8 results on '"Marine Verhulsel"'
Search Results
2. Correction: Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions
- Author
-
Marine Verhulsel, Anthony Simon, Moencopi Bernheim-Dennery, Venkata Ram Gannavarapu, Lauriane Gérémie, Davide Ferraro, Denis Krndija, Laurence Talini, Jean-Louis Viovy, Danijela Matic Vignjevic, and Stéphanie Descroix
- Subjects
Biomedical Engineering ,Bioengineering ,General Chemistry ,Biochemistry - Abstract
Correction for ‘Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions’ by Marine Verhulsel et al., Lab Chip, 2021, 21, 365–377, https://doi.org/10.1039/d0lc00672f.
- Published
- 2023
- Full Text
- View/download PDF
3. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics
- Author
-
Marine Verhulsel, Stéphanie Descroix, Rémi Courson, Bastien Venzac, Yang Liu, Ivan Ferrante, Jean-Louis Viovy, Ayako Yamada, Pablo Vargas, Laurent Malaquin, Sorbonne Université (SU), Institut Curie [Paris], Université Paris sciences et lettres (PSL), Immunité et cancer, Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Physico-Chimie-Curie (PCC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Service Techniques et Équipements Appliqués à la Microélectronique (LAAS-TEAM), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Équipe Ingénierie pour les sciences du vivant (LAAS-ELIA), Institut Pierre-Gilles de Gennes pour la Microfluidique, Laboratoire Physico-Chimie Curie [Institut Curie] (PCC), Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole), and Malaquin, Laurent
- Subjects
Fabrication ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Materials Science (miscellaneous) ,Microfluidics ,Mechanical engineering ,02 engineering and technology ,lcsh:Technology ,01 natural sciences ,Industrial and Manufacturing Engineering ,Soft lithography ,Footprint (electronics) ,chemistry.chemical_compound ,Fluidics ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Polydimethylsiloxane ,lcsh:T ,010401 analytical chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Chip ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,chemistry ,lcsh:TA1-2040 ,lcsh:Engineering (General). Civil engineering (General) ,0210 nano-technology ,Communication channel - Abstract
Currently, fluidic control in microdevices is mainly achieved either by external pumps and valves, which are expensive and bulky, or by valves integrated in the chip. Numerous types of internal valves or actuation methods have been proposed, but they generally impose difficult compromises between performance and fabrication complexity. We propose here a new paradigm for actuation in microfluidic devices based on rigid or semi-rigid walls with transversal dimensions of hundreds of micrometres that are able to slide within a microfluidic chip and to intersect microchannels with hand-driven or translation stage-based actuation. With this new concept for reconfigurable microfluidics, the implementation of a wide range of functionalities was facilitated and allowed for no or limited dead volume, low cost and low footprint. We demonstrate here several fluidic operations, including on/off or switch valving, where channels are blocked or reconfigured depending on the sliding wall geometry. The valves sustain pressures up to 30 kPa. Pumping and reversible compartmentalisation of large microfluidic chambers were also demonstrated. This last possibility was applied to a “4D” migration assay of dendritic cells in a collagen gel. Finally, sliding walls containing a hydrogel-based membrane were developed and used to concentrate, purify and transport biomolecules from one channel to another, such functionality involving complex fluidic transport patterns not possible in earlier microfluidic devices. Overall, this toolbox is compatible with “soft lithography” technology, allowing easy implementation within usual fabrication workflows for polydimethylsiloxane chips. This new technology opens the route to a variety of microfluidic applications, with a focus on simple, hand-driven devices for point-of-care or biological laboratories with low or limited equipment and resources. A new technology, termed “sliding walls,” has been developed for operating microfluidic devices (which function at sub-millimetre scales), whereby rigid or semi-rigid walls, hundreds of micrometres thick, slide within a microfluidic chip. Fluid control in micro-devices is currently achieved largely by expensive, bulky external valves and pumps or by valves integrated in the chip. Such internal valves or actuation methods generally have shortcomings related to performance and complex fabrication. A team headed by Stephanie Descroix and Jean-Louis Viovy at the Institut Curie—Institut Pierre Gilles de Gennes, Paris applied its sliding wall technique and was able to execute several fluidic operations in which channels could be blocked or reconfigured through the sliding wall geometry. The authors believe that their technology has the potential for various microfluidic operations in biological laboratories with limited equipment and resources.
- Published
- 2020
- Full Text
- View/download PDF
4. List of contributors
- Author
-
Adela Ben-Yakar, David Bovard, Eva-Maria Dehne, Alessandra Dellaquila, Hendrik Erfurth, Dario Fassini, Olivier Frey, Pierre Gaudriault, Erika Györvary, Alexander P. Haring, Patrick J. Hayden, Sarah Heub, Antoni Homs-Corbera, Seiichi Ishida, Blake N. Johnson, Felix Kurth, Diane Ledroit, Seung Hwan Lee, Sasha Cai Lesher-Pérez, Frédéric Loizeau, Uwe Marx, Alexander H. McMillan, Sudip Mondal, Ann-Kristin Muhsmann, Samantha Paoletti, Andrzej Przekwas, Kasper Renggli, Vincent Revol, Antonin Sandoz, Mahadevabharath R. Somayaji, Jong Hwan Sung, Emma K. Thomée, Marine Verhulsel, Gilles Weder, J. Malcolm Wilkinson, and Filippo Zanetti
- Published
- 2020
- Full Text
- View/download PDF
5. Organs-on-a-chip engineering
- Author
-
Gilles Weder, Diane Ledroit, Marine Verhulsel, Samantha Paoletti, Frédéric Loizeau, Felix Kurth, Sarah Heub, Vincent Revol, Erika Györvary, and Kasper Renggli
- Subjects
chemistry.chemical_compound ,Materials science ,Polydimethylsiloxane ,chemistry ,Microfluidics ,technology, industry, and agriculture ,Peristaltic pump ,Biosensor ,Pressure sensor ,Oxygen sensor ,Biomedical engineering ,Electrochemical gas sensor ,Microfabrication - Abstract
s In vitro models, cell culture models, microtissue, organ-on-a-chip, microfabrication, micropumps, membrane, manufacturing, filtration, vascularization, perfusion, microfluidics, channels, cleanroom, silicon, glass, polydimethylsiloxane, additive manufacturing, bioprinting, bioprinter, three-dimensional printing, bioreactor, stimulation, biointerfaces, scaffold, barrier, junction, sterilization, biodegradable, polymers, functionalization, hydrogels, coatings, etching, photolithography, microinjection, fluid control, automation, disposable, autoclavable, media exchange, sampling, pipetting, viscous drag pump, peristaltic pump, capillary pump, valves, bubble traps, flow sensor, pressure sensor, noninvasive monitoring, oxygen sensor, pH sensor, mechanotransduction, shear stress, compression, tensile stress, gauge sensor, TEER, electrochemical sensor, biosensor, calibration, immunosensor, ion-sensitive field-effect transistor, electrical impedance spectroscopy, label-free sensor, lactate sensor, glucose sensor, temperature sensor.
- Published
- 2020
- Full Text
- View/download PDF
6. A new biomimetic assay reveals the temporal role of matrix stiffening in cancer cell invasion
- Author
-
Federica Burla, Ralitza Staneva, Youmna Attieh, Gijsje H. Koenderink, Marine Verhulsel, Stéphanie Descroix, Danijela Matic Vignjevic, Institut Curie, Université Paris Descartes - Paris 5 (UPD5), FOM Institute for Atomic and Molecular Physics (AMOLF), Sorbonne Université (SU), Sorbonne Université - Institut de Formation Doctorale (IFD ), Institut Curie [Paris], and Descroix, Stephanie
- Subjects
0301 basic medicine ,[SDV]Life Sciences [q-bio] ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Tumor initiation ,Biology ,Collagen Type I ,Metastasis ,Extracellular matrix ,03 medical and health sciences ,chemistry.chemical_compound ,Mice ,Biomimetics ,Cell Movement ,Cell Line, Tumor ,medicine ,Tumor Microenvironment ,Animals ,Humans ,Neoplasm Invasiveness ,Molecular Biology ,Threose ,Brief Report ,Cell Biology ,medicine.disease ,In vitro ,Cell biology ,Stiffening ,Extracellular Matrix ,[SDV] Life Sciences [q-bio] ,030104 developmental biology ,Cell Transformation, Neoplastic ,chemistry ,Cell culture ,Cancer cell ,Collagen ,Tetroses - Abstract
International audience; Tumor initiation and growth is associated with significant changes in the surrounding tissue. During carcinoma progression, a global stiffening of the extracellular matrix is observed and is interpreted as a signature of aggressive invasive tumors. However, it is still unknown whether this increase in matrix rigidity promotes invasion and whether this effect is constant along the course of invasion. Here we have developed a biomimetic in vitro assay that enabled us to address the question of the importance of tissue rigidity in the chronology of tumor invasion. Using low concentrations of the sugar threose, we can effectively stiffen reconstituted collagen I matrices and control the stiffening in time with no direct effect on residing cells. Our findings demonstrate that, depending on the timing of its stiffening, the extracellular matrix could either inhibit or promote cancer cell invasion and subsequent me-tastasis: while matrix stiffening after the onset of invasion promotes cancer cell migration and tumor spreading, stiff matrices encapsulate the tumor at an early stage and prevent cancer cell invasion. Our study suggests that adding a temporal dimension in in vitro models to analyze biological processes in four dimensions is necessary to fully capture their complexity.
- Published
- 2018
- Full Text
- View/download PDF
7. Transient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip
- Author
-
Ayako Yamada, Aleksandra Chikina, Stéphanie Descroix, Jean-Louis Viovy, Bastien Venzac, Iago Pereiro, Renaud Renault, Catherine Villard, Sylvie Coscoy, Marine Verhulsel, Maria Carla Parrini, Physico-Chimie-Curie ( PCC ), Centre National de la Recherche Scientifique ( CNRS ) -INSTITUT CURIE-Université Pierre et Marie Curie - Paris 6 ( UPMC ), Institut Pierre-Gilles de Gennes pour la Microfluidique, Institut Curie, Unité de génétique et biologie des cancers ( U830 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut Curie-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Physico-Chimie-Curie (PCC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Curie [Paris], Unité de génétique et biologie des cancers (U830), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), HAL-UPMC, Gestionnaire, and Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)
- Subjects
0301 basic medicine ,Engineering ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Microfluidics ,Biomedical Engineering ,Cell Culture Techniques ,Bioengineering ,Nanotechnology ,02 engineering and technology ,Microfilament ,Biochemistry ,[PHYS] Physics [physics] ,03 medical and health sciences ,Mice ,Lab-On-A-Chip Devices ,Animals ,Neurons ,[PHYS]Physics [physics] ,[ PHYS ] Physics [physics] ,business.industry ,[ SDV.BIO ] Life Sciences [q-bio]/Biotechnology ,Hydrogels ,General Chemistry ,021001 nanoscience & nanotechnology ,Actin cytoskeleton ,[SDV.BIO] Life Sciences [q-bio]/Biotechnology ,Actin Cytoskeleton ,030104 developmental biology ,Microfluidic chamber ,Cell culture ,Self-healing hydrogels ,0210 nano-technology ,business ,Biological system ,Neuroglia - Abstract
International audience; We report here a simple yet robust transient compartmentalization system for microfluidic platforms. Cylindrical microfilaments made of commercially available fishing lines are embedded in a microfluidic chamber and employed as removable walls, dividing the chamber into several compartments. These partitions allow tight sealing for hours, and can be removed at any time by longitudinal sliding with minimal hydrodynamic perturbation. This allows the easy implementation of various functions, previously impossible or requiring more complex instrumentation. In this study, we demonstrate the applications of our strategy, firstly to trigger chemical diffusion, then to make surface co-coating or cell co-culture on a two-dimensional substrate, and finally to form multiple cell-laden hydrogel compartments for three-dimensional cell co-culture in a microfluidic device. This technology provides easy and low-cost solutions, without the use of pneumatic valves or external equipment, for constructing well-controlled microenvironments for biochemical and cellular assays.
- Published
- 2016
- Full Text
- View/download PDF
8. Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions
- Author
-
Marine Verhulsel, Laurence Talini, Jean-Louis Viovy, Stéphanie Descroix, Davide Ferraro, Anthony Simon, Moencopi Bernheim-Dennery, Denis Krndija, Danijela Matic Vignjevic, Venkata Ram Gannavarapu, Lauriane Gérémie, Laboratoire Physico-Chimie Curie [Institut Curie] (PCC), and Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Scaffold ,Cell signaling ,Stromal cell ,[SDV]Life Sciences [q-bio] ,Biomedical Engineering ,Bioengineering ,Cell Communication ,digestive system ,Biochemistry ,[SPI]Engineering Sciences [physics] ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Intestinal mucosa ,Laminin ,medicine ,Animals ,Intestinal Mucosa ,030304 developmental biology ,Basement membrane ,0303 health sciences ,biology ,Chemistry ,digestive, oral, and skin physiology ,Epithelial Cells ,General Chemistry ,Fibroblasts ,Intestinal epithelium ,Epithelium ,Cell biology ,Intestines ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,biology.protein - Abstract
International audience; Organoids are widely used as a model system to study gut pathophysiology; however, they fail to fully reproduce the complex, multi-component structure of the intestinal wall. We present here a new gut on chip model that allows the co-culture of primary epithelial and stromal cells. The device has the topography and dimensions of the mouse gut and is based on a 3D collagen I scaffold. The scaffold is coated with a thin layer of laminin to mimic the basement membrane. To maintain the scaffold structure while preserving its cytocompatibility, the collagen scaffold was rigidified by threose-based postpolymerization treatment. This treatment being cytocompatible enabled the incorporation of primary intestinal fibroblasts inside the scaffold, reproducing the gut stromal compartment. We observed that mouse organoids, when deposited into crypts, opened up and epithelialized the scaffold, generating a polarized epithelial monolayer. Proper segregation of dividing and differentiated cells along the crypt-villus axis was achieved under these conditions. Finally, we show that the application of fluid shear stress allows the long-term culture of this intestinal epithelium. Our device represents a new biomimetic tool that captures key features of the gut complexity and could be used to study gut pathophysiology.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.