Darren D. Thomson, Xavier Noblin, Charles Puerner, Sébastien Schaub, Robert A. Arkowitz, Nino Kukhaleishvili, Martine Bassilana, Agnese Seminara, Institut de Biologie Valrose (IBV), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Institut de Physique de Nice (INPHYNI), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), This work was supported by the CNRS, INSERM, Université Nice-Sophia Antipolis, Université Côte d’Azur and ANR (ANR-15-IDEX-01, ANR-11-LABX-0028-01, and ANR-16-CE13-0010-01), and EU H2020 (MSCA-ITN- 2015-675407) grants and the Platforms Resources in Imaging and Scientific Microscopy facility (PRISM) and Microscopy Imaging Côte d’Azur (MICA)., ANR-11-LABX-0028,SIGNALIFE,Réseau d'Innovation sur les Voies de Signalisation en Sciences de la Vie(2011), ANR-16-CE13-0010,FORFUNIGO,Forces et Croissance fongique Invasive Filamenteuse(2016), European Project: 675407,H2020,H2020-MSCA-ITN-2015,PolarNet(2015), Bodescot, Myriam, Centres d'excellences - Réseau d'Innovation sur les Voies de Signalisation en Sciences de la Vie - - SIGNALIFE2011 - ANR-11-LABX-0028 - LABX - VALID, Forces et Croissance fongique Invasive Filamenteuse - - FORFUNIGO2016 - ANR-16-CE13-0010 - AAPG2016 - VALID, Principles of Polarity – Integrating genetic, biophysical and computational approaches to understand cell and tissue polarity - PolarNet - - H20202015-10-01 - 2019-09-30 - 675407 - VALID, Université Côte d'Azur (UCA), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), and Seminara, Agnese
Background The initial step of a number of human or plant fungal infections requires active penetration of host tissue. For example, active penetration of intestinal epithelia by Candida albicans is critical for dissemination from the gut into the bloodstream. However, little is known about how this fungal pathogen copes with resistive forces upon host cell invasion. Results In the present study, we have used PDMS micro-fabrication to probe the ability of filamentous C. albicans cells to penetrate and grow invasively in substrates of different stiffness. We show that there is a threshold for penetration that corresponds to a stiffness of ~ 200 kPa and that invasive growth within a stiff substrate is characterized by dramatic filament buckling, along with a stiffness-dependent decrease in extension rate. We observed a striking alteration in cell morphology, i.e., reduced cell compartment length and increased diameter during invasive growth, that is not due to depolarization of active Cdc42, but rather occurs at a substantial distance from the site of growth as a result of mechanical compression. Conclusions Our data reveal that in response to this compression, active Cdc42 levels are increased at the apex, whereas active Rho1 becomes depolarized, similar to that observed in membrane protrusions. Our results show that cell growth and morphology are altered during invasive growth, suggesting stiffness dictates the host cells that C. albicans can penetrate.