1. Molecular MR Imaging of Renal Fibrogenesis in Mice.
- Author
-
Chen YC, Waghorn PA, Rosales IA, Arora G, Erstad DJ, Rotile NJ, Jones CM, Ferreira DS, Wei L, Martinez RVP, Schlerman FJ, Wellen J, Fuchs BC, Colvin RB, Ay I, and Caravan P
- Subjects
- Mice, Animals, Fibrosis, Magnetic Resonance Imaging methods, Disease Models, Animal, Kidney diagnostic imaging, Kidney pathology, Nephritis, Hereditary pathology
- Abstract
Background: In most CKDs, lysyl oxidase oxidation of collagen forms allysine side chains, which then form stable crosslinks. We hypothesized that MRI with the allysine-targeted probe Gd-oxyamine (OA) could be used to measure this process and noninvasively detect renal fibrosis., Methods: Two mouse models were used: hereditary nephritis in Col4a3-deficient mice (Alport model) and a glomerulonephritis model, nephrotoxic nephritis (NTN). MRI measured the difference in kidney relaxation rate, ΔR1, after intravenous Gd-OA administration. Renal tissue was collected for biochemical and histological analysis., Results: ΔR1 was increased in the renal cortex of NTN mice and in both the cortex and the medulla of Alport mice. Ex vivo tissue analyses showed increased collagen and Gd-OA levels in fibrotic renal tissues and a high correlation between tissue collagen and ΔR1., Conclusions: Magnetic resonance imaging using Gd-OA is potentially a valuable tool for detecting and staging renal fibrogenesis., (Copyright © 2023 by the American Society of Nephrology.)
- Published
- 2023
- Full Text
- View/download PDF