structure of DBD in complex with a long DNA identifies an essential wrapping loop, which constrains the orientation of the RCT and affects Rap1 affinity to DNA. Based on our structural information, we propose a model for Rap1 assembly at telomere.
- Published
- 2011
- Full Text
- View/download PDF
16. Irditoxin, a novel covalently linked heterodimeric three‐finger toxin with high taxon‐specific neurotoxicity
- Author
-
Joanna Pawlak, André Ménez, Enrico A. Stura, Chun Shin Foo, R. Manjunatha Kini, Renée Ménez, Selvanayagam Nirthanan, Stephen P. Mackessy, Marie Hélène Le Du, and Nicole M. Sixberry
- Subjects
Male ,Models, Molecular ,DNA, Complementary ,Protein subunit ,Molecular Sequence Data ,Neurotoxins ,Venom ,Biology ,Crystallography, X-Ray ,Binding, Competitive ,Biochemistry ,Species Specificity ,Complementary DNA ,Genetics ,Animals ,Neurotoxin ,Amino Acid Sequence ,Molecular Biology ,Conserved Sequence ,Acetylcholine receptor ,chemistry.chemical_classification ,Base Sequence ,Edman degradation ,Colubridae ,Molecular biology ,Protein Structure, Tertiary ,Amino acid ,Protein Subunits ,chemistry ,Structural Homology, Protein ,Snake venom ,Protein Multimerization ,Sequence Alignment ,Protein Binding ,Snake Venoms ,Biotechnology - Abstract
A novel heterodimeric three-finger neurotoxin, irditoxin, was isolated from venom of the brown treesnake Boiga irregularis (Colubridae). Irditoxin subunit amino acid sequences were determined by Edman degradation and cDNA sequencing. The crystal structure revealed two subunits with a three-finger protein fold, typical for "nonconventional" toxins such as denmotoxin, bucandin, and candoxin. This is the first colubrid three-finger toxin dimer, covalently connected via an interchain disulfide bond. Irditoxin showed taxon-specific lethality toward birds and lizards and was nontoxic toward mice. It produced a potent neuromuscular blockade at the avian neuromuscular junction (IC(50)=10 nM), comparable to alpha-bungarotoxin, but was three orders of magnitude less effective at the mammalian neuromuscular junction. Covalently linked heterodimeric three-finger toxins found in colubrid venoms constitute a new class of venom peptides, which may be a useful source of new neurobiology probes and therapeutic leads.
- Published
- 2008
- Full Text
- View/download PDF
17. Characterization of the Functional Epitope on the Urokinase Receptor
- Author
-
Marie Hélène Le Du, Henrik Gårdsvoll, André Ménez, Michael Ploug, Thomas J. D. Jørgensen, and Bernard Gilquin
- Subjects
Serine protease ,chemistry.chemical_classification ,biology ,Molecular mass ,Chemistry ,Stereochemistry ,Mutagenesis ,Peptide ,Cell Biology ,Alanine scanning ,Biochemistry ,Kringle domain ,Urokinase receptor ,biology.protein ,Molecular Biology ,Plasminogen activator - Abstract
The high affinity interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) represents one of the key regulatory steps in cell surface-associated plasminogen activation. On the basis on our crystal structure solved for uPAR in complex with a peptide antagonist, we recently proposed a model for the corresponding complex with the growth factor-like domain of uPA (Llinas et al. (2005) EMBO J. 24, 1655-1663). In the present study, we provide experimental evidence that consolidates and further develops this model using data from a comprehensive alanine scanning mutagenesis of uPAR combined with low resolution distance constraints defined within the complex using chemical cross-linkers as molecular rulers. The kinetic rate constants for the interaction between pro-uPA and 244 purified uPAR mutants with single-site replacements were determined by surface plasmon resonance. This complete alanine scanning of uPAR highlighted the involvement of 20 surface-exposed side chains in this interaction. Mutations causing delta deltaG > or = 1 kcal/mol for the uPA interaction are all located within or at the rim of the central cavity uniquely formed by the assembly of all three domains in uPAR, whereas none are found outside this crevice. Identification of specific cross-linking sites in uPAR and pro-uPA enabled us to build a model of the uPAR x uPA complex in which the kringle domain of uPA was positioned by the constraints established by the range of these cross-linkers. The nature of this interaction is predominantly hydrophobic and highly asymmetric, thus emphasizing the importance of the shape and size of the central cavity when designing low molecular mass antagonists of the uPAR/uPA interaction.
- Published
- 2006
- Full Text
- View/download PDF
18. Structural Studies of Human Placental Alkaline Phosphatase in Complex with Functional Ligands
- Author
-
Paola Llinas, André Ménez, Enrico A. Stura, Zoltan Kiss, Marie Hélène Le Du, José Luis Millán, and Torgny Stigbrand
- Subjects
Models, Molecular ,Protein Conformation ,Phenylalanine ,Placenta ,Molecular Conformation ,Organophosphonates ,Down-Regulation ,Crystallography, X-Ray ,Ligands ,Isozyme ,Nitrophenols ,Structural Biology ,Catalytic Domain ,Hydrolase ,Humans ,Protein Isoforms ,Binding site ,Molecular Biology ,Cell Proliferation ,chemistry.chemical_classification ,Binding Sites ,biology ,Hydrolysis ,Active site ,Fibroblasts ,Alkaline Phosphatase ,Adenosine Monophosphate ,Protein Structure, Tertiary ,Enzyme ,Placental alkaline phosphatase ,chemistry ,Biochemistry ,biology.protein ,Alkaline phosphatase ,Uncompetitive inhibitor - Abstract
The activity of human placental alkaline phosphatase (PLAP) is downregulated by a number of effectors such as l-phenylalanine, an uncompetitive inhibitor, 5'-AMP, an antagonist of the effects of PLAP on fibroblast proliferation and by p-nitrophenyl-phosphonate (PNPPate), a non-hydrolysable substrate analogue. For the first two, such regulation may be linked to its biological function that requires a reduced and better-regulated hydrolytic rate. To understand how such disparate ligands are able to inhibit the enzyme, we solved the structure of the complexes at 1.6A, 1.9A and 1.9A resolution, respectively. These crystal structures are the first of an alkaline phosphatase in complex with organic inhibitors. Of the three inhibitors, only l-Phe and PNPPate bind at the active site hydrophobic pocket, providing structural data on the uncompetitive inhibition process. In contrast, all three ligands interact at a remote peripheral site located 28A from the active site. In order to extend these observations to the other members of the human alkaline phosphatase family, we have modelled the structures of the other human isozymes and compared them to PLAP. This comparison highlights the crucial role played by position 429 at the active site in the modulation of the catalytic process, and suggests that the peripheral binding site may be involved in the functional specialization of the PLAP isozyme.
- Published
- 2005
- Full Text
- View/download PDF
19. Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide
- Author
-
Paola Llinas, Keld Danø, Henrik Gårdsvoll, André Ménez, Michael Ploug, Enrico A. Stura, Bernard Gilquin, and Marie Hélène Le Du
- Subjects
Integrin ,Molecular Conformation ,Receptors, Cell Surface ,Peptide ,Plasma protein binding ,Article ,General Biochemistry, Genetics and Molecular Biology ,Receptors, Urokinase Plasminogen Activator ,Protein–protein interaction ,Humans ,Receptor ,Molecular Biology ,chemistry.chemical_classification ,General Immunology and Microbiology ,biology ,General Neuroscience ,Urokinase-Type Plasminogen Activator ,Molecular biology ,Recombinant Proteins ,Cell biology ,Urokinase receptor ,chemistry ,biology.protein ,Vitronectin ,Crystallization ,Peptides ,Plasminogen activator ,Protein Binding - Abstract
We report the crystal structure of a soluble form of human urokinase-type plasminogen activator receptor (uPAR/CD87), which is expressed at the invasive areas of the tumor-stromal microenvironment in many human cancers. The structure was solved at 2.7 A in association with a competitive peptide inhibitor of the urokinase-type plasminogen activator (uPA)-uPAR interaction. uPAR is composed of three consecutive three-finger domains organized in an almost circular manner, which generates both a deep internal cavity where the peptide binds in a helical conformation, and a large external surface. This knowledge combined with the discovery of a convergent binding motif shared by the antagonist peptide and uPA allowed us to build a model of the human uPA-uPAR complex. This model reveals that the receptor-binding module of uPA engages the uPAR central cavity, thus leaving the external receptor surface accessible for other protein interactions (vitronectin and integrins). By this unique structural assembly, uPAR can orchestrate the fine interplay with the partners that are required to guide uPA-focalized proteolysis on the cell surface and control cell adhesion and migration.
- Published
- 2005
- Full Text
- View/download PDF
20. Motions and structural variability within toxins: Implication for their use as scaffolds for protein engineering
- Author
-
Bernard Gilquin, André Ménez, Marjorie Bourgoin, Sophie Zinn-Justin, Denis Servent, Renée Ménez, Marie-Hélène Le Du, Service d'Ingénierie Moléculaire pour la Santé (ex SIMOPRO) (SIMoS), Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Models, Molecular ,Protein Folding ,Charybdotoxin ,[SDV]Life Sciences [q-bio] ,Molecular Sequence Data ,Scorpion Venoms ,Crystallography, X-Ray ,Protein Engineering ,complex mixtures ,Biochemistry ,Article ,Protein Structure, Secondary ,Motion ,Structure-Activity Relationship ,chemistry.chemical_compound ,Protein structure ,Animals ,Computer Simulation ,Amino Acid Sequence ,Cobra Neurotoxin Proteins ,Nuclear Magnetic Resonance, Biomolecular ,Molecular Biology ,Peptide sequence ,Protein secondary structure ,ComputingMilieux_MISCELLANEOUS ,Protein dynamics ,Temperature ,Hydrogen Bonding ,Protein engineering ,Crystallography ,chemistry ,Protein folding - Abstract
Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.
- Published
- 2003
- Full Text
- View/download PDF
21. Structural Evidence of Functional Divergence in Human Alkaline Phosphatases
- Author
-
Marie-Hélène Le Du and José Luis Millán
- Subjects
Models, Molecular ,Protein Conformation ,Placenta ,Molecular Sequence Data ,Phosphatase ,Biochemistry ,Isozyme ,Substrate Specificity ,Protein structure ,Cations ,Humans ,Protein Isoforms ,Gene family ,Amino Acid Sequence ,Phosphorylation ,Binding site ,Molecular Biology ,Binding Sites ,Sequence Homology, Amino Acid ,biology ,Active site ,Hydrogen Bonding ,Cell Biology ,Alkaline Phosphatase ,Protein Structure, Tertiary ,Intestines ,Germ Cells ,Mutation ,biology.protein ,Alkaline phosphatase ,Dimerization ,Functional divergence - Abstract
The evolution of the alkaline phosphatase (AP) gene family has lead to the existence in humans of one tissue-nonspecific (TNAP) and three tissue-specific isozymes, i.e. intestinal (IAP), germ cell (GCAP), and placental AP (PLAP). To define the structural differences between these isozymes, we have built models of the TNAP, IAP, and GCAP molecules based on the 1.8-structure of PLAP(1) and have performed a comparative structural analysis. We have examined the monomer-monomer interface as this area is crucial for protein stability and enzymatic activity. We found that the interface allows the formation of heterodimers among IAP, GCAP, and PLAP but not between TNAP with any of the three tissue-specific isozymes. Secondly, the active site cleft was mapped into three regions, i.e. the active site itself, the roof of the cleft, and the floor of the cleft. This analysis led to a structural fingerprint of the active site of each AP isozyme that suggests a diversification in substrate specificity for this isozyme family.
- Published
- 2002
- Full Text
- View/download PDF
22. Improving Escherichia coli Alkaline Phosphatase Efficacy by Additional Mutations inside and outside the Catalytic Pocket
- Author
-
Evelyne Lajeunesse, Jean-Claude Boulain, Fabrice Lemaître, André Ménez, Frédéric Ducancel, Arween Pearson, Bruno H. Muller, Claire Lamoure, Marie-Hélène Le Du, and Laurence Cattolico
- Subjects
Models, Molecular ,Hot Temperature ,Mutant ,Phosphatase ,Biology ,Crystallography, X-Ray ,medicine.disease_cause ,Biochemistry ,Catalytic Domain ,Enzyme Stability ,Escherichia coli ,medicine ,Point Mutation ,Amino Acid Sequence ,Molecular Biology ,Thermostability ,chemistry.chemical_classification ,Mutation ,Base Sequence ,Organic Chemistry ,Mutagenesis ,Hydrogen-Ion Concentration ,Alkaline Phosphatase ,Molecular biology ,Enzyme assay ,Enzyme ,chemistry ,Mutagenesis, Site-Directed ,biology.protein ,Molecular Medicine ,Alkaline phosphatase - Abstract
We describe a strategy that allowed us to confer on a bacterial (E. coli) alkaline phosphatase (AP) the high catalytic activity of the mammalian enzyme while maintaining its high thermostability. First, we identified mutations, at positions other than those occupied by essential catalytic residues, which inactivate the bacterial enzyme without destroying its overall conformation. We transferred concomitantly into the bacterial enzyme four residues of the mammalian enzyme, two being in the catalytic pocket and two being outside. Second, the gene encoding the inactive mutant was submitted to random mutagenesis. Enzyme activity was restored upon the single mutation D330N, at a position that is 12 A away from the center of the catalytic pocket. Third, this mutation was combined with other mutations previously reported to increase AP activity slightly in the presence of magnesium. As a result, at pH 10.0 the phosphatase activity of both mutants D330N/D153H and D330N/D153G was 17-fold higher than that of the wild-type AP. Strikingly, although the two individual mutations D153H and D153G destabilize the enzyme, the double mutant D330N/D153G remained highly stable (T(m)=87 degrees C). Moreover, when combining the phosphatase and transferase activities, the catalytic activity of the mutant D330N/D153G increased 40-fold (k(cat)=3200 s-1) relative to that of the wild-type enzyme (k(cat)=80 s-1). Due to the simultaneous increase in K(m), the resulting k(cat)/K(m) value was only increased by a factor of two. Therefore, a single mutation occurring outside a catalytic pocket can dramatically control not only the activity of an enzyme, but also its thermostability. Preliminary crystallographic data of a covalent D330N/D153G enzyme-phosphate complex show that the phosphate group has significantly moved away from the catalytic pocket, relative to its position in the structure of another mutant previously reported.
- Published
- 2001
- Full Text
- View/download PDF
23. Crystal Structure of Alkaline Phosphatase from Human Placenta at 1.8 Å Resolution
- Author
-
Marie Hélène Le Du, Michael J. Taussig, André Ménez, Enrico A. Stura, and Torgny Stigbrand
- Subjects
biology ,Chemistry ,Stereochemistry ,Allosteric regulation ,Active site ,Substrate (chemistry) ,Cell Biology ,Biochemistry ,Serine ,Protein structure ,Placental alkaline phosphatase ,Hydrolase ,biology.protein ,Uncompetitive inhibitor ,Molecular Biology - Abstract
Human placental alkaline phosphatase (PLAP) is one of three tissue-specific human APs extensively studied because of its ectopic expression in tumors. The crystal structure, determined at 1.8-A resolution, reveals that during evolution, only the overall features of the enzyme have been conserved with respect to Escherichia coli. The surface is deeply mutated with 8% residues in common, and in the active site, only residues strictly necessary to perform the catalysis have been preserved. Additional structural elements aid an understanding of the allosteric property that is specific for the mammalian enzyme (Hoylaerts, M. F., Manes, T., and Millan, J. L. (1997) J. Biol. Chem. 272, 22781-22787). Allostery is probably favored by the quality of the dimer interface, by a long N-terminal alpha-helix from one monomer that embraces the other one, and similarly by the exchange of a residue from one monomer in the active site of the other. In the neighborhood of the catalytic serine, the orientation of Glu-429, a residue unique to PLAP, and the presence of a hydrophobic pocket close to the phosphate product, account for the specific uncompetitive inhibition of PLAP by l-amino acids, consistent with the acquisition of substrate specificity. The location of the active site at the bottom of a large valley flanked by an interfacial crown-shaped domain and a domain containing an extra metal ion on the other side suggest that the substrate of PLAP could be a specific phosphorylated protein.
- Published
- 2001
- Full Text
- View/download PDF
24. Crystallization and preliminary X-ray diffraction data of the complex between human centrin 2 and a peptide from the protein XPC
- Author
-
Simona Miron, Enrico A. Stura, Marie Hélène Le Du, Petya Christova, Yves Blouquit, Patricia Duchambon, Alexandra Shosheva, Constantin T. Craescu, and Jean-Baptiste Charbonnier
- Subjects
Protein subunit ,Bicine ,Biophysics ,Cell Cycle Proteins ,Peptide ,Calorimetry ,Biochemistry ,law.invention ,chemistry.chemical_compound ,X-Ray Diffraction ,Structural Biology ,law ,Genetics ,Humans ,Crystallization ,chemistry.chemical_classification ,Transglutaminases ,Chemistry ,Calcium-Binding Proteins ,Space group ,Condensed Matter Physics ,Binding constant ,Peptide Fragments ,Amino acid ,DNA-Binding Proteins ,Crystallography ,Crystallization Communications ,Centrin - Abstract
Centrins are highly conserved calcium-binding proteins involved in the nucleotide-excision repair pathway as a subunit of the heterotrimer including the XPC and hHR23B proteins. A complex formed by a Ca2+-bound human centrin 2 construct (the wild type lacking the first 25 amino acids) with a 17-mer peptide derived from the XPC sequence (residues Asn847-Arg863) was crystallized. Data were collected to 1.65 angstroms resolution from crystals grown in 30% monomethyl polyethylene glycol (MPEG) 500, 100 mM NaCl and 100 mM Bicine pH 9.0. Crystals are monoclinic and belong to space group C2, with two molecules in the asymmetric unit. The unit-cell parameters are a = 60.28, b = 59.42, c = 105.14 angstroms, alpha = gamma = 90, beta = 94.67 degrees. A heavy-atom derivative was obtained by co-crystallization with Sr2+. The substitution was rationalized by calorimetry experiments, which indicate a binding constant for Sr2+ of 4.0 x 10(4) M(-1).
- Published
- 2006
- Full Text
- View/download PDF
25. Structure of the MutL$\alpha$ C-terminal domain reveals how Mlh1 contributes to Pms1 endonuclease site
- Author
-
Bernard Gilquin, Floriana Londino, Josan A Márquez, Pierre Bonnesoeur, Claudine Dherin, Serge Boiteux, Marie-Hélène Le Du, Carine Tellier-Lebegue, Muriel Gondry, Jean-Baptiste Charbonnier, Pierre Legrand, Mireille Moutiez, Cathy Quemener, Emeric Gueneau, Laboratoire de Biologie Structurale et Radiobiologie (LBSR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Radiobiologie moléculaire et cellulaire (RMC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Equipe de Chimie Organique et Biologie Structurale (ECOBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU), Systèmes membranaires, photobiologie, stress et détoxification (SMPSD - UMR 8221), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et de Technologies de Saclay (IBITECS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), European Project: 227764,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2008-1,PCUBE(2009), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Models, Molecular ,congenital, hereditary, and neonatal diseases and abnormalities ,HMG-box ,Saccharomyces cerevisiae ,MLH1 ,Protein Structure, Secondary ,03 medical and health sciences ,Endonuclease ,0302 clinical medicine ,Protein structure ,MutL Proteins ,Structural Biology ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Molecular Biology ,neoplasms ,Adaptor Proteins, Signal Transducing ,030304 developmental biology ,Genetics ,0303 health sciences ,biology ,Chemistry ,Nuclear Proteins ,nutritional and metabolic diseases ,Endonucleases ,biology.organism_classification ,digestive system diseases ,DNA Repair Enzymes ,030220 oncology & carcinogenesis ,biology.protein ,MutL Protein Homolog 1 ,Homologous recombination - Abstract
International audience; Mismatch-repair factors have a prominent role in surveying eukaryotic DNA-replication fidelity and in ensuring correct meiotic recombination. These functions depend on MutL-homolog heterodimers with Mlh1. In humans, MLH1 mutations underlie half of hereditary nonpolyposis colorectal cancers (HNPCCs). Here we report crystal structures of the MutLα (Mlh1-Pms1 heterodimer) C-terminal domain (CTD) from $Saccharomyces\ cerevisiae$, alone and in complex with fragments derived from Mlh1 partners. These structures reveal structural rearrangements and additional domains in MutLα as compared to the bacterial MutL counterparts and show that the strictly conserved C terminus of Mlh1 forms part of the Pms1 endonuclease site. The structures of the ternary complexes between MutLα(CTD) and Exo1 or Ntg2 fragments reveal the binding mode of the MIP-box motif shared by several Mlh1 partners. Finally, the structures provide a rationale for the deleterious impact of MLH1 mutations in HNPCCs.
- Published
- 2013
- Full Text
- View/download PDF
26. Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity
- Author
-
Eric Gilson, Marie-Josèphe Giraud-Panis, Simona Miron, Eric Le Cam, Olivier Piétrement, Bianca Sclavi, B. Matot, Yann-Vaï Le Bihan, Marie-Hélène Le Du, Sylvaine Gasparini, Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Myologie, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Reims Champagne-Ardenne (URCA), Signalisation, noyaux et innovations en cancérologie (UMR8126), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Institut Gustave Roussy (IGR), Laboratoire de Biologie Moléculaire de la Cellule (LBMC), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie Structurale et Radiobiologie (LBSR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Laboratoire de biologie et pharmacologie appliquée (LBPA), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Imagerie intégrative de la molécule à l'organisme, Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de Bioénergétique, Biologie Stucturale, et Mécanismes (SB2SM), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Le Cam, Eric, Université Nice Sophia Antipolis (... - 2019) (UNS), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Association française contre les myopathies (AFM-Téléthon)-Sorbonne Université (SU), Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
endocrine system ,Saccharomyces cerevisiae Proteins ,[SDV]Life Sciences [q-bio] ,Telomere-Binding Proteins ,Mutant ,Saccharomyces cerevisiae ,Arginine ,Crystallography, X-Ray ,Shelterin Complex ,Cytosine ,03 medical and health sciences ,chemistry.chemical_compound ,Nucleic acid thermodynamics ,0302 clinical medicine ,Potassium Permanganate ,Structural Biology ,Binding site ,DNA, Fungal ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,biology ,Permanganate ,Hydrogen Bonding ,General Medicine ,biology.organism_classification ,Solutions ,[SDV] Life Sciences [q-bio] ,enzymes and coenzymes (carbohydrates) ,Potassium permanganate ,chemistry ,Biochemistry ,Biophysics ,Nucleic Acid Conformation ,030217 neurology & neurosurgery ,DNA ,Protein Binding ,Transcription Factors - Abstract
Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.
- Published
- 2013
- Full Text
- View/download PDF
27. One Identity or More for Telomeres?
- Author
-
Sabrina Pisano, Marie-Hélène Le Du, Eric Gilson, Bei Pei, Marie-Josèphe Giraud-Panis, Delphine Benarroch-Popivker, Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Subjects
Cancer Research ,[SDV]Life Sciences [q-bio] ,capping complexes ,Review Article ,Computational biology ,Biology ,lcsh:RC254-282 ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Transcription (biology) ,chromosome ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,Genetics ,0303 health sciences ,Telomere biology ,telomeric chromatin organization ,RNA ,Robustness (evolution) ,Cell cycle ,lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,telomeres ,Telomere ,Nucleoprotein ,DNA topology ,chemistry ,Oncology ,030217 neurology & neurosurgery ,DNA - Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. The fact that different types of nucleoprotein complexes have been described at the telomeres of different organisms raises the question of whether they have in common a structural identity that explains their role in chromosome protection. We will review here how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA, and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guarantee the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We will also discuss the recent notion that telomeres have evolved specific systems to overcome the DNA topological stress generated during their replication and transcription. This will lead to revisit the way we envisage the functioning of telomeric complexes since the regulation of topology is central to DNA stability, replication, recombination, and transcription as well as to chromosome higher-order organization.
- Published
- 2013
- Full Text
- View/download PDF
28. Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly
- Author
-
Erwann Rousseau, Anne Peyroche, Brice Murciano, Chloe Godard, N. Richet, Benoît Le Tallec, Marie-Hélène Le Du, Françoise Ochsenbein, Raphael Guerois, Pierre Legrand, Jean-Baptiste Charbonnier, and Marie-Bénédicte Barrault
- Subjects
Adenosine Triphosphatases ,Models, Molecular ,Proteasome Endopeptidase Complex ,Multidisciplinary ,Binding Sites ,Saccharomyces cerevisiae Proteins ,biology ,Protein Conformation ,Saccharomyces cerevisiae ,Protein degradation ,biology.organism_classification ,Molecular machine ,Cell biology ,Protein structure ,Biochemistry ,Proteasome ,PNAS Plus ,Chaperone (protein) ,Proteasome assembly ,Proteolysis ,biology.protein ,Binding site ,Molecular Chaperones - Abstract
The 26S proteasome, a molecular machine responsible for regulated protein degradation, consists of a proteolytic core particle (20S CP) associated with 19S regulatory particles (19S RPs) subdivided into base and lid subcomplexes. The assembly of 19S RP base subcomplex is mediated by multiple dedicated chaperones. Among these, Hsm3 is important for normal growth and directly targets the carboxyl-terminal (C-terminal) domain of Rpt1 of the Rpt1–Rpt2–Rpn1 assembly intermediate. Here, we report crystal structures of the yeast Hsm3 chaperone free and bound to the C-terminal domain of Rpt1. Unexpectedly, the structure of the complex suggests that within the Hsm3–Rpt1–Rpt2 module, Hsm3 also contacts Rpt2. We show that in both yeast and mammals, Hsm3 actually directly binds the AAA domain of Rpt2. The Hsm3 C-terminal region involved in this interaction is required in vivo for base assembly, although it is dispensable for binding Rpt1. Although Rpt1 and Rpt2 exhibit weak affinity for each other, Hsm3 unexpectedly acts as an essential matchmaker for the Rpt1-Rpt2-Rpn1 assembly by bridging both Rpt1 and Rpt2. In addition, we provide structural and biochemical evidence on how Hsm3/S5b may regulate the 19S RP association to the 20S CP proteasome. Our data point out the diverse functions of assembly chaperones.
- Published
- 2012
29. structural identity of telomeric complexes
- Author
-
Marie-Hélène Le Du, Anaïs Poulet, Marie-Josèphe Giraud-Panis, Eric Gilson, Sabrina Pisano, Système membranaires, photobiologie, stress et détoxication (SMPSD), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Université Nice Sophia Antipolis (1965 - 2019) (UNS), Laboratoire Joliot Curie, École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie et pathologie des génomes, Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire de Biologie Moléculaire de la Cellule (LBMC), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
DNA Repair ,DNA repair ,[SDV]Life Sciences [q-bio] ,Biophysics ,Saccharomyces cerevisiae ,Computational biology ,Cell fate determination ,Biology ,Biochemistry ,Shelterin ,03 medical and health sciences ,chemistry.chemical_compound ,Structural Biology ,Schizosaccharomyces ,Genetics ,Animals ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,DNA binding ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,CST ,030304 developmental biology ,Mammals ,Telomere-binding protein ,0303 health sciences ,Oxytricha ,030302 biochemistry & molecular biology ,Genetic Variation ,Proteins ,Robustness (evolution) ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,DNA ,Cell Biology ,Telomere ,Nucleoprotein ,chemistry ,Tandem Repeat Sequences ,RNA - Abstract
International audience; A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. Although several nucleoprotein complexes have been described at the telomeres of different organisms, it is still unclear how they confer a structural identity to chromosome ends in order to mask them from DNA repair and to ensure their proper replication. In this review, we describe how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guaranty the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We propose that telomeric nucleoprotein complexes orient cell fate through dynamic transitions in their structures and their organization
- Published
- 2010
- Full Text
- View/download PDF
30. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis
- Author
-
Mickaël Jacquet, Jean-Baptiste Charbonnier, Olivier Lequin, Robert Thai, Roger Genet, Marie Hélène Le Du, Christophe Dugave, Marie Courçon, Alain Lecoq, Cédric Masson, Alistair J. Fielding, Jean-Luc Pernodet, Muriel Gondry, Pascal Belin, Service d'Ingénierie Moléculaire pour la Santé (ex SIMOPRO) (SIMoS), Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Service de Bioénergétique, Biologie Stucturale, et Mécanismes (SB2SM), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Synthèse, Structure et Fonction de Molécules Bioactives (SSFMB), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Service de Chimie Bio-Organique et de Marquage (SCBM), Département d'Ingenierie et d'Etudes des Protéines (DIEP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de génétique et microbiologie [Orsay] (IGM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et de Technologies de Saclay (IBITECS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Protein Conformation ,Stereochemistry ,[SDV]Life Sciences [q-bio] ,Crystallography, X-Ray ,010402 general chemistry ,Peptides, Cyclic ,01 natural sciences ,Catalysis ,Substrate Specificity ,03 medical and health sciences ,chemistry.chemical_compound ,Protein structure ,Cytochrome P-450 Enzyme System ,[SDV.SP.MED]Life Sciences [q-bio]/Pharmaceutical sciences/Medication ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Nuclear Magnetic Resonance, Biomolecular ,Heme ,Ferredoxin ,030304 developmental biology ,0303 health sciences ,Binding Sites ,Multidisciplinary ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Ligand ,Rational design ,Active site ,Hydrogen Bonding ,Dipeptides ,Mycobacterium tuberculosis ,Nuclear magnetic resonance spectroscopy ,Biological Sciences ,0104 chemical sciences ,3. Good health ,Oxygen ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,chemistry ,Intramolecular force ,biology.protein ,[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology - Abstract
The gene encoding the cytochrome P450 CYP121 is essential for Mycobacterium tuberculosis . However, the CYP121 catalytic activity remains unknown. Here, we show that the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) binds to CYP121, and is efficiently converted into a single major product in a CYP121 activity assay containing spinach ferredoxin and ferredoxin reductase. NMR spectroscopy analysis of the reaction product shows that CYP121 catalyzes the formation of an intramolecular C-C bond between 2 tyrosyl carbon atoms of cYY resulting in a novel chemical entity. The X-ray structure of cYY-bound CYP121, solved at high resolution (1.4 Å), reveals one cYY molecule with full occupancy in the large active site cavity. One cYY tyrosyl approaches the heme and establishes a specific H-bonding network with Ser-237, Gln-385, Arg-386, and 3 water molecules, including the sixth iron ligand. These observations are consistent with low temperature EPR spectra of cYY-bound CYP121 showing a change in the heme environment with the persistence of the sixth heme iron ligand. As the carbon atoms involved in the final C-C coupling are located 5.4 Å apart according to the CYP121-cYY complex crystal structure, we propose that C-C coupling is concomitant with substrate tyrosyl movements. This study provides insight into the catalytic activity, mechanism, and biological function of CYP121. Also, it provides clues for rational design of putative CYP121 substrate-based antimycobacterial agents.
- Published
- 2009
- Full Text
- View/download PDF
31. Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmentosum group C protein
- Author
-
Jaime F. Angulo, Yves Blouquit, Thierry Rose, Jean-Baptiste Charbonnier, Simona Miron, Constantin T. Craescu, Emilie Renaud, Patricia Duchambon, Marie Hélène Le Du, Petya Christova, Alexandra Shosheva, Laboratoire de Biologie Structurale et Radiobiologie (LBSR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Génétique de la Radiosensibilité (LGR), Imagerie intégrative de la molécule à l'organisme, Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Bulgarian Academy of Sciences (BAS), Biophysique Moléculaire (Plate-forme), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), This work was supported by the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, the Institut Curie, The French/Bulgarian joint programme RILA (no. 09838PF) and Electricité de France (grand no. 8702)., and Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
MESH: Cell Nucleus ,Models, Molecular ,Cytoplasm ,Xeroderma pigmentosum ,MESH: Protein Structure, Secondary ,Cell Cycle Proteins ,Plasma protein binding ,MESH: Calcium-Binding Proteins ,Biology ,Protein Structure, Secondary ,Protein–protein interaction ,03 medical and health sciences ,MESH: Protein Structure, Tertiary ,Protein structure ,MESH: Cell Cycle Proteins ,Structural Biology ,Calcium-binding protein ,medicine ,MESH: Protein Binding ,Humans ,Binding site ,Molecular Biology ,030304 developmental biology ,MESH: Xeroderma Pigmentosum ,Cell Nucleus ,0303 health sciences ,Xeroderma Pigmentosum ,MESH: Humans ,Binding Sites ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,MESH: Cytoplasm ,030302 biochemistry & molecular biology ,Calcium-Binding Proteins ,medicine.disease ,Protein Structure, Tertiary ,DNA-Binding Proteins ,Biochemistry ,MESH: Binding Sites ,MESH: Calcium ,Centrin ,Biophysics ,Thermodynamics ,Calcium ,MESH: Thermodynamics ,MESH: DNA-Binding Proteins ,MESH: Models, Molecular ,Nucleotide excision repair ,Protein Binding - Abstract
International audience; Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.
- Published
- 2007
- Full Text
- View/download PDF
32. Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones
- Author
-
Paola Llinas, André Ménez, Enrico A. Stura, Torgny Stigbrand, Michel Masella, and Marie Hélène Le Du
- Subjects
inorganic chemicals ,musculoskeletal diseases ,Protein Conformation ,Phosphatase ,chemistry.chemical_element ,Calcium ,GPI-Linked Proteins ,Biochemistry ,Article ,Calcification, Physiologic ,medicine ,Humans ,Molecular Biology ,Osteomalacia ,Strontium ,Magnesium ,Hypophosphatasia ,medicine.disease ,Alkaline Phosphatase ,Isoenzymes ,Placental alkaline phosphatase ,chemistry ,Alkaline phosphatase - Abstract
Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites--two for zinc, one for magnesium, and one for calcium ion--that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210-228 and 250-297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease.
- Published
- 2006
33. Characterization of the functional epitope on the urokinase receptor. Complete alanine scanning mutagenesis supplemented by chemical cross-linking
- Author
-
Henrik, Gårdsvoll, Bernard, Gilquin, Marie Hélène, Le Du, Andre, Ménèz, Thomas J D, Jørgensen, and Michael, Ploug
- Subjects
Models, Molecular ,Alanine ,Receptors, Cell Surface ,Receptors, Urokinase Plasminogen Activator ,Epitopes ,Kinetics ,Mice ,Cross-Linking Reagents ,Genetic Techniques ,Mutagenesis ,Animals ,Humans ,Thermodynamics ,Peptides - Abstract
The high affinity interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) represents one of the key regulatory steps in cell surface-associated plasminogen activation. On the basis on our crystal structure solved for uPAR in complex with a peptide antagonist, we recently proposed a model for the corresponding complex with the growth factor-like domain of uPA (Llinas et al. (2005) EMBO J. 24, 1655-1663). In the present study, we provide experimental evidence that consolidates and further develops this model using data from a comprehensive alanine scanning mutagenesis of uPAR combined with low resolution distance constraints defined within the complex using chemical cross-linkers as molecular rulers. The kinetic rate constants for the interaction between pro-uPA and 244 purified uPAR mutants with single-site replacements were determined by surface plasmon resonance. This complete alanine scanning of uPAR highlighted the involvement of 20 surface-exposed side chains in this interaction. Mutations causing delta deltaGor = 1 kcal/mol for the uPA interaction are all located within or at the rim of the central cavity uniquely formed by the assembly of all three domains in uPAR, whereas none are found outside this crevice. Identification of specific cross-linking sites in uPAR and pro-uPA enabled us to build a model of the uPAR x uPA complex in which the kringle domain of uPA was positioned by the constraints established by the range of these cross-linkers. The nature of this interaction is predominantly hydrophobic and highly asymmetric, thus emphasizing the importance of the shape and size of the central cavity when designing low molecular mass antagonists of the uPAR/uPA interaction.
- Published
- 2006
34. Crystal structure of the complex between the monomeric form of Toxoplasma gondii surface antigen 1 (SAG1) and a monoclonal antibody that mimics the human immune response
- Author
-
Nicole Battail-Poirot, Geneviève Sibaï, Marie Gauthier, Marc Graille, Marie-Hélène Le Du, Odile Letourneur, Frédéric Ducancel, Dominique Rolland, Bruno H. Muller, Enrico A. Stura, Marc Bossus, Département d'Ingenierie et d'Etudes des Protéines (DIEP), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Protein Conformation ,animal diseases ,[SDV]Life Sciences [q-bio] ,Protozoan Proteins ,Antibodies, Protozoan ,Crystallography, X-Ray ,Ligands ,Epitope ,Epitopes ,Mice ,0302 clinical medicine ,Protein structure ,Structural Biology ,conformational epitope ,Toxoplasma gondii recombinant SAG1 ,ComputingMilieux_MISCELLANEOUS ,0303 health sciences ,biology ,Antibodies, Monoclonal ,3. Good health ,Antigens, Surface ,Antibody ,Crystallization ,Toxoplasma ,Toxoplasmosis ,crystal structure ,medicine.drug_class ,030231 tropical medicine ,Molecular Sequence Data ,Antigens, Protozoan ,Monoclonal antibody ,03 medical and health sciences ,Antigen ,parasitic diseases ,medicine ,Animals ,Humans ,Amino Acid Sequence ,Molecular Biology ,030304 developmental biology ,Binding Sites ,Sequence Homology, Amino Acid ,Immunodominant Epitopes ,Intracellular parasite ,Toxoplasma gondii ,biology.organism_classification ,Virology ,Peptide Fragments ,biology.protein ,Conformational epitope - Abstract
Toxoplasma gondii, the intracellular parasite responsible for toxoplasmosis infects more than one-third of the world population and can be life-threatening for fetuses and immunocompromised patients. The surface protein SAG1 is an important immune target, which provides a strong immune response against the invasive tachyzoite while the other forms of the parasite, devoid of SAG1 at their surface, are multiplying. In addition to this role as a "hot spot" decoy, SAG1 is predicted to act as an adhesin during host-cell attachment through its binding to proteoglycans. To begin to understand the relationships between SAG1 epitopes and the ligand-binding site, we have solved the crystal structure of the monomeric form of T.gondii SAG1 complexed to a Fab derived from a monoclonal antibody raised against tachyzoite particles. This antibody competes strongly with human Toxoplasma-specific sera, suggesting that its epitope is part of an immunodominant region present on the surface of SAG1. The structure reveals that this conformational epitope, located within the SAG1 N-terminal domain, does not overlap with the proposed ligand-binding pocket. This study provides the first structural description of the monomeric form of SAG1, and significant insights into its dual role of adhesin and immune target during parasite infection.
- Published
- 2005
- Full Text
- View/download PDF
35. Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase
- Author
-
Alexey Kozlenkov, Marie Hélène Le Du, Tor Ny, Philippe Cuniasse, José Luis Millán, and Marc Hoylaerts
- Subjects
Models, Molecular ,Phosphoric monoester hydrolases ,Endocrinology, Diabetes and Metabolism ,Phenylalanine ,Placenta ,Mice, Transgenic ,Plasma protein binding ,Biology ,Binding, Competitive ,Bone and Bones ,Mice ,Theophylline ,Animals ,Humans ,Protein Isoforms ,Orthopedics and Sports Medicine ,Enzyme kinetics ,Binding site ,Enzyme Inhibitors ,Site-directed mutagenesis ,Binding selectivity ,chemistry.chemical_classification ,Binding Sites ,Models, Theoretical ,Alkaline Phosphatase ,Molecular biology ,Homoarginine ,Kinetics ,Enzyme ,chemistry ,Biochemistry ,Levamisole ,Models, Chemical ,Mutagenesis ,Drug Design ,Mutation ,Mutagenesis, Site-Directed ,Alkaline phosphatase ,Software ,Protein Binding - Abstract
Recent data have pointed to TNALP as a therapeutic target for soft-tissue ossification abnormalities. Here, we used mutagenesis, kinetic analysis, and computer modeling to identify the residues important for the binding of known ALP inhibitors to the TNALP active site. These data will enable drug design efforts aimed at developing improved specific TNALP inhibitors for therapeutic use.We have shown previously that the genetic ablation of tissue-nonspecific alkaline phosphatase (TNALP) function leads to amelioration of soft-tissue ossification in mouse models of osteoarthritis and ankylosis (i.e., Enpp1-/- and ank/ank mutant mice). We surmise that the pharmacologic inhibition of TNALP activity represents a viable therapeutic approach for these diseases. As a first step toward developing suitable TNALP therapeutics, we have now clarified the residues involved in binding well-known uncompetitive inhibitors to the TNALP active site.We compared the modeled 3D structure of TNALP with the 3D structure of human placental alkaline phosphatase (PLALP) and identified the residues that differ between these isozymes within a 12 A radius of the active site, because these isozymes differ significantly in inhibitor specificity. We then used site-directed mutagenesis to substitute TNALP residues to their respective homolog in PLALP. In addition, we mutagenized most of these residues in TNALP to Ala and the corresponding residues in PLALP to their TNALP homolog. All mutants were characterized for their sensitivity toward the uncompetitive inhibitors l-homoarginine (L-hArg), levamisole, theophylline, and l-phenylalanine.We found that the identity of residue 108 in TNALP largely determines the specificity of inhibition by L-hArg. The conserved Tyr-371 is also necessary for binding of L-hArg. In contrast, the binding of levamisole to TNALP is mostly dependent on His-434 and Tyr-371, but not on residues 108 or 109. The main determinant of sensitivity to theophylline is His-434. Thus, we have clarified the location of the binding sites for all three TNALP inhibitors, and we have also been able to exchange inhibitor specificities between TNALP and PLALP. These data will enable drug design efforts aimed at developing improved, selective, and drug-like TNALP inhibitors for therapeutic use.
- Published
- 2004
36. NAD binding induces conformational changes in Rho ADP-ribosylating clostridium botulinum C3 exoenzyme
- Author
-
Fabienne Gas, Marie-Hélène Le Du, Jean-Marie Teulon, Julie Ménétrey, Gilles Flatau, Jean-Baptiste Charbonnier, André Ménez, Enrico A. Stura, and Patrice Boquet
- Subjects
Botulinum Toxins ,Stereochemistry ,Protein Conformation ,Amino Acid Motifs ,medicine.disease_cause ,Biochemistry ,chemistry.chemical_compound ,medicine ,Transferase ,Moiety ,Molecular Biology ,ADP Ribose Transferases ,Adenosine Diphosphate Ribose ,Binding Sites ,Nicotinamide ,biology ,Substrate (chemistry) ,Cell Biology ,NAD ,NAD binding ,Adenosine Diphosphate ,chemistry ,biology.protein ,Clostridium botulinum ,Exoenzyme ,NAD+ kinase - Abstract
We have solved the crystal structures ofClostridium botulinum C3 exoenzyme free and complexed to NAD in the same crystal form, at 2.7 and 1.95 A, respectively. The asymmetric unit contains four molecules, which, in the free form, share the same conformation. Upon NAD binding, C3 underwent various conformational changes, whose amplitudes were differentially limited in the four molecules of the crystal unit. A major rearrangement concerns the loop that contains the functionally important ARTT motif (ADP-ribosyltransferase toxin turn-turn). The ARTT loop undergoes an ample swinging motion to adopt a conformation that covers the nicotinamide moiety of NAD. In particular, Gln-212, which belongs to the ARTT motif, flips over from a solvent-exposed environment to a buried conformation in the NAD binding pocket. Mutational experiments showed that Gln-212 is neither involved in NAD binding nor in the NAD-glycohydrolase activity of C3, whereas it plays a critical role in the ADP-ribosyl transfer to the substrate Rho. We observed additional NAD-induced movements, including a crab-claw motion of a subdomain that closes the NAD binding pocket. The data emphasized a remarkable NAD-induced plasticity of the C3 binding pocket and suggest that the NAD-induced ARTT loop conformation may be favored by the C3-NAD complex to bind to the substrate Rho. Our structural observations, together with a number of mutational experiments suggest that the mechanisms of Rho ADP-ribosylation by C3-NAD may be more complex than initially anticipated.
- Published
- 2002
37. Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization
- Author
-
André Ménez, Enrico A. Stura, Marie-Hélène Le Du, Etienne Mornet, Anne-Sophie Lia-Baldini, and Torgny Stigbrand
- Subjects
Models, Molecular ,Molecular Sequence Data ,chemistry.chemical_element ,Calcium ,Biochemistry ,Structure-Activity Relationship ,Calcification, Physiologic ,medicine ,Structure–activity relationship ,Humans ,Amino Acid Sequence ,Molecular Biology ,Peptide sequence ,chemistry.chemical_classification ,biology ,Hypophosphatasia ,Active site ,Cell Biology ,medicine.disease ,Alkaline Phosphatase ,Placental alkaline phosphatase ,Enzyme ,chemistry ,biology.protein ,Sequence Alignment ,Calcification - Abstract
The human tissue nonspecific alkaline phosphatase (TNAP) is found in liver, kidney, and bone. Mutations in the TNAP gene can lead to Hypophosphatasia, a rare inborn disease that is characterized by defective bone mineralization. TNAP is 74% homologous to human placental alkaline phosphatase (PLAP) whose crystal structure has been recently determined at atomic resolution (Le Du, M. H., Stigbrand, T., Taussig, M. J., Menez, A., and Stura, E. A. (2001) J. Biol. Chem, 276, 9158-9165). The degree of homology allowed us to build a reliable TNAP model to investigate the relationship between mutations associated with hypophosphatasia and their probable consequences on the activity or the structure of the enzyme. The mutations are clustered within five crucial regions, namely the active site and its vicinity, the active site valley, the homodimer interface, the crown domain, and the metal-binding site. The crown domain and the metal-binding domain are mammalian-specific and were observed for the first time in the PLAP structure. The crown domain contains a collagen binding loop. A synchrotron radiation x-ray fluorescence study confirms that the metal in the metal-binding site is a calcium ion. Several severe mutations in TNAP occur around this calcium site, suggesting that calcium may be of critical importance for the TNAP function. The presence of this extra metal-binding site gives new insights on the controversial role observed for calcium.
- Published
- 2001
38. Do structural deviations between toxins adopting the same fold reflect functional differences?
- Author
-
Mounira Khayati, Alejandro Ricciardi, Marie-Hélène Le Du, J.-C. Boulain, Frédéric Ducancel, André Ménez, and Federico Dajas
- Subjects
Models, Molecular ,Protein Folding ,Stereochemistry ,Protein Conformation ,Recombinant Fusion Proteins ,Molecular Sequence Data ,medicine.disease_cause ,Biochemistry ,law.invention ,Chimera (genetics) ,Structure-Activity Relationship ,Protein structure ,law ,medicine ,Escherichia coli ,Structure–activity relationship ,Animals ,Amino Acid Sequence ,Molecular Biology ,Peptide sequence ,Toxins, Biological ,Elapid Venoms ,Base Sequence ,Chemistry ,Toxin ,C-terminus ,Cell Biology ,Amino Acid Substitution ,Recombinant DNA ,Protein folding ,Electrophoresis, Polyacrylamide Gel ,Cholinesterase Inhibitors ,Neuromuscular Nondepolarizing Agents - Abstract
Three-finger proteins form a structurally related family of compounds that exhibit a great variety of biological properties. To address the question of the prediction of functional areas on their surfaces, we tentatively conferred the acetylcholinesterase inhibitory activity of fasciculins on a short-chain curaremimetic toxin. For this purpose, we assimilated the three-dimensional structure of fasciculin 2 with the one of toxin alpha. This comparison revealed that the tips of the first and second loops, together with the C terminus residue, deviated most. A first recombinant fasciculin/toxin alpha chimera was designed by transferring loop 1 in its entirety together with the tip of loop 2 of fasciculin 2 into the toxin alpha scaffold. A second chimera (rChII) was obtained by adding the point Asn-61 --> Tyr substitution. Comparison of functional and structural properties of both chimeras show that rChII can accommodate the imposed modifications and displays nearly all the acetylcholinesterase-blocking activities of fasciculins. The three-dimensional structure of rChII demonstrates that rChII adopts a typical three-fingered fold with structural features of both parent toxins. Taken together, these results emphasize the great structural flexibility and functional adaptability of that fold and confirm that structural deviations between fasciculins and short-chain neurotoxins do indeed reflect functional diversity.
- Published
- 2000
39. Fasciculin 1 (Green mamba)
- Author
-
Marie-Hélène Le Du, Pascale MARCHOT, Bougis, Pierre E., Juan Carlos Fontecilla-Camps, and Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 1993
40. Structural study of the assembly of human TRF2/RAP1 telomeric complex
- Author
-
Gaullier , Guillaume, Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ), Université Paris Sud - Paris XI, Marie-Hélène Ledu, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Marie-Hélène Le Du, and STAR, ABES
- Subjects
RAP1 ,Crystallography ,Telomeres ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,TRF2 ,SAXS ,Télomères ,ITC ,Protein footprinting ,Cristallographie ,Empreinte protéique ,[ SDV.BBM.BS ] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] - Abstract
Telomeres are the ends of eukaryotic linear chromosomes. They are made oftandem repeats of a short guanine-rich motif and bound by specific proteins.In vertebrates, these proteins form a complex called shelterin, theintegrity of which is critical to ensure proper replication of chromosomeends and to protect them against illicit targeting by DNA double-strandbreak repair pathways. Telomere dysfunctions lead to genome instability,which can ultimately cause senescence or cancer. Telomeres are a subnuclearregion in which shelterin proteins are highly enriched, enhancing lowaffinity interactions of important biological function. Among shelterinproteins, telomeric repeat-binding protein TRF2 and its constitutive partnerRAP1 are the main factors responsible for end protection. We studied indetails the assembly of TRF2/RAP1 complex by means of integrated structural,biophysical and biochemical approaches. We showed that this assemblydisplays important conformational adjustments of both proteins, and involvesa low affinity interaction engaging large regions in both proteins whichaffects their interaction properties., Les télomères sont les extrémités des chromosomes linéaires des eucaryotes.Ils sont constitués de répétitions en tandem d'un motif court riche enguanine, et liés par des protéines spécifiques. Chez les vertébrés cesprotéines forment un complexe appelé le shelterin et dont l'intégrité estcritique pour assurer la réplication correcte des extrémités deschromosomes, et pour les protéger contre une prise en charge illicite parles voies de réparation des cassures double-brin de l'ADN. Des dysfonctionsdes télomères engendrent une instabilité du génome qui peut conduire à lasénescence ou au cancer. Les télomères représentent une région subnucléaireoù les protéines du shelterin sont fortement enrichies, ce qui permetl'implication dans les fonctions biologiques d'interactions de basseaffinité. Parmi les protéines du shelterin, la protéine de liaison auxrépétitions télomériques TRF2 et son partenaire constitutif RAP1 sont lesfacteurs majeurs responsables de la protection des extrémités. Nous avonsétudié en détails l'assemblage du complexe TRF2/RAP1 par des approchesintégrées de biologie structurale, de biophysique et de biochimie.Nous avons montré que cet assemblage s'accompagne d'importants ajustementsde conformation des deux protéines, et implique une interaction de basseaffinité qui engage de grandes régions des deux protéines et affecte leurspropriétés d'interactions.
- Published
- 2015
41. Les structures et les mécanismes d'interactions des protéines de liaison à l'ADN simple brin aux télomères
- Author
-
Chatain, Jean, Carole Saintomé, Patrizia Alberti, Hubert Becker, Sophie Bombard, Claudine Mayer, Marie-Hélène Le Du, Chatain, Jean, Structure et Instabilité des Génomes (STRING), Muséum national d'Histoire naturelle (MNHN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Muséum National d'Histoire Naturelle PARIS
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,Protéine de liaison à l'ADN simple brin ,Telomere ,Télomères ,Protection ADN simple brin ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,G-quadruplex G4 ,Telomeric DNA ,Single-stranded DNA binding protein ,ADN télomérique ,G-quadruplexe G4 ,POT1 TPP1 ,Single-stranded DNA protection - Abstract
Telomeres are DNA sequences (teloDNA), associated with proteins, located at the ends of chromosomes. teloDNA can form very stable structures called G-quadruplexes (G4telo), which must be resolved for the maintenance of telomeres. POT1-TPP1 and RPA, OB-fold single-stranded DNA binding proteins (SSB) are present in telomeres, can unfold G4telo in vitro. However, no studies have been carried out on long teloDNA forming multimers of G4s in tandem (telomultiG4). My thesis work consisted of studying biochemical and biophysical approaches: the interaction mechanisms of these SSBs on this telomultiG4; the kinetics of formation of SSB-teloDNA complexes; the envelope of the POT1- TPP1-teloDNA complex. The data show the mode of binding and opening of telomultiG4telo varies according to the SSB, and that the POT1-TPP1 complex forms with the teloDNA a dynamic complex in the shape of a horseshoe., Les télomères sont des séquences d'ADN (ADNtelo), associées à des protéines, localisées aux extrémités des chromosomes. L'ADNtelo est capable de former des structures très stables nommées G-quadruplexes (G4telo), et qui doivent être résolues pour le maintien des télomères. Il a été montré que POT1-TPP1 et RPA, protéines de liaison à l'ADN simple brin OB-fold (SSB) présentes aux télomères, ont la capacité de dérouler in vitro de simples G4telo. Toutefois aucune étude n'a été réalisée sur de longs ADNtelo formant des multimères de G4s en tandem (multiG4telo). Mon travail de thèse a consisté à étudier par des approches biochimiques et biophysiques : les mécanismes d'interaction de ces SSB sur ces multiG4telo, les cinétiques de formation des complexes SSB-ADNtelo ; l'enveloppe du complexe POT1-TPP1-ADNtelo. Les données montrent le mode de liaison et d'ouverture de multiG4telo varie selon la SSB, et que le complexe POT1- TPP1 forme avec l'ADNtelo un complexe dynamique en forme de fer à cheval.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.