Qiaoliang Bao, Ion Errea, Jiahua Duan, Kyle Crowley, Javier Martín-Sánchez, Weiliang Ma, Halyna Volkova, Marta Autore, Ivan Prieto, Alexey Y. Nikitin, Javier Taboada-Gutiérrez, Andrei Bylinkin, Pablo Alonso-González, Rainer Hillenbrand, Kenta Kimura, Gonzalo Álvarez-Pérez, Shaojuan Li, Marie-Hélène Berger, Xuan P. A. Gao, Tsuyoshi Kimura, Principado de Asturias, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Air Force Office of Scientific Research (US), Ministerio de Economía y Competitividad (España), Eusko Jaurlaritza, Australian Research Council, Ministerio de Economía, Industria y Competitividad (España), European Research Council, Institute of Science and Technology [Austria] (IST Austria), Centre des Matériaux (MAT), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Graduate School of Engineering, Osaka University, Osaka University [Osaka], Donostia International Physics Center - DIPC (SPAIN), Donostia International Physics Center (DIPC), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU)-University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), CIC nanoGUNE Consolider, and Donostia International Physcis Center
Phonon polaritons—light coupled to lattice vibrations—in polar van der Waals crystals are promising candidates for controlling the flow of energy on the nanoscale due to their strong field confinement, anisotropic propagation and ultra-long lifetime in the picosecond range1,2,3,4,5. However, the lack of tunability of their narrow and material-specific spectral range—the Reststrahlen band—severely limits their technological implementation. Here, we demonstrate that intercalation of Na atoms in the van der Waals semiconductor α-V2O5 enables a broad spectral shift of Reststrahlen bands, and that the phonon polaritons excited show ultra-low losses (lifetime of 4 ± 1 ps), similar to phonon polaritons in a non-intercalated crystal (lifetime of 6 ± 1 ps). We expect our intercalation method to be applicable to other van der Waals crystals, opening the door for the use of phonon polaritons in broad spectral bands in the mid-infrared domain., J.T.-G. and G.Á.-P. acknowledge support through the Severo Ochoa Program from the Government of the Principality of Asturias (nos. PA-18-PF-BP17-126 and PA-20-PF-BP19-053, respectively). J.M.-S. acknowledges finantial support from the Clarín Programme from the Government of the Principality of Asturias and a Marie Curie-COFUND grant (PA-18-ACB17-29) and the Ramón y Cajal Program from the Government of Spain (RYC2018-026196-I). K.C., X.P.A.G., H.V. and M.H.B. acknowledge the Air Force Office of Scientific Research (AFOSR) grant no. FA 9550-18-1-0030 for funding support. I.E. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (grant no. FIS2016-76617-P). A.Y.N. acknowledges the Spanish Ministry of Science, Innovation and Universities (national project no. MAT2017-88358-C3-3-R) and the Basque Government (grant no. IT1164-19). Q.B. acknowledges the support from Australian Research Council (grant nos. FT150100450, IH150100006 and CE170100039). R.H. acknowledges support from the Spanish Ministry of Economy, Industry, and Competitiveness (national project RTI2018-094830-B-100 and the Project MDM-2016-0618 of the María de Maeztu Units of Excellence Program) and the Basque Goverment (grant no. IT1164-19). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA.