69 results on '"Martin Reinecke"'
Search Results
2. healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python.
- Author
-
Andrea Zonca, Leo P. Singer, Daniel Lenz, Martin Reinecke, Cyrille Rosset, Eric Hivon, and Krzysztof M. Gorski
- Published
- 2019
- Full Text
- View/download PDF
3. Prime Focus Spectrograph (PFS) for the Subaru Telescope: its start of the last development phase
- Author
-
Naoyuki Tamura, Yuki Moritani, Kiyoto Yabe, Yuki Ishizuka, Yukiko Kamata, Ali Allaoui, Akira Arai, Stéphane Arnouts, Robert H. Barkhouser, Rudy Barette, Patrick Blanchard, Eddie Bergeron, Neven Caplar, Pierre-Yves Chabaud, Yin-Chang Chang, Hsin-Yo Chen, Chueh-Yi Chou, You-Hua Chu, Judith G. Cohen, Ricardo L. da Costa, Thibaut Crauchet, Rodrigo P. de Almeida, Antonio Cesar . de Oliveira, Ligia S. de Oliveira, Kjetil Dohlen, Leandro H. dos Santos, Richard S. Ellis, Maximilian Fabricius, Décio Ferreira, Hisanori Furusawa, Jahmour J. Givans, Javier Garciá-Carpio, Mirek Golebiowski, Aidan C. Gray, James E. Gunn, Satoshi Hamano, Randolph P. Hammond, Albert Harding, Kota Hayashi, Wanqiu He, Timothy M. Heckman, Stephen C. Hope, Shu-Fu Hsu, Yen-Shan Hu, Pin Jie Huang, Miho N. Ishigaki, Eric Jeschke, Yipeng Jing, Erin Kado-Fong, Jennifer L. Karr, Satoshi Kawanomoto, Masahiko Kimura, Michitaro Koike, Eiichiro Komatsu, Shintaro Koshida, Vincent Le Brun, Arnaud Le Fur, David Le Mignant, Romain Lhoussaine, Yen-Ting Lin, Hung-Hsu Ling, Craig P. Loomis, Robert . Lupton, Fabrice Madec, Danilo Marchesini, Edouard Marguerite, Lucas S. Marrara, Dmitry Medvedev, Sogo Mineo, Satoshi Miyazaki, Takahiro Morishima, Kazumi Murata, Hitoshi Murayama, Graham J. Murray, Hirofumi Okita, Masato Onodera, Joshua P. Peebles, Paul Price, Tae-Soo Pyo, Lucio Ramos, Daniel J. Reiley, Martin Reinecke, Mitsuko K. Roberts, Josimar A. Rosa, Julien . Rousselle, Mira Sarkis, Michael D. Seiffert, Kiaina Schubert, Hassan Siddiqui, Stephen A. Smee, Laerte Sodré, Michael A. Strauss, Christian Surace, Manuchehr Taghizadeh Popp, Philip J. Tait, Masahiro Takada, Yuhei Takagi, Masayuki Tanaka, Yoko Tanaka, Aniruddha R. Thakar, Didier Vibert, Shiang-Yu Wang, Chih-Yi Wen, Suzanne Werner, Matthew Wung, Gerald Lemson, Arik Mitschang, Naoki Yasuda, Hiroshige Yoshida, Chi-Hung Yan, Michitoshi Yoshida, Takuji Yamashita, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
International audience; PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is now being tested on the telescope. The instrument is equipped with very wide (1.3 degrees in diameter) field of view on the Subaru's prime focus, high multiplexity by 2394 reconfigurable fibers, and wide waveband spectrograph that covers from 380nm to 1260nm simultaneously in one exposure. Currently engineering observations are ongoing with Prime Focus Instrument (PFI), Metrology Camera System (MCS), the first spectrpgraph module (SM1) with visible cameras and the first fiber cable providing optical link between PFI and SM1. Among the rest of the hardware, the second fiber cable has been already installed on the telescope and in the dome building since April 2022, and the two others were also delivered in June 2022. The integration and test of next SMs including near-infrared cameras are ongoing for timely deliveries. The progress in the software development is also worth noting. The instrument control software delivered with the subsystems is being well integrated with its system-level layer, the telescope system, observation planning software and associated databases. The data reduction pipelines are also rapidly progressing especially since sky spectra started being taken in early 2021 using Subaru Nigh Sky Spectrograph (SuNSS), and more recently using PFI during the engineering observations. In parallel to these instrumentation activities, the PFS science team in the collaboration is timely formulating a plan of large-sky survey observation to be proposed and conducted as a Subaru Strategic Program (SSP) from 2024. In this article, we report these recent progresses, ongoing developments and future perspectives of the PFS instrumentation.
- Published
- 2022
- Full Text
- View/download PDF
4. MOC - HEALPix Multi-Order Coverage map Version 1.1
- Author
-
Pierre Fernique, Thomas Boch, Tom Donaldson, Daniel Durand, Wil O'Mullane, Martin Reinecke, and Mark Taylor
- Published
- 2022
- Full Text
- View/download PDF
5. High-performance astrophysical visualization using Splotch.
- Author
-
Zhefan Jin, Mel Krokos, Marzia Rivi, Claudio Gheller, Klaus Dolag, and Martin Reinecke
- Published
- 2010
- Full Text
- View/download PDF
6. Studenten versus Berater? - Erfahrungsbericht einer PPS-Einführung durch Studenten.
- Author
-
Marc Piser, Martin Reinecke, Carsten Wurl, Marcus Zschuckelt, and Norbert Gronau
- Published
- 2000
7. NIFTY - Numerical Information Field Theory - a versatile Python library for signal inference
- Author
-
Marco Selig, Michael R. Bell, Henrik Junklewitz, Niels Oppermann, Martin Reinecke, Maksim Greiner, Carlos Pachajoa, and Torsten A. Enßlin
- Published
- 2013
8. GPU Accelerated Particle Visualization with Splotch.
- Author
-
Marzia Rivi, Claudio Gheller, Mel Krokos, Klaus Dolag, and Martin Reinecke
- Published
- 2013
9. Prime Focus Spectrograph (PFS) for the Subaru telescope: a next-generation facility instrument of the Subaru telescope has started coming
- Author
-
Albert Harding, Yuki Okura, Lucio Ramos, Masahiro Takada, Satoshi Takita, Yuki Moritani, Masahiko Kimura, Michitoshi Yoshida, Aidan Gray, Judith G. Cohen, Michael A. Strauss, Richard S. Ellis, Mohamed Belhadi, Alain Schmitt, Josimar A. Rosa, Naoki Yasuda, Daniel J. Reiley, Hassan Siddiqui, Tomonori Tamura, Martin Reinecke, Yipeng Jing, David Le Mignant, Ricardo Costa, Leandro Henrique dos Santos, You-Hua Chu, Yen Shan Hu, Ligia Souza de Oliveira, Naruhisa Takato, Yoshihiko Yamada, Manuchehr Taghizadeh Popp, Youichi Ohyama, Michitaro Koike, Kjetil Dohlen, Yoko Tanaka, Pierre Yves Chabaud, Christian Surace, Takuji Yamashita, Murdock Hart, Olivier Le Fèvre, Kiyoto Yabe, James E. Gunn, Hisanori Furusawa, Antonio Cesar de Oliveira, Arnaud Le Fur, Robert H. Lupton, Hitoshi Murayama, Yukiko Kamata, Michael A. Carr, Yin Chang Chang, Robert H. Barkhouser, Shiang-Yu Wang, F. Madec, Graham J. Murray, Erin Kado-Fong, Philippe Balard, Satoshi Kawanomoto, Rudy Barette, Jill Burnham, Masato Onodera, Randolph Hammond, Naoyuki Tamura, Michael Seiffert, Aniruddha R. Thakar, Vincent Le Brun, Timothy M. Heckman, Chih Yi Wen, Thibaut Crahchet, D. Vibert, Julien Rousselle, Mira Sarkis, Mitsuko Roberts, Jennifer L. Karr, Stephen C. Hope, M. Golebiowski, Yuki Ishizuka, Edouard Marguerite, Chueh Yi Chou, Hirofumi Okita, Masayuki Tanaka, Joe D. Orndorff, Eric Jeschke, Kiaina Schubert, Stephen A. Smee, Joshua Peebles, Hsin Yo Chen, Craig P. Loomis, Ali Allaoui, Sogo Mineo, Décio Ferreira, Eiichiro Komatsu, Rodrigo P. de Almeida, Chi-Hung Yan, Matthew Wung, Javier Garcia-Carpio, Sandrine Pascal, Stéphane Arnouts, Danilo Marchesini, Philip J. Tait, Laerte Sodré, S. Koshida, Suzanne Werner, Lucas Souza Marrara, Ping Jie Huang, Dmitry Medvedev, Hung Hsu Ling, Maximilian Fabricius, Neven Caplar, Shu Fu Hsu, Hiroshige Yoshida, and M. Jaquet
- Subjects
Optical fiber cable ,Focus (computing) ,Engineering ,business.industry ,Field of view ,law.invention ,Software ,Observatory ,law ,Systems engineering ,Instrumentation (computer programming) ,business ,Subaru Telescope ,Spectrograph - Abstract
PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is a very wide- field, massively multiplexed, and optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed in the 1.3 degree-diameter field of view. The spectrograph system has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously deliver spectra from 380nm to 1260nm in one exposure. The instrumentation has been conducted by the international collaboration managed by the project office hosted by Kavli IPMU. The team is actively integrating and testing the hardware and software of the subsystems some of which such as Metrology Camera System, the first Spectrograph Module, and the first on-telescope fiber cable have been delivered to the Subaru telescope observatory at the summit of Maunakea since 2018. The development is progressing in order to start on-sky engineering observation in 2021, and science operation in 2023. In parallel, the collaboration is trying to timely develop a plan of large-sky survey observation to be proposed and conducted in the framework of Subaru Strategic Program (SSP). This article gives an overview of the recent progress, current status and future perspectives of the instrumentation and scientific operation.
- Published
- 2021
- Full Text
- View/download PDF
10. Planck 2018 results: VI. Cosmological parameters (Corrigendum)
- Author
-
Jose M. Diego, F. Piacentini, Soumen Basak, M. Frailis, Carlo Baccigalupi, M. Ashdown, H. K. Eriksen, François Levrier, E. Hivon, Reijo Keskitalo, L. Pagano, Hannu Kurki-Suonio, A. Renzi, F. Cuttaia, F. R. Bouchet, F. Villa, R. Fernandez-Cobos, L. Montier, Charles R. Lawrence, R. B. Barreiro, Simon D. M. White, Jean-François Cardoso, Tuhin Ghosh, A. Mennella, Nabila Aghanim, Zhiqi Huang, Hans Ulrik Nørgaard-Nielsen, P. Vielva, R. C. Butler, K. M. Górski, K. Kiiveri, Gianmarco Maggio, P. de Bernardis, Luca Valenziano, Steven Gratton, Lloyd Knox, Andrea Zacchei, Jonathan Aumont, F. K. Hansen, P. Bielewicz, Guilaine Lagache, Jörg P. Rachen, S. R. Hildebrandt, Antony Lewis, M. López-Caniego, D. Herranz, M. Le Jeune, N. Mandolesi, Julien Lesgourgues, Benjamin D. Wandelt, Julian Borrill, Peter G. Martin, Will Handley, L. Vibert, Jens Chluba, Peter Meinhold, Michele Liguori, Jan Hamann, G. Roudier, Diego Molinari, Andrei V. Frolov, J.-M. Delouis, J. González-Nuevo, Aurelien A. Fraisse, M. Sandri, Ingunn Kathrine Wehus, M. Tenti, B. P. Crill, J.-L. Puget, L. Salvati, X. Dupac, Massimiliano Lattanzi, Karim Benabed, Locke D. Spencer, Paolo Natoli, Francesco Forastieri, Nicola Bartolo, Erminia Calabrese, J.-P. Bernard, Marzieh Farhang, J. F. Macías-Pérez, Nicola Vittorio, V. Lindholm, A.-S. Suur-Uski, Adam Moss, E. Franceschi, W. C. Jones, P. Lemos, A. Karakci, D. Tavagnacco, Ricardo Genova-Santos, Tiziana Trombetti, B. Van Tent, Alessandro Gruppuso, Marius Millea, Graca Rocha, Sabino Matarrese, Theodore Kisner, Richard A. Battye, M. Martinelli, A. J. Banday, D. Contreras, J.-M. Lamarre, Ken Ganga, B. Partridge, Yabebal Fantaye, Jan Tauber, N. Mauri, J. J. Bock, Martin Kunz, E. Martínez-González, Jose Alberto Rubino-Martin, A. Ducout, Mathieu Remazeilles, S. Galeotta, Marian Douspis, Chiara Sirignano, O. Doré, Jon E. Gudmundsson, G. de Zotti, Hiranya V. Peiris, Yashar Akrami, Anthony Challinor, Michele Maris, M. Savelainen, Francesca Perrotta, P. B. Lilje, Torsten A. Enßlin, Valeria Pettorino, M. Tomasi, Jacques Delabrouille, Martin Reinecke, Marco Bersanelli, J. B. Kim, G. Sirri, Yin-Zhe Ma, E. P. S. Shellard, Fabio Finelli, S. Dusini, Andrea Zonca, H. C. Chiang, Martin White, M. Bucher, Douglas Scott, A. Mangilli, A. Marcos-Caballero, L. P. L. Colombo, Mario Ballardini, Daniela Paoletti, Jussi Valiviita, George Efstathiou, F. Boulanger, G. Polenta, Julien Carron, L. Toffolatti, Anthony Lasenby, Martina Gerbino, E. Keihänen, Andrew H. Jaffe, Marc-Antoine Miville-Deschênes, Philip Lubin, Davide Maino, M. Lilley, M. Migliaccio, J. R. Bond, B. Ruiz-Granados, Jason D. McEwen, Carlo Burigana, Nicoletta Krachmalnicoff, James R. Fergusson, Subhasish Mitra, C. Combet, R. A. Sunyaev, E. Di Valentino, G. Patanchon, L. Polastri, Alessandro Melchiorri, S. Galli, Gianluca Morgante, Franz Elsner, C. Rosset, and Universidad de Cantabria
- Subjects
Physics ,Numerical error ,010308 nuclear & particles physics ,Astronomy ,Cosmological parameters ,Astronomy and Astrophysics ,Astrophysics ,Cosmic background radiation ,01 natural sciences ,Upper and lower bounds ,Errata, addenda ,Combinatorics ,symbols.namesake ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Optical depth (astrophysics) ,symbols ,Planck ,010306 general physics - Abstract
Author(s): Aghanim, N; Akrami, Y; Ashdown, M; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, AJ; Barreiro, RB; Bartolo, N; Basak, S; Battye, R; Benabed, K; Bernard, JP; Bersanelli, M; Bielewicz, P; Bock, JJ; Bond, JR; Borrill, J; Bouchet, FR; Boulanger, F; Bucher, M; Burigana, C; Butler, RC; Calabrese, E; Cardoso, JF; Carron, J; Challinor, A; Chiang, HC; Chluba, J; Colombo, LPL; Combet, C; Contreras, D; Crill, BP; Cuttaia, F; De Bernardis, P; De Zotti, G; Delabrouille, J; Delouis, JM; DI Valentino, E; DIego, JM; Dore, O; Douspis, M; Ducout, A; Dupac, X; Dusini, S; Efstathiou, G; Elsner, F; Enslin, TA; Eriksen, HK; Fantaye, Y; Farhang, M; Fergusson, J; Fernandez-Cobos, R; Finelli, F; Forastieri, F; Frailis, M; Fraisse, AA; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Genova-Santos, RT; Gerbino, M; Ghosh, T; Gonzalez-Nuevo, J; Gorski, KM; Gratton, S; Gruppuso, A; Gudmundsson, JE; Hamann, J; Handley, W; Hansen, FK; Herranz, D; Hildebrandt, SR; Hivon, E; Huang, Z; Jaffe, AH; Jones, WC; Karakci, A; Keihanen, E; Keskitalo, R; Kiiveri, K; Kim, J; Kisner, TS | Abstract: In the original version, the bounds given in Eqs. (87a) and (87b) on the contribution to the early-time optical depth, (15,30), contained a numerical error in deriving the 95th percentile from the Monte Carlo samples. The corrected 95% upper bounds are: τ(15,30) l 0:018 (lowE, flat τ(15, 30), FlexKnot), (1) τ(15, 30) l 0:023 (lowE, flat knot, FlexKnot): (2) These bounds are a factor of 3 larger than the originally reported results. Consequently, the new bounds do not significantly improve upon previous results from Planck data presented in Millea a Bouchet (2018) as was stated, but are instead comparable. Equations (1) and (2) give results that are now similar to those of Heinrich a Hu (2021), who used the same Planck 2018 data to derive a 95% upper bound of 0.020 using the principal component analysis (PCA) model and uniform priors on the PCA mode amplitudes.
- Published
- 2021
- Full Text
- View/download PDF
11. Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission
- Author
-
Ludovic Montier, Baptiste Mot, Paolo de Bernardis, Bruno Maffei, Giampaolo Pisano, Fabio Columbro, Jon E. Gudmundsson, Sophie Henrot-Versillé, Luca Lamagna, Joshua Montgomery, Thomas Prouvé, Megan Russell, Giorgio Savini, Samantha Stever, Keith L. Thompson, Masahiro Tsujimoto, Carole Tucker, Benjamin Westbrook, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, Ranajoy Banerji, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Masashi Hazumi, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Gianluca Morgante, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Gianluca Polenta, Davide Poletti, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), LiteBIRD, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, European Research Council, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Lystrup, Makenzie, Montier, L, Mot, B, de Bernardis, P, Maffei, B, Pisano, G, Columbro, F, Gudmundsson, J, Henrot-Versillé, S, Lamagna, L, Montgomery, J, Prouvé, T, Russell, M, Savini, G, Stever, S, Thompson, K, Tsujimoto, M, Tucker, C, Westbrook, B, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Morgante, G, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Polenta, G, Poletti, D, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, and Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,magnetic field ,02 engineering and technology ,LiteBIRD, cosmic microwave background, polarization measurements, space telescopes ,7. Clean energy ,01 natural sciences ,law.invention ,law ,detector: calibration ,media_common ,Physics ,conductivity: thermal ,Settore FIS/05 ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,Polarization (waves) ,inflation: model ,experimental equipment ,B-mode ,cosmic radiation ,cryogenics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,cosmic background radiation: detector ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,lens ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,FOS: Physical sciences ,LiteBIRD ,Polarization measurements ,Space telescopes ,Astrophysics::Cosmology and Extragalactic Astrophysics ,bolometer: superconductivity ,frequency: high ,Radio spectrum ,tensor scalar: ratio ,010309 optics ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: angular resolution ,Astrophysics::Galaxy Astrophysics ,Gravitational wave ,synchrotron radiation ,gravitational radiation: primordial ,Astronomy ,Physics::History of Physics ,optics ,detector: sensitivity ,13. Climate action ,Sky ,Satellite ,temperature: stability ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. European collaborators acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement Nos. 772253, 819478, and 849169). The European Space Agency (ESA) has led a Concurrent Design Facility study, focused on the MHFT and Sub-Kelvin coolers, and funded Technology Research Programmes for “Large radii Half-Wave Plate (HWP) development” (contract number: 4000123266/18/NL/AF) and for the ‘Development of Large Anti-Reflection Coated Lenses for Passive (Sub)Millimeter-Wave Science Instruments” (contract number: 4000128517/19/NL/AS).
- Published
- 2020
- Full Text
- View/download PDF
12. LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versillé, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouvé, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Lystrup, Makenzie, Hazumi, M, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banjeri, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, Noviello, F, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, and Zonca, A
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Physics beyond the Standard Model ,Cosmic microwave background ,LiteBIRD, cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravi- tational waves, quantum gravity, space telescope ,cosmic background radiation: polarization ,detector: noise ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,expansion: multipole ,Cosmology ,General Relativity and Quantum Cosmology ,B-mode: primordial ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,general relativity ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,B-mode polarization ,media_common ,Physics ,new physics ,quantum mechanics ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,BICEP ,inflation: model ,High Energy Physics - Phenomenology ,error: statistical ,experimental equipment ,cryogenics ,power spectrum: angular dependence ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,readout ,Astrophysics::Earth and Planetary Astrophysics ,dust ,control system ,0210 nano-technology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,cosmic microwave background ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,cosmic inflation ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,primordial gravi- tational waves ,Cosmic background radiation ,space telescope ,Lagrangian point ,FOS: Physical sciences ,LiteBIRD ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,polarization: sensitivity ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,0103 physical sciences ,ionization ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,cosmic background radiation: power spectrum ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Inflation (cosmology) ,synchrotron radiation ,primordial gravitational waves ,gravitational radiation: primordial ,Astronomy ,calibration ,Physics::History of Physics ,recombination ,detector: sensitivity ,angular resolution ,Sky ,quantum gravity ,gravitational radiation: emission ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Satellite ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,experimental results - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 µK-arcmin with a typical angular resolution of 0.5◦ at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy.
- Published
- 2020
- Full Text
- View/download PDF
13. Efficient wide-field radio interferometry response
- Author
-
Philipp Arras, Rüdiger Westermann, Torsten A. Enßin, and Martin Reinecke
- Subjects
Physics ,Polynomial ,010308 nuclear & particles physics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Data structure ,01 natural sciences ,Measure (mathematics) ,symbols.namesake ,Operator (computer programming) ,Fourier transform ,Space and Planetary Science ,Kernel (statistics) ,0103 physical sciences ,Memory footprint ,symbols ,Oversampling ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Algorithm ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
Radio interferometers do not measure the sky brightness distribution directly but rather a modified Fourier transform of it. Imaging algorithms, thus, need a computational representation of the linear measurement operator and its adjoint, irrespective of the specific chosen imaging algorithm. In this paper, we present a C++ implementation of the radio interferometric measurement operator for wide-field measurements which is based on "improved $w$-stacking". It can provide high accuracy (down to $\approx 10^{-12}$), is based on a new gridding kernel which allows smaller kernel support for given accuracy, dynamically chooses kernel, kernel support and oversampling factor for maximum performance, uses piece-wise polynomial approximation for cheap evaluations of the gridding kernel, treats the visibilities in cache-friendly order, uses explicit vectorisation if available and comes with a parallelisation scheme which scales well also in the adjoint direction (which is a problem for many previous implementations). The implementation has a small memory footprint in the sense that temporary internal data structures are much smaller than the respective input and output data, allowing in-memory processing of data sets which needed to be read from disk or distributed across several compute nodes before., 13 pages, 8 figures
- Published
- 2020
14. Simulating cosmic structure formation with the GADGET-4 code
- Author
-
Volker Springel, Oliver Zier, Martin Reinecke, and Rüdiger Pakmor
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Fast multipole method ,Numerical analysis ,Dark matter ,FOS: Physical sciences ,Astronomy and Astrophysics ,Solver ,01 natural sciences ,Computational science ,Smoothed-particle hydrodynamics ,Tree (data structure) ,symbols.namesake ,Space and Planetary Science ,0103 physical sciences ,Scalability ,Code (cryptography) ,symbols ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Lagrangian ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Numerical methods have become a powerful tool for research in astrophysics, but their utility depends critically on the availability of suitable simulation codes. This calls for continuous efforts in code development, which is necessitated also by the rapidly evolving technology underlying today's computing hardware. Here we discuss recent methodological progress in the GADGET code, which has been widely applied in cosmic structure formation over the past two decades. The new version offers improvements in force accuracy, in time-stepping, in adaptivity to a large dynamic range in timescales, in computational efficiency, and in parallel scalability through a special MPI/shared-memory parallelization and communication strategy, and a more-sophisticated domain decomposition algorithm. A manifestly momentum conserving fast multipole method (FMM) can be employed as an alternative to the one-sided TreePM gravity solver introduced in earlier versions. Two different flavours of smoothed particle hydrodynamics, a classic entropy-conserving formulation and a pressure-based approach, are supported for dealing with gaseous flows. The code is able to cope with very large problem sizes, thus allowing accurate predictions for cosmic structure formation in support of future precision tests of cosmology, and at the same time is well adapted to high dynamic range zoom-calculations with extreme variability of the particle number density in the simulated volume. The GADGET-4 code is publicly released to the community and contains infrastructure for on-the-fly group and substructure finding and tracking, as well as merger tree building, a simple model for radiative cooling and star formation, a high dynamic range power spectrum estimator, and an initial conditions generator based on second-order Lagrangian perturbation theory., 82 pages, 65 figures, accepted by MNRAS, for the code see https://wwwmpa.mpa-garching.mpg.de/gadget4
- Published
- 2020
15. Variable structures in M87* from space, time and frequency resolved interferometry
- Author
-
Philipp Arras, Philipp Frank, Philipp Haim, Jakob Knollmüller, Reimar Leike, Martin Reinecke, and Torsten Enßlin
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
Observing the dynamics of compact astrophysical objects provides insights into their inner workings, thereby probing physics under extreme conditions. The immediate vicinity of an active supermassive black hole with its event horizon, photon ring, accretion disk, and relativistic jets is a perfect place to study general relativity and magneto-hydrodynamics. The observations of M87* with Very Long Baseline Interferometry (VLBI) by the Event Horizon Telescope (EHT) allows to investigate its dynamical processes on time scales of days. Compared to regular radio interferometers, VLBI networks typically have fewer antennas and low signal to noise ratios (SNRs). Furthermore, the source is variable, prohibiting integration over time to improve SNR. Here, we present an imaging algorithm that copes with the data scarcity and temporal evolution, while providing uncertainty quantification. Our algorithm views the imaging task as a Bayesian inference problem of a time-varying brightness, exploits the correlation structure in time, and reconstructs a ${2+1+1}$ dimensional time-variable and spectrally resolved image at once. We apply this method to the EHT observation of M87* and validate our approach on synthetic data. The time- and frequency-resolved reconstruction of M87* confirms variable structures on the emission ring. The reconstruction indicates extended and time-variable emission structures outside the ring itself., Comment: 32 pages, 17 figures, 6 tables
- Published
- 2020
- Full Text
- View/download PDF
16. Beam-deconvolved Planck LFI maps
- Author
-
M. López-Caniego, A.-S. Suur-Uski, V. Lindholm, E. Keihänen, Michele Maris, M. Sandri, Martin Reinecke, Particle Physics and Astrophysics, Department of Physics, ITA, DEU, ESP, and SWE
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Cosmic background radiation ,FOS: Physical sciences ,Astrophysics ,Residual ,01 natural sciences ,Asymmetry ,symbols.namesake ,0103 physical sciences ,Planck ,010303 astronomy & astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,White noise ,Covariance ,115 Astronomy, Space science ,Computational physics ,Space and Planetary Science ,symbols ,astro-ph.CO ,Deconvolution ,Noise (radio) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Planck Collaboration made its final data release in 2018. In this paper we describe beam-deconvolution map products made from Planck LFI data using the artDeco deconvolution code to symmetrize the effective beam. The deconvolution results are auxiliary data products, available through the Planck Legacy Archive. Analysis of these deconvolved survey difference maps reveals signs of residual signal in the 30-GHz and 44-GHz frequency channels. We produce low-resolution maps and corresponding noise covariance matrices (NCVMs). The NCVMs agree reasonably well with the half-ring noise estimates except for 44 GHz, where we observe an asymmetry between $EE$ and $BB$ noise spectra, possibly a sign of further unresolved systematics., 12 pages, 7 figures
- Published
- 2019
17. Mitigating the impact of fiber assignment on clustering measurements from deep galaxy redshift surveys
- Author
-
Eiichiro Komatsu, Kiyoto Yabe, Martin Reinecke, Ryu Makiya, Naoyuki Tamura, Shun Saito, Tomomi Sunayama, Takahiro Nishimichi, and Masahiro Takada
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Field of view ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Correlation function (astronomy) ,01 natural sciences ,Redshift ,Galaxy ,Weighting ,Baryon ,0103 physical sciences ,Cluster analysis ,Spectrograph ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We examine the impact of fiber assignment on clustering measurements from fiber-fed spectroscopic galaxy surveys. We identify new effects which were absent in previous, relatively shallow galaxy surveys such as Baryon Oscillation Spectroscopic Survey . Specifically, we consider deep surveys covering a wide redshift range from z=0.6 to z=2.4, as in the Subaru Prime Focus Spectrograph survey. Such surveys will have more target galaxies than we can place fibers on. This leads to two effects. First, it eliminates fluctuations with wavelengths longer than the size of the field of view, as the number of observed galaxies per field is nearly fixed to the number of available fibers. We find that we can recover the long-wavelength fluctuation by weighting galaxies in each field by the number of target galaxies. Second, it makes the preferential selection of galaxies in under-dense regions. We mitigate this effect by weighting galaxies using the so-called individual inverse probability. Correcting these two effects, we recover the underlying correlation function at better than 1 percent accuracy on scales greater than 10 Mpc/h., Comment: 17 pages, 11 figures
- Published
- 2019
- Full Text
- View/download PDF
18. Application of beam deconvolution technique to power spectrum estimation for CMB measurements
- Author
-
Hannu Kurki-Suonio, Martin Reinecke, K. Kiiveri, E. Keihänen, Department of Physics, and Helsinki Institute of Physics
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,STRATEGIES ,media_common.quotation_subject ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,cosmic background radiation ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,methods: numerical ,symbols.namesake ,Optics ,0103 physical sciences ,Planck ,010303 astronomy & astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Polarization (waves) ,methods: data analysis ,Computational physics ,PLANCK ,Space and Planetary Science ,Sky ,symbols ,Deconvolution ,Multipole expansion ,business ,MAP-MAKING METHOD ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present two novel methods for the estimation of the angular power spectrum of cosmic microwave background (CMB) anisotropies. We assume an absolute CMB experiment with arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from earlier ones in that the power spectrum is estimated directly from time-ordered data, without first compressing the data into a sky map, and they take into account the effect of asymmetric beams. In particular, they correct the beam-induced leakage from temperature to polarization. The methods are applicable to a case where part of the sky has been masked out to remove foreground contamination, leaving a pure CMB signal, but incomplete sky coverage. The first method (DQML) is derived as the optimal quadratic estimator, which simultaneously yields an unbiased spectrum estimate and minimizes its variance. We successfully apply it to multipoles up to $\ell$=200. The second method is derived as a weak-signal approximation from the first one. It yields an unbiased estimate for the full multipole range, but relaxes the requirement of minimal variance. We validate the methods with simulations for the 70 GHz channel of {\tt Planck} surveyor, and demonstrate that we are able to correct the beam effects in the $TT$, $EE$, $BB$, and $TE$ spectra up to multipole $\ell$=1500. Together the two methods cover the complete multipole range with no gap in between., Comment: 16 pages, 11 figures
- Published
- 2016
- Full Text
- View/download PDF
19. Prime Focus Spectrograph (PFS) for the Subaru telescope: ongoing integration and future plans
- Author
-
Eiichiro Komatsu, David Le Mignant, Pierre Yves Chabaud, Yipeng Jing, Philippe Balard, Stephen A. Smee, Atsushi Shimono, Julien Rousselle, Sara Jamal, Yuki Moritani, Rudy Barette, Kjetil Dohlen, Naoyuki Tamura, Tomonori Tamura, Vincent Le Brun, David Hover, Yoshihiko Yamada, Michitoshi Yoshida, Fabrice Madec, Raphael Pourcelot, Shiang-Yu Wang, Youichi Ohyama, Yoko Tanaka, Lucas Souza Marrara, Eric Jeschke, Olivier Le Fèvre, Masahiko Kimura, M. Golebiowski, Masahiro Takada, Michael A. Carr, Ping Jie Huang, Robert H. Barkhouser, Josimar A. Rosa, Naoki Yasuda, Robert H. Lupton, Dmitry Medvedev, Chih Yi Wen, Albert Harding, Stephen C. Hope, Peter H. Mao, Micheal D. Seiffert, Masayuki Tanaka, Yin Chang Chang, Craig P. Loomis, Hiroshige Yoshida, Masato Onodera, Yukiko Kamata, Hisanori Furusawa, Aniruddha R. Thakar, Aaron J. Steinkraus, Matthew E. King, M. Jaquet, Chueh Yi Chou, Hassan Siddiqui, Arnaud Le Fur, Hung Hsu Ling, Murdock Hart, Guillaume Pernot, Neven Caplar, Mohamed Belhadi, Alain Schmitt, Erin Kado-Fong, Zuo Wang, Randolph Hammond, Chi-Hung Yan, You-Hua Chu, Antonio Cesar de Oliveira, Yen Shan Hu, Yosuke Minowa, Kiyoto Yabe, Michael A. Strauss, Richard S. Ellis, Paul T. P. Ho, Javier Garcia-Carpio, Jesulino Bispo dos Santos, Stéphane Arnouts, Josh Peebles, Mitsuko Roberts, Danilo Marchesini, Shu Fu Hsu, Richard Dekany, Orlando Verducci, D. Vibert, Maximilian Fabricius, Judith G. Cohen, Martin Reinecke, Leandro Henrique dos Santos, Christian Surace, Johannes Gross, Jill Burnham, Timothy M. Heckman, Daniel J. Reiley, Ligia Souza de Oliveira, Naruhisa Takato, Yuki Ishizuka, Sogo Mineo, Décio Ferreira, Jeniffer L. Karr, Hitoshi Murayama, Sandrine Pascal, Akitoshi Ueda, Philip J. Tait, Laerte Sodré, Hrand Aghazarian, Suzanne Werner, Graham J. Murray, Rodorigo P. De Almeida, Joe D. Orndorff, Michitaro Koike, M. Schwochert, James E. Gunn, Hsin Yo Chen, Beaussier, Catherine, Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), UNIROUEN - UFR Santé (UNIROUEN UFR Santé), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Statens Serum Institut [Copenhagen], Evans, Christopher J., Simard, Luc, Takami, Hideki, and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Focus (computing) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Computer science ,Field of view ,[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,01 natural sciences ,7. Clean energy ,Prime (order theory) ,010309 optics ,[SDU] Sciences of the Universe [physics] ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,Systems engineering ,Subaru Telescope ,010303 astronomy & astrophysics ,Spectrograph ,ComputingMilieux_MISCELLANEOUS - Abstract
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~ 1.6-2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward.
- Published
- 2018
20. Denoising, deconvolving and decomposing multi-domain photon observations- The D4PO algorithm
- Author
-
Daniel Pumpe, Torsten A. Enßlin, and Martin Reinecke
- Subjects
Physics ,Photon ,Probabilistic logic ,FOS: Physical sciences ,Astronomy and Astrophysics ,Context (language use) ,Function (mathematics) ,01 natural sciences ,Data set ,Space and Planetary Science ,0103 physical sciences ,Deconvolution ,010306 general physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Spatial analysis ,Algorithm ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Count data - Abstract
Astronomical imaging based on photon count data is a non-trivial task. In this context we show how to denoise, deconvolve, and decompose multi-domain photon observations. The primary objective is to incorporate accurate and well motivated likelihood and prior models in order to give reliable estimates about morphologically different but superimposed photon flux components present in the data set. Thereby we denoise and deconvolve photon counts, while simultaneously decomposing them into diffuse, point-like and uninteresting background radiation fluxes. The decomposition is based on a probabilistic hierarchical Bayesian parameter model within the framework of information field theory (IFT). In contrast to its predecessor D3PO, D4PO reconstructs multi-domain components. Thereby each component is defined over its own direct product of multiple independent domains, for example location and energy. D4PO has the capability to reconstruct correlation structures over each of the sub-domains of a component separately. Thereby the inferred correlations implicitly define the morphologically different source components, except for the spatial correlations of the point-like flux. Point-like source fluxes are spatially uncorrelated by definition. The capabilities of the algorithm are demonstrated by means of a synthetic, but realistic, mock data set, providing spectral and spatial information about each detected photon. D4PO successfully denoised, deconvolved, and decomposed a photon count image into diffuse, point-like and background flux, each being functions of location as well as energy. Moreover, uncertainty estimates of the reconstructed fields as well as of their correlation structure are provided employing their posterior density function and accounting for the manifolds the domains reside on.
- Published
- 2018
- Full Text
- View/download PDF
21. healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python
- Author
-
Krzysztof M. Gorski, D. Lenz, Martin Reinecke, Leo Singer, E. Hivon, Cyrille Rosset, Andrea Zonca, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Spherical harmonics ,Python (programming language) ,Cosmology ,python ,astronomy ,[SDU]Sciences of the Universe [physics] ,Computer graphics (images) ,Pixelization ,cosmology ,computer ,C++ ,computer.programming_language - Abstract
International audience
- Published
- 2019
- Full Text
- View/download PDF
22. Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives
- Author
-
Hitoshi Murayama, John D. Swinbank, Orlando Verducci, Claudia Mendes de Oliveira, Albert Harding, D. Vibert, Maximilian Fabricius, Larry E. Hovland, Olivier Le Fevre, Masashi Chiba, Daniel J. Reiley, Fabrice Madec, Vincent Le Brun, Atsushi Shimono, Randolph Hammond, Graham J. Murray, Sandrine Pascal, Joe D. Orndorff, Renato C. Borges, Christopher M. Hirata, Ligia Souza de Oliveira, C.-Y. Wen, Michael Seiffert, Gabriel Barban, Didier Ferrand, Richard C. Y. Chou, Murdock Hart, Kjetil Dohlen, Kiyoto Yabe, Robert H. Lupton, Marc Jaquet, Hrand Aghazarian, Hung-Hsu Ling, Mitsuko Roberts, Stéphane Arnouts, Richard Dekany, Chaz Morantz, Lucas Souza Marrara, Naoyuki Tamura, Stephen A. Smee, Yoko Tanaka, Pierre-Yves Chabaud, Timothy M. Heckman, Chi-Hung Yan, Yuki Ishizuka, Matthew E. King, Shiang-Yu Wang, Akitoshi Ueda, Johannes Gross, Mark A. Schwochert, Yasushi Suto, Philip J. Tait, David N. Spergel, Yen-Shan Hu, Masahiko Kimura, David F. Braun, Laurence Tresse, Rodrigo P. de Almeida, Youichi Ohyama, Judith G. Cohen, Mirek Golebiowski, Naoki Yasuda, Laerte Sodré, Hsin-Yo Chen, Shu-Fu Hsu, Martin Reinecke, Leandro Henrique dos Santos, Christian Surace, Andreas Ritter, Robert H. Barkhouser, Jefferson M. Pereira, Michael A. Strauss, Ping-Jie Huang, Antonio Cesar de Oliveira, Nao Suzuki, Arnaud Le Fur, Peter H. Mao, Yosuke Minowa, Aaron J. Steinkraus, Décio Ferreira, Clément Vidal, Michael A. Carr, You-Hua Chu, Yukiko Kamata, Yipeng Jing, James E. Gunn, Paul S. Ho, Stephen C. Hope, Jennifer L. Karr, Richard S. Ellis, Yin-Chang Chang, Yuki Moritani, Tomonori Tamura, Eiichiro Komatsu, Naruhisa Takato, Masahiro Takada, David Le Mignant, Jesulino Bispo dos Santos, Jenny E. Greene, Craig Loomis, Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), SPIE, Christopher J. Evans, Luc Simard, Hideki Takami, Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Evans, Christopher J., Simard, Luc, and Takami, Hideki
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Computer science ,Optical and near-infrared spectroscopy ,Optical spectroscopy ,FOS: Physical sciences ,Field of view ,01 natural sciences ,Prime (order theory) ,Spectral line ,Near-infrared spectroscopy ,0103 physical sciences ,Optical fibers ,[INFO]Computer Science [cs] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Spectrograph ,Focus (computing) ,010308 nuclear & particles physics ,Multi-object spectroscopy ,Astrophysics - Astrophysics of Galaxies ,International collaboration ,Future instruments ,Astrophysics of Galaxies (astro-ph.GA) ,Systems engineering ,Wide-field instrument ,Subaru Telescope ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward., 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 2016
- Published
- 2016
- Full Text
- View/download PDF
23. Using rotation measure grids to detect cosmological magnetic fields: A Bayesian approach
- Author
-
Keitaro Takahashi, H. Junklewitz, Marco Selig, V. Vacca, S. Ideguchi, Chiara Ferrari, Luigina Feretti, Niels Oppermann, Roberto Pizzo, Jens Jasche, Torsten A. Ensslin, Christopher A. Hales, Cathy Horellou, Martin Reinecke, Timothy W. Shimwell, M. Brueggen, Melanie Johnston-Hollitt, E. Carretti, M. Greiner, and Huub Roettgering
- Subjects
Physics ,COSMIC cancer database ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Magnetism ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Redshift ,Magnetic field ,law.invention ,Space and Planetary Science ,law ,0103 physical sciences ,Astronomical interferometer ,Faraday cage ,010303 astronomy & astrophysics ,Rotation (mathematics) ,Noise (radio) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Determining magnetic field properties in different environments of the cosmic large-scale structure as well as their evolution over redshift is a fundamental step toward uncovering the origin of cosmic magnetic fields. Radio observations permit the study of extragalactic magnetic fields via measurements of the Faraday depth of extragalactic radio sources. Our aim is to investigate how much different extragalactic environments contribute to the Faraday depth variance of these sources. We develop a Bayesian algorithm to distinguish statistically Faraday depth variance contributions intrinsic to the source from those due to the medium between the source and the observer. In our algorithm the Galactic foreground and the measurement noise are taken into account as the uncertainty correlations of the galactic model. Additionally, our algorithm allows for the investigation of possible redshift evolution of the extragalactic contribution. This work presents the derivation of the algorithm and tests performed on mock observations. With cosmic magnetism being one of the key science projects of the new generation of radio interferometers we have made predictions for the algorithm's performance on data from the next generation of radio interferometers. Applications to real data are left for future work., Comment: 27 pages, 14 figures, Submitted to A&A
- Published
- 2016
- Full Text
- View/download PDF
24. ALGORITHM FOR THE EVALUATION OF REDUCED WIGNER MATRICES
- Author
-
Martin Reinecke and Gary Prezeau
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Computation ,Cosmic background radiation ,FOS: Physical sciences ,Astronomy and Astrophysics ,Image processing ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmology ,Space and Planetary Science ,Convolutional code ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Algorithm ,Massively parallel ,Astrophysics::Galaxy Astrophysics ,Beam (structure) ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Background radiation - Abstract
Algorithms for the fast and exact computation of Wigner matrices are described and their application to a fast and massively parallel 4pi convolution code between a beam and a sky is also presented., Comment: 8 pages, 3 figures
- Published
- 2010
- Full Text
- View/download PDF
25. Efficient data structures for masks on 2D grids
- Author
-
Martin Reinecke and Eric Hivon
- Subjects
Focus (computing) ,Computer science ,media_common.quotation_subject ,FOS: Physical sciences ,Astronomy and Astrophysics ,Space (commercial competition) ,Astronomical survey ,Data structure ,Space and Planetary Science ,Sky ,Computer graphics (images) ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common - Abstract
This article discusses various methods of representing and manipulating arbitrary coverage information in two dimensions, with a focus on space- and time-efficiency when processing such coverages, storing them on disk, and transmitting them between computers. While these considerations were originally motivated by the specific tasks of representing sky coverage and cross-matching catalogues of astronomical surveys, they can be profitably applied in many other situations as well., accepted by A&A
- Published
- 2015
26. MOC - HEALPix Multi-Order Coverage map Version 1.0
- Author
-
Wil O'Mullane, Mark Taylor, Daniel Durand, Tom Donaldson, Martin Reinecke, Thomas Boch, and Pierre Fernique
- Subjects
Tessellation (computer graphics) ,Computer science ,HEALPix ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Order (ring theory) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,GeneralLiterature_MISCELLANEOUS ,Sky ,Coverage map ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Algorithm ,media_common ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
This document describes the Multi-Order Coverage map method (MOC) to specify arbitrary sky regions. The goal is to be able to provide a very fast comparison mechanism between coverage maps. The mechanism is based on the HEALPix sky tessellation algorithm. It is essentially a simple way to map regions of the sky into hierarchically grouped predefined cells.
- Published
- 2015
27. Blind search for variability in Planck data
- Author
-
Jörg P. Rachen, E. Keihänen, and Martin Reinecke
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,media_common.quotation_subject ,Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Methods statistical ,symbols.namesake ,0103 physical sciences ,Instrumental noise ,Planck ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,media_common ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Variable (computer science) ,Space and Planetary Science ,Sky ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,symbols ,Millimeter ,Transient (oscillation) ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The sky is full of variable and transient sources on all time scales, from milliseconds to decades. Planck's regular scanning strategy makes it an ideal instrument to search for variable sky signals in the millimetre and submillimetre regime, on time scales from hours to several years. A precondition is that instrumental noise and systematic effects, caused in particular by non-symmetric beam shapes, are properly removed. We present a method to perform a full sky blind search for variable and transient objects at all Planck frequencies., 2 pages, 1 figure, presented at the XXIXth IAU General Assembly, Honolulu, August 2015
- Published
- 2015
28. Type Ia supernova diversity in three-dimensional models
- Author
-
Friedrich K. Roepke, Martin Reinecke, Claudia Travaglio, M. Gieseler, and Wolfgang Hillebrandt
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Metallicity ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Type (model theory) ,Cosmology ,Luminosity ,Supernova ,Space and Planetary Science ,Nucleosynthesis ,Astrophysics::Solar and Stellar Astrophysics ,Stellar evolution ,Mass fraction ,Astrophysics::Galaxy Astrophysics - Abstract
The use of type Ia supernovae as distance indicators for cosmology has initiated a search for theoretical arguments supporting the empirical calibration methods applied. To this end, as a first step, a sound understanding of the origin of the observed diversity in type Ia supernova properties is needed. Here we present a first systematic study of effects resulting from changing some physical parameters of three-dimensional deflagration models of thermonuclear supernovae. In our study we vary the progenitor's carbon-to-oxygen ratio and its central density prior to ignition because both properties are not well determined by stellar evolution theory and they may change from supernova to supernova. Next we compute for these explosion models the nucleosynthesis yields in a post-processing step. This, in addition, allows us to study variations in the progenitor's metallicity by means of different $^{22}$Ne mass fractions in the initial composition. We find that the progenitor's carbon-to-oxygen ratio and its central density affect the energy release of the models and thus the expansion velocity of the supernova. Moreover, we find that changing the metallicity and the central density changes the production of radioactive $^{56}$Ni and thus affects the luminosity. In contrast, the carbon-to-oxygen ratio has little effect on the $^{56}$Ni production. Implications of the found variations of the explosion energy and the produced $^{56}$Ni mass for the type Ia supernova diversity are discussed., Comment: 21 pages, 15 figures, resolution of Figs. 1, 5, and 10 reduced to meet astro-ph file size restriction, requires package aalongtable.sty; submitted to A&A -- values of Table 7 corrected
- Published
- 2006
- Full Text
- View/download PDF
29. Theoretical light curves for deflagration models of type Ia supernova
- Author
-
Wolfgang Hillebrandt, E. I. Sorokina, Friedrich K. Roepke, Maximilian Stritzinger, Martin Reinecke, Claudia Travaglio, Sergei Blinnikov, and M. Gieseler
- Subjects
Physics ,Thermonuclear fusion ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Light curve ,Kinetic energy ,Supernova ,Atmospheric radiative transfer codes ,Space and Planetary Science ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,Deflagration ,Ejecta - Abstract
We present synthetic bolometric and broad-band UBVRI light curves of SNe Ia, for four selected 3-D deflagration models of thermonuclear supernovae. The light curves are computed with the 1-D hydro code STELLA, which models (multi-group time-dependent) non-equilibrium radiative transfer inside SN ejecta. Angle-averaged results from 3-D hydrodynamical explosion simulations with the composition determined in a nucleosynthetic postprocessing step served as the input to the radiative transfer model. The predicted model UBV light curves do agree reasonably well with the observed ones for SNe Ia in the range of low to normal luminosities, although the underlying hydrodynamical explosion models produced only a modest amount of radioactive Ni56 and relatively low kinetic energy in the explosion. The evolution of predicted B and V fluxes in the model with a Ni56 mass of 0.42 M_sun follows the observed decline rate after the maximum very well, although the behavior of fluxes in other filters somewhat deviates from observations, and the bolometric decline rate is a bit slow. Using our models, we check the validity of Arnett's rule and the accuracy of the procedure for extracting the Ni56 mass from the observed light curves. We find that the comparison between theoretical light curves and observations provides a useful tool to validate SN Ia models. The steps necessary to improve the agreement between theory and observations are set out., Comment: 14 pages, 17 figures, 4 tables; accepted to publication in Astronomy & Astrophysics
- Published
- 2006
- Full Text
- View/download PDF
30. Multidimensional simulations of type Ia supernova explosions and nucleosynthesis
- Author
-
Martin Reinecke, Wolfgang Hillebrandt, Jens C. Niemeyer, Friedrich K. Röpke, and Claudia Travaglio
- Subjects
Physics ,Nuclear and High Energy Physics ,Supernova ,Stars ,Thermonuclear fusion ,Nucleosynthesis ,White dwarf ,Astronomy ,Astrophysics ,Type (model theory) ,Light curve ,Chandrasekhar limit - Abstract
Because calibrated light curves of type Ia supernovae have become a major tool to determine the local expansion rate of the Universe, considerable attention has been given to models of these events over the past couple of years. It is now common believe that perhaps most type Ia supernovae are the explosions of white dwarfs that have approached the Chandrasekhar mass, M Chan , ≈ 1.39 M⊙, and are disrupted by thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent progress in modeling type Ia supernovae as well as several of the still open questions are addressed in this article. Although the main emphasis will be on studies of the explosion mechanism itself and on the related physical processes, including the physics and nuclear physics of turbulent nuclear combustion in degenerate stars, observational implications and constraints will also be discussed.
- Published
- 2003
- Full Text
- View/download PDF
31. Polyamides in the engine compartment
- Author
-
Martin Reinecke
- Subjects
Engineering ,business.industry ,General Earth and Planetary Sciences ,Mechanical engineering ,Process engineering ,business ,Compartment (pharmacokinetics) ,General Environmental Science - Abstract
In recent years polyamides have replaced metals in numerous applications in car engine compartments. New challenges have arisen with the trend towards increasingly compact engines with better performance causing higher temperatures. Also, the pressure to reduce costs and the weight of engine components continues to grow. Recent developments at Bayer show that polyamides are more than capable of meeting these challenges. Indeed, their innovative potential will allow their use in other under-the-hood applications.
- Published
- 2002
- Full Text
- View/download PDF
32. Polyamide im Motorraum — ihre Zukunft hat erst begonnen
- Author
-
Martin Reinecke
- Subjects
Automotive Engineering - Abstract
Polyamide haben in den letzten Jahren Metalle aus zahlreichen Anwendungen im Motorraum verdrangt. Nun stehen sie vor neuen Herausforderungen: So fuhrt der Trend zu kompakteren Motoren mit mehr Leistung zu einer starkeren Temperaturbelastung. Auserdem nimmt der Druck zur Kostensenkung und Verringerung des Bauteilgewichts weiter zu. Neuere Entwicklungen von Bayer zeigen, dass Polyamide diese Herausforderungen nicht nur meistern werden. Vielmehr wird ihnen ihre Innovationskraft weitere Anwendungen unter der Motorhaube erschliesen.
- Published
- 2002
- Full Text
- View/download PDF
33. Three-dimensional simulations of type Ia supernovae
- Author
-
Martin Reinecke, Wolfgang Hillebrandt, and Jens C. Niemeyer
- Subjects
Physics ,Fine-tuning ,Thermonuclear fusion ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,Front (oceanography) ,Phase (waves) ,FOS: Physical sciences ,chemistry.chemical_element ,Astronomy and Astrophysics ,Astrophysics ,Type (model theory) ,Supernova ,Nickel ,chemistry ,Space and Planetary Science ,Astrophysics::Solar and Stellar Astrophysics ,Ejecta - Abstract
We present the results of three-dimensional hydrodynamical simulations of the subsonic thermonuclear burning phase in type Ia supernovae. The burning front model contains no adjustable parameters so that variations of the explosion outcome can be linked directly to changes in the initial conditions. In particular, we investigate the influence of the initial flame geometry on the explosion energy and find that it appears to be weaker than in 2D. Most importantly, our models predict global properties such as the produced nickel masses and ejecta velocities within their observed ranges without any fine tuning., Comment: 7 pages, 5 figures, accepted by A&A
- Published
- 2002
- Full Text
- View/download PDF
34. Thermonuclear supernovae
- Author
-
Wolfgang Hillebrandt, Martin Reinecke, and Jens C. Niemeyer
- Subjects
Hardware and Architecture ,General Physics and Astronomy - Published
- 2000
- Full Text
- View/download PDF
35. [Untitled]
- Author
-
Martin Reinecke and Gregory Stephanopoulos
- Subjects
Flow injection analysis ,Glycosylation ,Chromatography ,medicine.diagnostic_test ,Clinical Biochemistry ,Biomedical Engineering ,Bioengineering ,Cell Biology ,Prolactin ,law.invention ,chemistry.chemical_compound ,chemistry ,law ,Cell culture ,Immunoassay ,Immunology ,Recombinant DNA ,medicine ,Quantitative analysis (chemistry) ,Biotechnology - Abstract
A flow injection analysis (FIA) system is presented for a twostep immunoassay-based determination of the total humanprolactin (hPRL) concentration along with its degree ofglycosylation. Separate measurement of total hPRL and nonglysosylated human prolactin (nG-hPRL) were made using twoflow-through cartridges each containing immobilized antibodiesof different specificity. The antibodies are immobilized on thesurface of a carrier. Glycosylated hPRL (G-hPRL) and, thus, thedegree of glycosylation were calculated by the differencebetween the two specific determinations. Enhanced specificityfor the determination of nG-hPRL was obtained using unfavorablebinding conditions through incorporation of alkaline pH andchaotropic agents into the carrier/dispersion buffer. The assayfor total hPRL and nG-hPRL were each found to be linear withinthe relevant concentration range. The results of the two-stepFIA method were found to agree with those obtained by thestandard methods of ELISA and western blotting while offeringthe advantage of minimal analysis time (10 min) and eliminationof manual manipulations.
- Published
- 2000
- Full Text
- View/download PDF
36. Poly-Diels-Alder Addition with a Bisoxazole as Bisdiene and a Bismaleinimide as Bisdienophile
- Author
-
Martin Reinecke and Helmut Ritter
- Subjects
1h nmr spectroscopy ,Polymers and Plastics ,Aromatization ,General Chemistry ,Degree of polymerization ,chemistry.chemical_compound ,chemistry ,Polymer chemistry ,Materials Chemistry ,Ceramics and Composites ,Proton NMR ,Diels alder ,Thermal stability ,Benzene ,Acetamide - Abstract
The poly-Diels-Alder addition between the new bisdiene 1,4-bis(5-methoxy-2-oxazolyl)benzene (4) and N,N′-hexamethylene-bis[2-(2,5-dihydro-2,5-dioxo-pyrrole-1-yl) acetamide] (7) is described. The structure of the resulting polyadduct 12 was proved by 1H NMR spectroscopy with the aid of the low-molecular-weight model compounds 1,4-bis(1,3-dihydro-7-hydroxy-1,3-dioxo-2-phenyl-pyrrolo[3,4-c] pyridine-4-yl)benzene (9) and N,N'-hexamethylene-bis[2-(1, 3-dihydro-7-hydroxy-6-methyl-1,3-dioxo-4-phenyl-pyrrolo [3,4-c]pyridine-2-yl)acetamide] (11). The reaction proceeds via the aromatization of the primarily formed cycloadducts. Polyadduct 12 shows a number average degree of polymerization Pn of about 11 – 12 (Mn = 8500 − 9200 g/mol), calculated from 1H NMR endgroup signals.
- Published
- 1997
- Full Text
- View/download PDF
37. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts
- Author
-
F. Villa, D. Santos, D. L. Harrison, Michele Liguori, Y. Giraud-Héraud, Marc-Antoine Miville-Deschênes, L. Montier, Michael P. Hobson, K. Ganga, Davide Maino, M. Ashdown, H. K. Eriksen, E. Martínez-González, Laura Bonavera, Federico Nati, X. Dupac, Jose M. Diego, R. V. Sudiwala, A. Renzi, Marc Türler, Pavel Naselsky, R. J. Davis, Jean-Baptiste Melin, J.-M. Lamarre, I. Ristorcelli, C. Hernández-Monteagudo, I. D. Novikov, M. Piat, A. Chamballu, R. Kneissl, A. de Rosa, Luca Terenzi, C. Combet, E. Franceschi, Anthony Challinor, Jörg P. Rachen, J. J. Bock, Nicola Bartolo, Monique Arnaud, G. Prézeau, A. Coulais, Jean-François Cardoso, F. Piacentini, Michael Seiffert, Duncan Hanson, Locke D. Spencer, Jose Alberto Rubino-Martin, T. J. Pearson, Richard A. Battye, B. Comis, M. Frailis, A.-S. Suur-Uski, J.-F. Sygnet, F. Cuttaia, Charles R. Lawrence, P. M. McGehee, Matthieu Roman, G. de Zotti, Carlo Baccigalupi, François Levrier, E. Hivon, Olivier Doré, J.-P. Bernard, C. Renault, V. Stolyarov, W. A. Holmes, L. Toffolatti, T. R. Jaffe, J.-L. Puget, Andrea Zonca, Anne Lähteenmäki, Hans Ulrik Nørgaard-Nielsen, Benjamin D. Wandelt, A. Gregorio, Luca Valenziano, Anna Bonaldi, R. B. Barreiro, Martin Kunz, P. Vielva, P. B. Lilje, A. Zacchei, Mathieu Remazeilles, Julian Borrill, S. Galeotta, A. Benoit-Lévy, Anthony Lasenby, M. Bucher, Douglas Scott, Jochen Weller, R. C. Butler, M. Migliaccio, M. Giard, F. Noviello, H. C. Chiang, Aurelien A. Fraisse, Guilaine Lagache, Peter Meinhold, F. Elsner, P. de Bernardis, F. Pajot, S. Galli, B. P. Crill, E. Keihänen, Marian Douspis, Jon E. Gudmundsson, L. Pagano, M. López-Caniego, Jussi Valiviita, Krzysztof M. Gorski, Peter G. Martin, A. Frejsel, Sabino Matarrese, Valeria Pettorino, Simon Prunet, François R. Bouchet, G. Hurier, P. Bielewicz, N. Mandolesi, Matthieu Tristram, P. R. Christensen, J. González-Nuevo, Fabio Pasian, Alain Benoit, L. Popa, J. Aumont, James R. Fergusson, Rafael Rebolo, Francesca Perrotta, A. Curto, Daniel J. Mortlock, A. Ducout, Davide Pietrobon, Ingunn Kathrine Wehus, M. Tucci, Silvia Masi, Jacques Delabrouille, B. Van Tent, G. W. Pratt, Carol Anne Oxborrow, E. Falgarone, Torsten A. Enßlin, Erminia Calabrese, A. J. Banday, Stéphane Colombi, E. Battaner, Gianluca Morgante, Elena Pierpaoli, Andrew H. Jaffe, G. Umana, Klaus Dolag, Massimiliano Lattanzi, Calvin B. Netterfield, Adam Moss, J. Lesgourgues, J. F. Macías-Pérez, Radek Stompor, Philip Lubin, Mika Juvela, Martin Reinecke, Graca Rocha, R. Leonardi, J. A. Murphy, Olivier Forni, A. Moneti, F. K. Hansen, Fabio Finelli, James G. Bartlett, F.-X. Désert, Sophie Henrot-Versille, Peter A. R. Ade, F. Couchot, M. Rossetti, Paolo Natoli, D. Yvon, L. Perotto, C. Rosset, G. Polenta, M. Linden-Vørnle, Sarah E. Church, L. P. L. Colombo, Dmitry Novikov, L. A. Wade, Daniela Paoletti, Dipak Munshi, George Efstathiou, Michele Maris, Subhabrata Mitra, J. A. Tauber, M. Savelainen, M. Tomasi, Marco Bersanelli, Stéphane Plaszczynski, Luigi Danese, E. P. S. Shellard, M. Sandri, Reijo Keskitalo, O. Perdereau, H. Dole, Theodore Kisner, J. Knoche, Allan Hornstrup, Etienne Pointecouteau, S. R. Hildebrandt, Carlo Burigana, L. Mendes, D. Sutton, J. Tuovinen, R. A. Sunyaev, R. D. Davies, K. Benabed, J. R. Bond, E. Gjerløw, Hannu Kurki-Suonio, Steven Gratton, David L. Clements, Kevin M. Huffenberger, G. Roudier, W. C. Jones, Alessandro Gruppuso, S. Donzelli, W. Hovest, B. Partridge, Giorgio Savini, A. Catalano, Ranga-Ram Chary, A. Mennella, Nabila Aghanim, Simon D. M. White, Alessandro Melchiorri, A. Mangilli, Gianmarco Maggio, Ben Rusholme, D. Herranz, G. Patanchon, F. Paci, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, PLANCK, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Hélium : du fondamental aux applications (HELFA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Department of Physics, Helsinki Institute of Physics, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), HELFA - Hélium : du fondamental aux applications, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Science and Technology Facilities Council (STFC), Science and Technology Facilities Council [2006-2012], Tauber, Jan, Ade, P. A. R., Aghanim, N., Armitage Caplan, C., Arnaud, M., Ashdown, M., Atrio Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Barrena, R., Bartlett, J. G., Battaner, E., Battye, R., Benabed, K., Benoît, A., Benoit Lévy, A., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bikmaev, I., Blanchard, A., Bobin, J., Bock, J. J., Böhringer, H., Bonaldi, A., Bond, J. R., Borrill, J., Bouchet, F. R., Bourdin, H., Bridges, M., Brown, M. L., Bucher, M., Burenin, R., Burigana, C., Butler, R. C., Cardoso, J. F., Carvalho, P., Catalano, A., Challinor, A., Chamballu, A., Chary, R. R., Chiang, L. Y., Chiang, H. C., Chon, G., Christensen, P. R., Church, S., Clements, D. L., Colombi, S., Colombo, L. P. L., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Da Silva, A., Dahle, H., Danese, L., Davies, R. D., Davis, R. J., De Bernardis, P., De Rosa, A., De Zotti, G., Delabrouille, J., Delouis, J. M., Démoclès, J., Désert, F. X., Dickinson, C., Diego, J. M., Dolag, K., Dole, H., Donzelli, S., Doré, O., Douspis, M., Dupac, X., Efstathiou, G., Enßlin, T. A., Eriksen, H. K., Finelli, F., Flores Cacho, I., Forni, O., Frailis, M., Franceschi, E., Fromenteau, S., Galeotta, S., Ganga, K., Génova Santos, R. T., Giard, M., Giardino, G., Giraud Héraud, Y., González Nuevo, J., Górski, K. M., Gratton, S., Gregorio, Anna, Gruppuso, A., Hansen, F. K., Hanson, D., Harrison, D., Henrot Versillé, S., Hernández Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Jaffe, T. R., Jaffe, A. H., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Khamitov, I., Kisner, T. S., Kneissl, R., Knoche, J., Knox, L., Kunz, M., Kurki Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. M., Lasenby, A., Laureijs, R. J., Lawrence, C. R., Leahy, J. P., Leonardi, R., León Tavares, J., Lesgourgues, J., Liddle, A., Liguori, M., Lilje, P. B., Linden Vørnle, M., López Caniego, M., Lubin, P. M., Maciás Pérez, J. F., Maffei, B., Maino, D., Mandolesi, N., Marcos Caballero, A., Maris, M., Marshall, D. J., Martin, P. G., Martínez González, E., Masi, S., Matarrese, S., Matthai, F., Mazzotta, P., Meinhold, P. R., Melchiorri, A., Melin, J. B., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville Deschênes, M. A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Osborne, S., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Partridge, B., Pasian, F., Patanchon, G., Perdereau, O., Perotto, L., Perrotta, F., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Ponthieu, N., Popa, L., Poutanen, T., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. L., Rachen, J. P., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Ricciardi, S., Riller, T., Ristorcelli, I., Rocha, G., Roman, M., Rosset, C., Roudier, G., Rowan Robinson, M., Rubinõ Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savini, G., Scott, D., Seiffert, M. D., Shellard, E. P. S., Spencer, L. D., Starck, J. L., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sureau, F., Sutton, D., Suur Uski, A. S., Sygnet, J. F., Tauber, J. A., Tavagnacco, Daniele, Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Tuovinen, J., Türler, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wade, L. A., Wandelt, B. D., Weller, J., White, M., White, S. D. M., Yvon, D., Zacchei, A., Zonca, A., Tauber, J, Ade, P, Aghanim, N, Armitage Caplan, C, Arnaud, M, Ashdown, M, Atrio Barandela, F, Aumont, J, Baccigalupi, C, Banday, A, Barreiro, R, Barrena, R, Bartlett, J, Battaner, E, Battye, R, Benabed, K, Benoît, A, Benoit Lévy, A, Bernard, J, Bersanelli, M, Bielewicz, P, Bikmaev, I, Blanchard, A, Bobin, J, Bock, J, Böhringer, H, Bonaldi, A, Bond, J, Borrill, J, Bouchet, F, Bourdin, H, Bridges, M, Brown, M, Bucher, M, Burenin, R, Burigana, C, Butler, R, Cardoso, J, Carvalho, P, Catalano, A, Challinor, A, Chamballu, A, Chary, R, Chiang, L, Chiang, H, Chon, G, Christensen, P, Church, S, Clements, D, Colombi, S, Colombo, L, Couchot, F, Coulais, A, Crill, B, Curto, A, Cuttaia, F, Da Silva, A, Dahle, H, Danese, L, Davies, R, Davis, R, DE BERNARDIS, P, De Rosa, A, De Zotti, G, Delabrouille, J, Delouis, J, Démoclès, J, Désert, F, Dickinson, C, Diego, J, Dolag, K, Dole, H, Donzelli, S, Doré, O, Douspis, M, Dupac, X, Efstathiou, G, Enßlin, T, Eriksen, H, Finelli, F, Flores Cacho, I, Forni, O, Frailis, M, Franceschi, E, Fromenteau, S, Galeotta, S, Ganga, K, Génova Santos, R, Giard, M, Giardino, G, Giraud Héraud, Y, González Nuevo, J, Górski, K, Gratton, S, Gregorio, A, Gruppuso, A, Hansen, F, Hanson, D, Harrison, D, Henrot Versillé, S, Hernández Monteagudo, C, Herranz, D, Hildebrandt, S, Hivon, E, Hobson, M, Holmes, W, Hornstrup, A, Hovest, W, Huffenberger, K, Hurier, G, Jaffe, T, Jaffe, A, Jones, W, Juvela, M, Keihänen, E, Keskitalo, R, Khamitov, I, Kisner, T, Kneissl, R, Knoche, J, Knox, L, Kunz, M, Kurki Suonio, H, Lagache, G, Lähteenmäki, A, Lamarre, J, Lasenby, A, Laureijs, R, Lawrence, C, Leahy, J, Leonardi, R, León Tavares, J, Lesgourgues, J, Liddle, A, Liguori, M, Lilje, P, Linden Vørnle, M, López Caniego, M, Lubin, P, Maciás Pérez, J, Maffei, B, Maino, D, Mandolesi, N, Marcos Caballero, A, Maris, M, Marshall, D, Martin, P, Martínez González, E, Masi, S, Matarrese, S, Matthai, F, Mazzotta, P, Meinhold, P, Melchiorri, A, Melin, J, Mendes, L, Mennella, A, Migliaccio, M, Mitra, S, Miville Deschênes, M, Moneti, A, Montier, L, Morgante, G, Mortlock, D, Moss, A, Munshi, D, Naselsky, P, Nati, F, Natoli, P, Netterfield, C, Nørgaard Nielsen, H, Noviello, F, Novikov, D, Novikov, I, Osborne, S, Oxborrow, C, Paci, F, Pagano, L, Pajot, F, Paoletti, D, Partridge, B, Pasian, F, Patanchon, G, Perdereau, O, Perotto, L, Perrotta, F, Piacentini, F, Piat, M, Pierpaoli, E, Pietrobon, D, Plaszczynski, S, Pointecouteau, E, Polenta, G, Ponthieu, N, Popa, L, Poutanen, T, Pratt, G, Prézeau, G, Prunet, S, Puget, J, Rachen, J, Rebolo, R, Reinecke, M, Remazeilles, M, Renault, C, Ricciardi, S, Riller, T, Ristorcelli, I, Rocha, G, Roman, M, Rosset, C, Roudier, G, Rowan Robinson, M, Rubinõ Martín, J, Rusholme, B, Sandri, M, Santos, D, Savini, G, Scott, D, Seiffert, M, Shellard, E, Spencer, L, Starck, J, Stolyarov, V, Stompor, R, Sudiwala, R, Sunyaev, R, Sureau, F, Sutton, D, Suur Uski, A, Sygnet, J, Tavagnacco, D, Terenzi, L, Toffolatti, L, Tomasi, M, Tristram, M, Tucci, M, Tuovinen, J, Türler, M, Umana, G, Valenziano, L, Valiviita, J, Van Tent, B, Vielva, P, Villa, F, Vittorio, N, Wade, L, Wandelt, B, Weller, J, White, M, White, S, Yvon, D, Zacchei, A, and Zonca, A
- Subjects
Cosmological parameter ,Large-scale structure of Universe ,NONTHERMAL PRESSURE ,HYDRODYNAMIC SIMULATIONS ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Astronomy ,Cosmic microwave background ,Astrophysics ,clusters: general [Galaxies] ,7. Clean energy ,Cosmology ,galaxies ,MASSIVE GALAXY CLUSTERS ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,universe ,Computer Science::Computers and Society ,South Pole Telescope ,galaxies: clusters: general ,Physical Sciences ,Physics::Space Physics ,astro-ph.CO ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,symbols ,Baryon acoustic oscillations ,large-scale structure of Universe ,X-RAY-PROPERTIES ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmological parameters ,Galaxies: clusters: general ,Astronomy and Astrophysics ,Space and Planetary Science ,education ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,Computer Science::Digital Libraries ,NO ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,LARGE-SCALE STRUCTURE ,Planck ,cosmological parameters ,SPT-SZ SURVEY ,XMM-NEWTON ,Science & Technology ,SOUTH-POLE TELESCOPE ,Astronomy and Astrophysic ,115 Astronomy, Space science ,Redshift ,0201 Astronomical And Space Sciences ,Gravitational lens ,DIGITAL SKY SURVEY ,BARYON ACOUSTIC-OSCILLATIONS ,Hubble's law - Abstract
We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev-Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass M and SZ signal Y calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude σ8 and matter density parameter Ωm in a flat ΛCDM model. We test the robustness of our estimates and find that possible biases in the Y-M relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that σ8 = 0.75 ± 0.03, Ωm = 0.29 ± 0.02, and σ8(Ωm/0.27)0.3 = 0.764 ± 0.025. The value of σ8 is degenerate with the mass bias; if the latter is fixed to a value of 20% (the central value from numerical simulations) we find σ8 (Ωm/0.27)0.3 = 0.78 ± 0.01 and a tighter one-dimensional range σ8 = 0.77 ± 0.02. We find that the larger values of σ8 and Ωm preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the ΛCDM model, such as a component of massive neutrinos. We place our results in the context of other determinations of cosmologicalparameters, and discuss issues that need to be resolved in order to make further progress in this field., The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU).
- Published
- 2013
- Full Text
- View/download PDF
38. NIFTY - Numerical Information Field Theory - a versatile Python library for signal inference
- Author
-
Torsten A. Enßlin, Martin Reinecke, Niels Oppermann, Michael R. Bell, Maksim Greiner, H. Junklewitz, Marco Selig, and Carlos Pachajoa
- Subjects
FOS: Computer and information sciences ,Theoretical computer science ,Discretization ,Information field ,Computer Science - Information Theory ,Inference ,FOS: Physical sciences ,Astrophysics ,Statistics - Computation ,symbols.namesake ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Computation (stat.CO) ,Mathematical Physics ,computer.programming_language ,Physics ,Information Theory (cs.IT) ,Wiener filter ,Astronomy and Astrophysics ,Probability and statistics ,Mathematical Physics (math-ph) ,Python (programming language) ,Grid ,Software package ,Space and Planetary Science ,Physics - Data Analysis, Statistics and Probability ,symbols ,Computer Science - Mathematical Software ,Astrophysics - Instrumentation and Methods for Astrophysics ,computer ,Mathematical Software (cs.MS) ,Data Analysis, Statistics and Probability (physics.data-an) - Abstract
NIFTY, "Numerical Information Field Theory", is a software package designed to enable the development of signal inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented framework is written in Python, although it accesses libraries written in Cython, C++, and C for efficiency. NIFTY offers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically without concerning the user. This allows for an abstract formulation and programming of inference algorithms, including those derived within information field theory. Thus, NIFTY permits its user to rapidly prototype algorithms in 1D, and then apply the developed code in higher-dimensional settings of real world problems. The set of spaces on which NIFTY operates comprises point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product spaces constructed as combinations of those. The functionality and diversity of the package is demonstrated by a Wiener filter code example that successfully runs without modification regardless of the space on which the inference problem is defined., 9 pages, 3 tables, 4 figures, accepted by Astronomy & Astrophysics; refereed version, 1 figure added, results unchanged
- Published
- 2013
39. Planck intermediate results (Corrigendum). V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect
- Author
-
T. Riller, A. Hempel, Elena Pierpaoli, M. Ashdown, H. K. Eriksen, N. Ponthieu, Jean-François Cardoso, Barbara Comis, X. Dupac, E. Churazov, G. Chon, L. Montier, Guilaine Lagache, M. Giard, F. Noviello, M. Arnaud, G. Polenta, L. Cayón, L. Toffolatti, A. Moneti, Federico Nati, Alessandro Gruppuso, Luca Terenzi, Ricardo Génova-Santos, B. P. Crill, Lung-Yih Chiang, M. López-Caniego, G. Castex, Paolo Cabella, C. Renault, U. Dörl, Anthony Lasenby, Stefano Borgani, M. Sandri, Francine R. Marleau, E. Keihänen, C. Hernández-Monteagudo, J. R. Bond, M. Frailis, Carlo Baccigalupi, Francesca Perrotta, J.-P. Bernard, L. Popa, Peter A. R. Ade, S. Osborne, E. Hivon, Nicola Vittorio, Julian Borrill, Daniel J. Mortlock, J. Aumont, Torsten A. Enßlin, Hannu Kurki-Suonio, Sophie Henrot-Versille, B. Van Tent, D. J. Marshall, J.-F. Sygnet, F. Cuttaia, A. J. Banday, Charles R. Lawrence, Matthieu Roman, Olivier Forni, W. C. Jones, Alain Benoit, Michael P. Hobson, I. Flores-Cacho, Lloyd Knox, David L. Clements, Jean-Loup Puget, T. Jagemann, W. A. Holmes, Karim Benabed, O. Perdereau, Klaus Dolag, Alessandro Melchiorri, Jose M. Diego, Michael L. Brown, Y. Giraud-Héraud, R. A. Burenin, Luca Valenziano, I. D. Novikov, Paolo Natoli, R. Leonardi, C. Rosset, F. K. Hansen, Marc-Antoine Miville-Deschênes, B. Rusholme, Herve Dole, D. L. Harrison, Andrew R. Liddle, S. Donzelli, Sabino Matarrese, F. Piacentini, I. Ristorcelli, Subhasish Mitra, M. Frommert, Pavel Naselsky, R. J. Davis, Giorgio Savini, Jean-Baptiste Melin, A. Coulais, A. Catalano, Marian Douspis, Anna Bonaldi, Mika Juvela, Andrea Zacchei, Martin Reinecke, I. F. Bikmaev, S. Ricciardi, Rashmikant V. Sudiwala, Michele Maris, Sergio Colafrancesco, J. A. Tauber, Niraj Welikala, Jose Alberto Rubino-Martin, Jussi Varis, William T. Reach, P. Carvalho, E. Franceschi, R. B. Barreiro, R. Piffaretti, J.-M. Lamarre, D. Sutton, T. Poutanen, P. de Bernardis, Hervé Bourdin, G. Hurier, G. W. Pratt, Jörg P. Rachen, Hans Böhringer, Gianluca Morgante, Simon D. M. White, Fernando Atrio-Barandela, A. Mennella, Nabila Aghanim, George F. Smoot, Luigi Danese, J. González-Nuevo, Matthieu Tristram, G. de Zotti, Theodore Kisner, G. Luzzi, Pasquale Mazzotta, Fabio Pasian, R. A. Sunyaev, Hans Ulrik Nørgaard-Nielsen, Silvia Masi, F. Pajot, Anne Lähteenmäki, F.-X. Désert, R. Bhatia, P. Vielva, J. Démoclès, S. R. Hildebrandt, D. Herranz, M. Le Jeune, R. Kneissl, G. Patanchon, Marcella Massardi, Jean-Luc Starck, A.-S. Suur-Uski, S. Galeotta, Martin White, Douglas Scott, Ken Ganga, Krzysztof M. Gorski, P. R. Christensen, B. D. Wandelt, J. F. Macías-Pérez, E. Martínez-González, N. Mandolesi, G. de Gasperis, Stéphane Colombi, Pablo Fosalba, Andrew H. Jaffe, Irek Khamitov, M. Piat, J. Knoche, Rafael Rebolo, E. Battaner, Etienne Pointecouteau, Graca Rocha, M. Tomasi, A. Da Silva, F. R. Bouchet, F. Villa, Carlo Burigana, Marco Bersanelli, L. Mendes, M. Rossetti, Stéphane Plaszczynski, L. Perotto, Jussi Tuovinen, Jérôme Bobin, Davide Maino, A. Chamballu, Simona Mei, Jacques Delabrouille, J. A. Murphy, Simon Prunet, Amedeo Balbi, Fabio Finelli, T. R. Jaffe, James G. Bartlett, Martin Kunz, Mathieu Remazeilles, Lawrence A. Wade, Håkon Dahle, O. Doré, Andrea Zonca, A. Gregorio, P. B. Lilje, D. Yvon, L. P. L. Colombo, Dmitry Novikov, Daniela Paoletti, Dipak Munshi, and George Efstathiou
- Subjects
Surface (mathematics) ,cosmology: observations ,galaxies: clusters: general ,galaxies: clusters: intracluster medium ,submillimeter: general ,X-rays: general ,errata, addenda ,Astrophysics ,System of linear equations ,01 natural sciences ,Matrix (mathematics) ,Settore FIS/05 - Astronomia e Astrofisica ,Position (vector) ,errata: addenda ,0103 physical sciences ,010303 astronomy & astrophysics ,Physics ,submillimiter: general ,cosmology: observations, galaxies: clusters: general, galaxies: clusters: intracluster medium, submillimeter: general, X-rays: general, errata, addenda ,010308 nuclear & particles physics ,Scattering ,Plane (geometry) ,Cosmology: observations ,Galaxies: clusters: intracluster medium ,X-Rays: General ,Astronomy and Astrophysics ,Transformation (function) ,Space and Planetary Science ,addenda ,errata ,Gaussian optics - Abstract
We have developed an approximate technique, based on the principles of multi-mode Gaussian optics, for studying the behaviour of shaped off-axis mirrors. We describe a mirror as an inclined phase-transforming plane, where the phase transformation across the plane is determined by the depth of the mirror as a function of position. The scattering matrix is calculated in the usual way by evaluating the overlap integrals over some surface for which the amplitudes and phases of the incoming and outgoing fields are known; because, however, the modes are not orthogonal over the surface of interest, a system of linear equations has to be solved. We demonstrate the “thin-mirror” technique by studying the behaviour of paraboloidal and ellipsoidal mirros, and we show how the performance of measured and approximate surfaces can be assessed.
- Published
- 2013
40. Immunobased elution assay for process control
- Author
-
Thomas Scheper, Martin Reinecke, Kerstin Beyer, and Wolfgang Noe
- Subjects
Chromatography ,biology ,medicine.diagnostic_test ,Chemistry ,T-plasminogen activator ,Elution ,medicine.drug_class ,Monoclonal antibody ,Biochemistry ,Analytical Chemistry ,Cartridge ,Polyclonal antibodies ,Immunoassay ,Personal computer ,biology.protein ,medicine ,Environmental Chemistry ,Plasminogen activator ,Spectroscopy - Abstract
A flow-injection analysis (FIA) system with an integrated immunobased elution assay was developed for the on-line determination of biotechnological products. This paper describes its application for tissue-type plasminogen activator (rt-PA) and recombinant antithrombin III (r-AT III). The short response time of the immunochemical system allows its use for measurement and control of biotechnological production processes. Immobilized polyclonal antibodies were found to bind rt-PA in the cartridge better than monoclonal antibodies. Sepharose-4B was found to be the best support for the antibodies. The cartridge with immobilized antibodies can be prepared easily, has a high reliability and is stable for more than two weeks. The total time necessary for one assay cycle is in the range of 6–8 min, depending on the conditions. The whole procedure is controlled by a personal computer. The FIA system can be used for automatic analysis as a stand-alone version with a frequency of 7 samples per hour. The standard operation range is from 500 μg/ml down to 2 μg/ml. A comparison with the conventional microtiter ELISA assay shows that this assay can be applied for an accurate determination of undiluted cultivation samples.
- Published
- 1995
- Full Text
- View/download PDF
41. Impact of beam deconvolution on noise properties in CMB measurements: Application toPlanckLFI
- Author
-
E. Keihänen, V. Lindholm, Martin Reinecke, A.-S. Suur-Uski, and K. Kiiveri
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Covariance matrix ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,White noise ,Astrophysics ,Covariance ,Residual ,01 natural sciences ,Computational physics ,symbols.namesake ,Noise ,Space and Planetary Science ,0103 physical sciences ,symbols ,Deconvolution ,Planck ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an analysis of the effects of beam deconvolution on noise properties in CMB measurements. The analysis is built around the artDeco beam deconvolver code. We derive a low-resolution noise covariance matrix that describes the residual noise in deconvolution products, both in harmonic and pixel space. The matrix models the residual correlated noise that remains in time-ordered data after destriping, and the effect of deconvolution on it. To validate the results, we generate noise simulations that mimic the data from the Planck LFI instrument. A $\chi^2$ test for the full 70 GHz covariance in multipole range $\ell=0-50$ yields a mean reduced $\chi^2$ of 1.0037. We compare two destriping options, full and independent destriping, when deconvolving subsets of available data. Full destriping leaves substantially less residual noise, but leaves data sets intercorrelated. We derive also a white noise covariance matrix that provides an approximation of the full noise at high multipoles, and study the properties on high-resolution noise in pixel space through simulations., Comment: 22 pages, 25 figures
- Published
- 2016
- Full Text
- View/download PDF
42. Renewable resources, 2. Poly-Diels-Alder additions with disorboylamides as bisdienes and a dimaleoylamide as bisdienophile
- Author
-
Martin Reinecke and Helmut Ritter
- Subjects
Polymers and Plastics ,Organic Chemistry ,Condensed Matter Physics ,Oligomer ,Cycloaddition ,chemistry.chemical_compound ,chemistry ,Polymer chemistry ,Materials Chemistry ,Diels alder ,Organic chemistry ,Molecule ,Physical and Theoretical Chemistry ,Renewable resource - Abstract
The poly-Diels-Alder reactions between the disorboylamides 1 and 7 and the dimaleoylamide 9, yielding the oligomers 13 and 14, are described. The applicability of the maleoyl and the sorboyl system for poly-Diels-Alder additions is demonstrated in a low-molecular-weight model cycloaddition between the monodiene 10 and the monodienophile 11. All presented compounds contain a high amount of molecules derived from renewable resources.
- Published
- 1994
- Full Text
- View/download PDF
43. Funding of rare disease research in Germany: a pilot study
- Author
-
Martin Reinecke, Jörg Schmidtke, and Kathrin Rommel
- Subjects
medicine.medical_specialty ,Epidemiology ,business.industry ,Public health ,Public Health, Environmental and Occupational Health ,Alternative medicine ,Medical school ,Case Report ,Rare cancer ,language.human_language ,German ,Family medicine ,medicine ,language ,business ,Genetics (clinical) ,health care economics and organizations ,Rare disease - Abstract
Collectively, rare diseases are of major public health impact, but research on rare diseases poses major challenges. There are many deterrents for researchers to initiate rare disease projects and for funding agencies to grant support. It can be expected that rare disease research is underfunded, but no systematic assessments on rare disease funding practices were found in the literature. The recipients of grants for rare disease research were identified through the research reports of four German medical faculties, and data on external funding of individual projects were obtained through questionnaires and database mining. Response rates to questionnaires were unsatisfactory. The analysis was thus concentrated on a single faculty, Hannover Medical School, for which 100% data ascertainment was obtained. External funding for rare disease research at this faculty comprises 5.8% of all external research funding in 2006, and 3.8% in 2007. As the first study of this kind, this survey indicates enormous deficits and inequities in rare disease research.
- Published
- 2011
44. [Untitled]
- Author
-
Helmut Ritter and Martin Reinecke
- Subjects
chemistry.chemical_compound ,chemistry ,Oligoester ,Polymer chemistry ,Diels alder ,Maleic anhydride ,Molecule ,Organic chemistry ,Chemical modification ,Branching (polymer chemistry) ,Sorbic acid ,Renewable resource - Abstract
The unsaturated polyester 1 prepared from maleic anhydride and 1,4:3,6-dianhydro-D-glucitol was modified with the sorbic acid amides and furfurylamides 2, 3, 6, 7 and 8 via Diels-Alder (DA) reactions. The cycloadditions with the monodienes 2 and 3, the bisdiene 6 and the trisdiene 7 led to branched derivatives, whereas the DA reaction with the tetradiene 8 yielded a crosslinked material. All compounds contain a high amount of molecules obtained from renewable resources.
- Published
- 1993
- Full Text
- View/download PDF
45. Efficient cosmological parameter sampling using sparse grids
- Author
-
Hans-Joachim Bungartz, T. Riller, Martin Reinecke, Torsten A. Ensslin, Mona Frommert, and Dirk Pflueger
- Subjects
Physics ,Polynomial ,Artificial neural network ,Space and Planetary Science ,Estimation theory ,Sparse grid ,Sampling (statistics) ,Astronomy and Astrophysics ,Astrophysics ,Parameter space ,Algorithm ,Polynomial interpolation ,Interpolation - Abstract
We present a novel method to significantly speed up cosmological parameter sampling. The method relies on constructing an interpolation of the CMB-log-likelihood based on sparse grids, which is used as a shortcut for the likelihood-evaluation. We obtain excellent results over a large region in parameter space, comprising about 25 log-likelihoods around the peak, and we reproduce the one-dimensional projections of the likelihood almost perfectly. In speed and accuracy, our technique is competitive to existing approaches to accelerate parameter estimation based on polynomial interpolation or neural networks, while having some advantages over them. In our method, there is no danger of creating unphysical wiggles as it can be the case for polynomial fits of a high degree. Furthermore, we do not require a long training time as for neural networks, but the construction of the interpolation is determined by the time it takes to evaluate the likelihood at the sampling points, which can be parallelised to an arbitrary degree. Our approach is completely general, and it can adaptively exploit the properties of the underlying function. We can thus apply it to any problem where an accurate interpolation of a function is needed.
- Published
- 2010
- Full Text
- View/download PDF
46. Libpsht - algorithms for efficient spherical harmonic transforms
- Author
-
Martin Reinecke
- Subjects
Physics ,Multi-core processor ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Fortran ,business.industry ,HEALPix ,Spherical harmonics ,CPU time ,FOS: Physical sciences ,Astronomy and Astrophysics ,Python (programming language) ,Software portability ,Software ,Space and Planetary Science ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,computer ,Algorithm ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Cosmology and Nongalactic Astrophysics ,computer.programming_language - Abstract
Libpsht (or "library for Performant Spherical Harmonic Transforms") is a collection of algorithms for efficient conversion between spatial-domain and spectral-domain representations of data defined on the sphere. The package supports transforms of scalars as well as spin-1 and spin-2 quantities, and can be used for a wide range of pixelisations (including HEALPix, GLESP and ECP). It will take advantage of hardware features like multiple processor cores and floating-point vector operations, if available. Even without this additional acceleration, the employed algorithms are among the most efficient (in terms of CPU time as well as memory consumption) currently being used in the astronomical community. The library is written in strictly standard-conforming C90, ensuring portability to many different hard- and software platforms, and allowing straightforward integration with codes written in various programming languages like C, C++, Fortran, Python etc. Libpsht is distributed under the terms of the GNU General Public License (GPL) version 2 and can be downloaded from http://sourceforge.net/projects/libpsht., Comment: 9 pages, 8 figures, accepted by A&A
- Published
- 2010
- Full Text
- View/download PDF
47. EMG Analysis of the Late Exteroceptive Suppression Period of Temporal Muscle Activity in Episodic and Chronic Tension-Type Headaches
- Author
-
Hans-Dieter Langohr, Thomas-Martin Wallasch, and Martin Reinecke
- Subjects
Adult ,Male ,Adolescent ,Period (gene) ,Temporal Muscle ,Electromyography ,Temporal muscle ,Tension-Type Headaches ,Occlusion ,Humans ,Medicine ,In patient ,Aged ,Trigeminal nerve stimulation ,medicine.diagnostic_test ,business.industry ,Headache ,General Medicine ,Middle Aged ,medicine.disease ,Migraine ,Anesthesia ,Chronic Disease ,Female ,Neurology (clinical) ,business - Abstract
EMG analysis of the late exteroceptive suppression period of the temporal muscle activity is discussed as comparative methodology in the assessment of patients suffering from chronic tension-type headache and from migraineurs (1, 2). After electrical perioral trigeminal nerve stimulation during maximum voluntary jaw occlusion, early (ES1) and late (ES2) exteroceptive suppression periods can be registered above the temples using surface EMG recordings (3–6). In patients suffering from chronic tension-type headache the duration of the late suppression period is shortened ( p < 0.001) compared to migraineurs or controls. However, patients suffering from episodic tension-type headache display late suppression periods of temporal muscle activity of differing lengths.
- Published
- 1991
- Full Text
- View/download PDF
48. Modeling turbulent nuclear flames in Type Ia supernovae
- Author
-
Jens C. Niemeyer, Wolfgang Hillebrandt, and Martin Reinecke
- Subjects
Physics ,Supernova ,Classical mechanics ,Level set method ,Turbulent combustion ,Turbulence ,Mechanics ,Type (model theory) - Abstract
In this paper we present the application of the so-called level set method as a flame model in simulations of Type Ia supernovae. After giving a short introduction and motivation for our choice, we discuss two different implementations and preliminary results of test calculations and SN Ia explosions.
- Published
- 2008
- Full Text
- View/download PDF
49. Small Steps Toward Realistic Explosion Models of Type Ia Supernovae
- Author
-
Claudia Travaglio, Martin Reinecke, Wolfgang Hillebrandt, and Jens C. Niemeyer
- Subjects
Physics ,Supernova ,Astronomy ,Astrophysics ,Type (model theory) - Published
- 2006
- Full Text
- View/download PDF
50. Simulations of Turbulent Thermonuclear Burning in Type Ia Supernovae
- Author
-
Claudia Travaglio, Jens C. Niemeyer, Wolfgang Hillebrandt, Martin Reinecke, Wolfram Schmidt, and Friedrich K. Röpke
- Subjects
Physics ,Thermonuclear fusion ,COSMIC cancer database ,Turbulence ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Cosmic distance ladder ,Astronomy ,White dwarf ,Astrophysics ,Type (model theory) ,Universe ,Supernova ,media_common - Abstract
Type Ia supernovae, i.e. stellar explosions which do not have hydrogen in their spectra, but intermediate-mass elements such as silicon, calcium, cobalt, and iron, have recently received considerable attention because it appears that they can be used as ”standard candles” to measure cosmic distances out to billions of light years away from us. Observations of type Ia supernovae seem to indicate that we are living in a universe that started to accelerate its expansion when it was about half its present age. These conclusions rest primarily on phenomenological models which, however, lack proper theoretical understanding, mainly because the explosion process, initiated by thermonuclear fusion of carbon and oxygen into heavier elements, is difficult to simulate even on supercomputers.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.