40 results on '"Maruyama SR"'
Search Results
2. Vaccines for the Leishmaniases: Proposals for a Research Agenda
- Author
-
Louzir, H, Nery Costa, CH, Peters, NC, Maruyama, SR, de Brito, EC, Ferreira de Miranda Santos, IK, Louzir, H, Nery Costa, CH, Peters, NC, Maruyama, SR, de Brito, EC, and Ferreira de Miranda Santos, IK
- Published
- 2011
3. Spotlight on Leishmaniasis Research: Insights from the Special Issue "Emerging Topics in Leishmaniasis Research".
- Author
-
Maruyama SR
- Abstract
Leishmaniases, caused by dixenous trypanosomatids from the Leishmaniinae subfamily (over 20 Leishmania species), manifest in three primary clinical forms: visceral (VL), cutaneous (CL), and mucocutaneous (MCL) [...].
- Published
- 2024
- Full Text
- View/download PDF
4. Leukocyte dysfunction and reduced CTLA-4 expression are associated with perianal Crohn's disease.
- Author
-
Duarte-Silva M, Parra RS, Feitosa MR, Nardini V, Maruyama SR, da Rocha JJR, Feres O, and de Barros Cardoso CR
- Subjects
- Humans, Male, Female, Adult, Cross-Sectional Studies, Middle Aged, Leukocytes, Mononuclear immunology, Leukocytes, Mononuclear metabolism, Interleukin-6 blood, Lipopolysaccharides immunology, Cytokines blood, Cytokines metabolism, Tumor Necrosis Factor-alpha blood, Tumor Necrosis Factor-alpha metabolism, Forkhead Transcription Factors metabolism, CTLA-4 Antigen metabolism, Crohn Disease immunology, Crohn Disease blood
- Abstract
Although perianal Crohn's disease (PCD) is highly associated with the exacerbated inflammation, the molecular basis and immunological signature that distinguish patients who present a history of perianal lesions are still unclear. This paper aims to define immunological characteristics related to PCD. In this cross-sectional observational study, we enrolled 20 healthy controls and 39 CD patients. Blood samples were obtained for the detection of plasma cytokines and lipopolysaccharides (LPS). Peripheral blood mononuclear cells (PBMCs) were phenotyped by flow cytometry. Leukocytes were stimulated with LPS or anti-CD3/anti-CD28 antibodies. Our results show that CD patients had augmented plasma interleukin (IL)-6 and LPS. However, their PBMC was characterized by decreased IL-6 production, while patients with a history of PCD produced higher IL-6, IL-8, and interferon-γ, along with decreased tumor necrosis factor alpha (TNF). CD patients had augmented FoxP3 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulatory markers, though the PCD subjects presented a significant reduction in CTLA-4 expression. CTLA-4 as well as IL-6 and TNF responses were able to distinguish the PCD patients from those who did not present perianal complications. In conclusion, IL-6, TNF, and CTLA-4 exhibit a distinct expression pattern in CD patients with a history of PCD, regardless of disease activity. These findings clarify some mechanisms involved in the development of the perianal manifestations and may have a great impact on the disease management., (© The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Immunology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
5. Divergent androgenic modulation of SARS-CoV-2 infection cooperates with dysregulated immune response to dictate worse COVID-19 outcomes in men.
- Author
-
Duarte-Silva M, Oliveira CNS, Fuzo C, Silva-Neto PV, Toro DM, Pimentel VE, Pérez MM, Fraga-Silva TFC, Carvalho JCS, Neto FMS, Júnior RBM, Arruda E, Vilar FC, Degiovani AM, Ostini FM, Feitosa MR, Parra RS, Gaspar GG, Rocha JJR, Feres O, Fernandes APM, Maruyama SR, Russo EMS, Bonato VLD, Santos IKFM, Sorgi CA, Dias-Baruffi M, Faccioli LH, and Cardoso CRB
- Abstract
Background: Sex-determined differences are rarely addressed in the management of diseases, despite well-known contrasting outcomes between female and male patients. In COVID-19 there is a remarkable disparity, with higher rates of mortality and more severe acute disease in men compared to women, who are mostly affected by long COVID-19. Furthermore, whether androgens play a protective or detrimental role in COVID-19 is still a matter of debate. Hence, the adequate management of the disease, especially regarding men presenting acute disease aggravation, still needs important data to elucidate the interplay between sex hormones and host immune responses that drive the worse evolution in male patients., Methods: A cohort of 92 controls and 198 non-severe and severe COVID-19 patients, from both sexes, was assessed for clinical outcomes, plasma steroids, gonadotropins, sex hormone binding globulin (SHBG) and immune mediators, before vaccination. These data were correlated with the global gene expression of blood leukocytes. The androgen receptor (AR) signaling pathway was investigated by transcriptomics and tracheal aspirate was obtained from severe patients for SARS-COV-2 quantification in the respiratory tract. The interplay among clinical, endocrine and immunological data deciphered the sex differences in COVID-19. Importantly, statistical analyses, using 95% confidence interval, considered confounding factors such as age and comorbidities, to definitely parse the role of androgens in the disease outcome., Results: There were notable contrasting levels of testosterone and dihydrotestosterone (DHT) throughout the disease course in male but not female patients. Inflammatory mediators presented significant negative correlations with testosterone, which was partially dependent on age and diabetes in men. Male subjects with severe COVID-19 had a significant up regulation of the AR signaling pathway, including modulation of TMPRSS2 and SRD5A1 genes, which are related to the viral infection and DHT production. Indeed, men had a higher viral load in the tracheal aspirate and levels of DHT were associated with increased relative risk of death. In contrast, the testosterone hormone, which was notably reduced in severe disease, was significantly related with susceptibility to COVID-19 worsening in male patients. Secondary hypogonadism was ruled out in the male severe COVID-19 subjects, as FSH, LH, and SHBG levels were not significantly altered. Instead, these subjects tended to have increased gonadotropin levels. Most interestingly, in this study we identified, for the first time, combined sets of clinical and immunoendocrine parameters that together predicted progression from non-severe to severe COVID-19 in men. One of the limitations of our study was the low or undetectable levels of DHT in many patients. Then, the evaluation of enzymes related to biosynthesis and signaling by androgens was mandatory and reiterated our findings., Conclusions: These original results unraveled the disease immunoendocrine regulation, despite vaccination or comorbidities and pointed to the fundamental divergent role of the androgens testosterone and DHT in the determination of COVID-19 outcomes in men. Therefore, sex-specific management of the dysregulated responses, treatments or public health measures should be considered for the control of COVID-19 pandemic., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
6. Parasite Detection in Visceral Leishmaniasis Samples by Dye-Based qPCR Using New Gene Targets of Leishmania infantum and Crithidia .
- Author
-
Takamiya NT, Rogerio LA, Torres C, Leonel JAF, Vioti G, de Sousa Oliveira TMF, Valeriano KC, Porcino GN, de Miranda Santos IKF, Costa CHN, Costa DL, Ferreira TS, Gurgel-Gonçalves R, da Silva JS, Teixeira FR, De Almeida RP, Ribeiro JMC, and Maruyama SR
- Abstract
Visceral leishmaniasis (VL) is a neglected disease considered a serious public health problem, especially in endemic countries. Several studies have discovered monoxenous trypanosomatids ( Leptomonas and Crithidia ) in patients with VL. In different situations of leishmaniasis, investigations have examined cases of co-infection between Leishmania spp. and Crithidia spp. These coinfections have been observed in a wide range of vertebrate hosts, indicating that they are not rare. Diagnostic techniques require improvements and more robust tools to accurately detect the causative agent of VL. This study aimed to develop a real-time quantitative dye-based PCR (qPCR) assay capable of distinguishing Leishmania infantum from Crithidia -related species and to estimate the parasite load in samples of VL from humans and animals. The primer LinJ31_2420 targets an exclusive phosphatase of L. infantum ; the primer Catalase_LVH60-12060_1F targets the catalase gene of Crithidia . Therefore, primers were designed to detect L. infantum and Crithidia sp. LVH60A (a novel trypanosomatid isolated from VL patients in Brazil), in samples related to VL. These primers were considered species-specific, based on sequence analysis using genome data retrieved from the TriTryp database and the genome assembling of Crithidia sp. LVH60A strain, in addition to experimental and clinical data presented herein. This novel qPCR assay was highly accurate in identifying and quantifying L. infantum and Crithidia sp. LVH60A in samples obtained experimentally (in vitro and in vivo) or collected from hosts (humans, dogs, cats, and vectors). Importantly, the screening of 62 cultured isolates from VL patients using these primers surprisingly revealed that 51 parasite cultures were PCR+ for Crithidia sp. In addition, qPCR assays identified the co-infection of L. infantum with Crithidia sp. LVH60A in two new VL cases in Brazil, confirming the suspicion of co-infection in a previously reported case of fatal VL. We believe that the species-specific genes targeted in this study can be helpful for the molecular diagnosis of VL, as well as for elucidating suspected co-infections with monoxenous-like trypanosomatids, which is a neglected fact of a neglected disease.
- Published
- 2023
- Full Text
- View/download PDF
7. Co-infection of Leishmania infantum and a Crithidia-related species in a case of refractory relapsed visceral leishmaniasis with non-ulcerated cutaneous manifestation in Brazil.
- Author
-
Rogerio LA, Takahashi TY, Cardoso L, Takamiya NT, de Melo EV, de Jesus AR, de Oliveira FA, Forrester S, Jeffares DC, da Silva JS, Ribeiro JM, Almeida RP, and Maruyama SR
- Subjects
- Child, Humans, Male, Brazil epidemiology, Crithidia, Leishmaniasis, Visceral complications, Leishmaniasis, Visceral diagnosis, Leishmaniasis, Visceral drug therapy, Leishmania infantum genetics, Coinfection diagnosis, Leishmaniasis, Cutaneous parasitology
- Abstract
We report a refractory and relapsed visceral leishmaniasis case in a male child patient followed from 2016 to 2020, whose clinical isolates from multiple relapses were analyzed at the genome level. To the best of our knowledge, it is the first report that both visceral leishmaniasis and non-ulcerated cutaneous leishmaniasis have concomitantly manifested in the same patient. Importantly, sequence analysis revealed that the patient was co-infected with Leishmania infantum and a Crithidia-related parasite, which was previously found in a fatal case of visceral leishmaniasis from the same endemic region., Competing Interests: Declarations of competing interest The authors have no competing interests to declare., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
8. The turning point of COVID-19 severity is associated with a unique circulating neutrophil gene signature.
- Author
-
Fuzo CA, Fraga-Silva TFC, Maruyama SR, Bastos VAF, Rogerio LA, Takamiya NT, da Silva-Neto PV, Pimentel VE, Toro DM, Pérez MM, de Carvalho JCS, Carmona-Garcia I, Oliveira CNS, Degiovani AM, Ostini FM, Constant LF, de Amorim AP, Vilar FC, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Gaspar GG, Viana AL, Fernandes APM, Santos IKFM, Russo EMS, Cardoso CRB, Sorgi CA, Faccioli LH, Bonato VLD, and Dias-Baruffi M
- Subjects
- Humans, Neutrophils, Transcriptome, Biomarkers, COVID-19 genetics
- Abstract
COVID-19 has a broad spectrum of clinical manifestations associated with the host immune response heterogeneity. Despite the advances in COVID-19 research, it is still crucial to seek a panel of molecular markers that enable accurate stratification of COVID-19 patients. Here, we performed a study that combined analysis of blood transcriptome, demographic data, clinical aspects and laboratory findings from 66 participants classified into different degrees of COVID-19 severity and healthy subjects. We identified a perturbation in blood-leukocyte transcriptional profile associated with COVID-19 aggravation, which was mainly related to processes that disfavoured lymphocyte activation and favoured neutrophil activation. This transcriptional profile stratified patients according to COVID-19 severity. Hence, it enabled identification of a turning point in transcriptional dynamics that distinguished disease outcomes and non-hospitalized from hospitalized moderate patients. Central genes of this unique neutrophil signature were S100A9, ANXA3, CEACAM6, VNN1, OLFM4, IL1R2, TCN1 and CD177. Our study indicates the molecular changes that are linked with the differing clinical aspects presented by humans when suffering from COVID-19, which involve neutrophil activation., (© 2023 John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
9. The Interplay among Glucocorticoid Therapy, Platelet-Activating Factor and Endocannabinoid Release Influences the Inflammatory Response to COVID-19.
- Author
-
de Carvalho JCS, da Silva-Neto PV, Toro DM, Fuzo CA, Nardini V, Pimentel VE, Pérez MM, Fraga-Silva TFC, Oliveira CNS, Degiovani AM, Ostini FM, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Vilar FC, Gaspar GG, Santos IKFM, Fernandes APM, Maruyama SR, Russo EMS, Bonato VLD, Cardoso CRB, Dias-Baruffi M, Faccioli LH, Sorgi CA, and On Behalf Of The ImmunoCovid Study Group
- Subjects
- Humans, Cross-Sectional Studies, Endocannabinoids, Glucocorticoids therapeutic use, Platelet Activating Factor, COVID-19
- Abstract
COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients ( n = 200) and healthy controls ( n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.
- Published
- 2023
- Full Text
- View/download PDF
10. Dataset of dual RNA-seq mapping in visceral leishmaniasis: Inquiry on parasite transcripts in human blood transcriptome upon Leishmania infantum infection.
- Author
-
Gomes E, Rogerio LA, Takamiya NT, Torres C, da Silva JS, Almeida RP, and Maruyama SR
- Abstract
This dataset is related to the article "Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection" by S.R. Maruyama, C.A. Fuzo, A.E.R. Oliveira, L.A. Rogerio, N.T. Takamiya, G. Pessenda, E.V. de Melo, A.M. da Silva, A.R. Jesus, V. Carregaro, H.I. Nakaya, R.P. Almeida and J.S. da Silva. Frontiers in Immunology, 2022. Through the reuse of raw sequencing data, we generated original dataset by performing a dual RNA-seq mapping procedure to survey the parasite transcripts found in RNA-seq samples from blood of visceral leishmaniasis patients. Diseased patients with active infection displayed the highest number of reads mapped to L. infantum genome. Even after six months later of the treatment, when the patients were considered cured, parasite reads were still detected. Parasite reads were also detected in asymptomatic individuals. The original dual RNA-seq alignment read count data provided here can be further explored to evaluate either host or parasite transcripts., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
11. Acetylcholine, Fatty Acids, and Lipid Mediators Are Linked to COVID-19 Severity.
- Author
-
Pérez MM, Pimentel VE, Fuzo CA, da Silva-Neto PV, Toro DM, Fraga-Silva TFC, Gardinassi LG, Oliveira CNS, Souza COS, Torre-Neto NT, de Carvalho JCS, De Leo TC, Nardini V, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Vilar FC, Gaspar GG, Constant LF, Ostini FM, Degiovani AM, Amorim AP, Viana AL, Fernandes APM, Maruyama SR, Russo EMS, Santos IKFM, Bonato VLD, Cardoso CRB, Sorgi CA, Dias-Baruffi M, and Faccioli LH
- Subjects
- Arachidonic Acid, Arachidonic Acids pharmacology, Fatty Acids, Glucocorticoids, Humans, SARS-CoV-2, Acetylcholine, COVID-19
- Abstract
Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy - 6 E, 8 Z, 11 Z, 14 Z -eicosatetraenoic acid, 11-hydroxy-5 Z, 8 Z, 12 E, 14 Z- eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE
2 , thromboxane B2 , 12-oxo - 5 Z, 8 Z, 10 E, 14 Z- eicosatetraenoic acid, and 6- trans -leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1β, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.- Published
- 2022
- Full Text
- View/download PDF
12. Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress.
- Author
-
da Silva-Neto PV, do Valle VB, Fuzo CA, Fernandes TM, Toro DM, Fraga-Silva TFC, Basile PA, de Carvalho JCS, Pimentel VE, Pérez MM, Oliveira CNS, Rodrigues LC, Bastos VAF, Tella SOC, Martins RB, Degiovani AM, Ostini FM, Feitosa MR, Parra RS, Vilar FC, Gaspar GG, Rocha JJRD, Feres O, Arruda E, Maruyama SR, Russo EMS, Viana AL, Santos IKFM, Bonato VLD, Cardoso CRB, Tanus-Santos JE, Donadi EA, Faccioli LH, Dias-Baruffi M, Fernandes APM, Gerlach RF, Sorgi CA, and On Behalf Of The Immunocovid Study Group
- Subjects
- HLA-G Antigens, Humans, Immunity, Matrix Metalloproteinase 8 metabolism, Oxidative Stress, SARS-CoV-2, COVID-19, Matrix Metalloproteinase 2 metabolism
- Abstract
Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.
- Published
- 2022
- Full Text
- View/download PDF
13. Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection.
- Author
-
Maruyama SR, Fuzo CA, Oliveira AER, Rogerio LA, Takamiya NT, Pessenda G, de Melo EV, da Silva AM, Jesus AR, Carregaro V, Nakaya HI, Almeida RP, and da Silva JS
- Subjects
- Humans, RNA, Messenger genetics, Transcriptome, Leishmania infantum genetics, Leishmaniasis, Leishmaniasis, Visceral genetics, RNA, Long Noncoding genetics
- Abstract
Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood transcriptomics allows us to assess the molecular mechanisms involved in the immunopathological processes of several clinical conditions, namely, parasitic diseases. Here, we performed mRNA sequencing of peripheral blood from patients with visceral leishmaniasis during the active phase of the disease and six months after successful treatment, when the patients were considered clinically cured. To strengthen the study, the RNA-seq data analysis included two other non-diseased groups composed of healthy uninfected volunteers and asymptomatic individuals. We identified thousands of differentially expressed genes between VL patients and non-diseased groups. Overall, pathway analysis corroborated the importance of signaling involving interferons, chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of gene expression profiles was able to discriminate cellular subtypes, highlighting the contribution of plasma cells and NK cells in the course of the disease. Beyond the biological processes involved in the immunopathology of VL revealed by the expression of protein coding genes (PCGs), we observed a significant participation of long noncoding RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs expression in VL has never been performed. lncRNAs have been considered key regulators of disease progression, mainly in cancers; however, their pattern regulation may also help to understand the complexity and heterogeneity of host immune responses elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the first time, we present an integrated analysis of PCGs and lncRNAs by exploring the lncRNA-mRNA coexpression profile of VL to provide insights into the regulatory gene network involved in the development of this inflammatory and infectious disease., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Maruyama, Fuzo, Oliveira, Rogerio, Takamiya, Pessenda, de Melo, da Silva, Jesus, Carregaro, Nakaya, Almeida and da Silva.)
- Published
- 2022
- Full Text
- View/download PDF
14. sTREM-1 Predicts Disease Severity and Mortality in COVID-19 Patients: Involvement of Peripheral Blood Leukocytes and MMP-8 Activity.
- Author
-
da Silva-Neto PV, de Carvalho JCS, Pimentel VE, Pérez MM, Toro DM, Fraga-Silva TFC, Fuzo CA, Oliveira CNS, Rodrigues LC, Argolo JGM, Carmona-Garcia I, Neto NT, Souza COS, Fernandes TM, Bastos VAF, Degiovani AM, Constant LF, Ostini FM, Feitosa MR, Parra RS, Vilar FC, Gaspar GG, da Rocha JJR, Feres O, Frantz FG, Gerlach RF, Maruyama SR, Russo EMS, Viana AL, Fernandes APM, Santos IKFM, Bonato VLD, Boechat AL, Malheiro A, Sadikot RT, Dias-Baruffi M, Cardoso CRB, Faccioli LH, Sorgi CA, and On Behalf Of The Imunocovid Study Group
- Subjects
- Adolescent, Adult, Aged, Aged, 80 and over, Brazil, Female, Humans, Inflammation, Interleukin-10 blood, Interleukin-6 blood, Interleukin-8 blood, Leukocyte Count, Male, Middle Aged, Neutrophils metabolism, Prospective Studies, SARS-CoV-2, Triggering Receptor Expressed on Myeloid Cells-1 metabolism, Young Adult, Biomarkers blood, COVID-19 diagnosis, COVID-19 mortality, Leukocytes metabolism, Matrix Metalloproteinase 8 metabolism, Severity of Illness Index, Triggering Receptor Expressed on Myeloid Cells-1 blood
- Abstract
Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients ( n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.
- Published
- 2021
- Full Text
- View/download PDF
15. Editorial: Systems Biology of Hosts, Parasites and Vectors.
- Author
-
Gardinassi LG, Maruyama SR, and Cantacessi C
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2021
- Full Text
- View/download PDF
16. Total Ortholog Median Matrix as an alternative unsupervised approach for phylogenomics based on evolutionary distance between protein coding genes.
- Author
-
Maruyama SR, Rogerio LA, Freitas PD, Teixeira MMG, and Ribeiro JMC
- Subjects
- Genome genetics, Sequence Alignment statistics & numerical data, Evolution, Molecular, Genomics statistics & numerical data, Open Reading Frames genetics, Phylogeny
- Abstract
The increasing number of available genomic data allowed the development of phylogenomic analytical tools. Current methods compile information from single gene phylogenies, whether based on topologies or multiple sequence alignments. Generally, phylogenomic analyses elect gene families or genomic regions to construct phylogenomic trees. Here, we presented an alternative approach for Phylogenomics, named TOMM (Total Ortholog Median Matrix), to construct a representative phylogram composed by amino acid distance measures of all pairwise ortholog protein sequence pairs from desired species inside a group of organisms. The procedure is divided two main steps, (1) ortholog detection and (2) creation of a matrix with the median amino acid distance measures of all pairwise orthologous sequences. We tested this approach within three different group of organisms: Kinetoplastida protozoa, hematophagous Diptera vectors and Primates. Our approach was robust and efficacious to reconstruct the phylogenetic relationships for the three groups. Moreover, novel branch topologies could be achieved, providing insights about some phylogenetic relationships between some taxa.
- Published
- 2021
- Full Text
- View/download PDF
17. COVID-19: Integrating the Complexity of Systemic and Pulmonary Immunopathology to Identify Biomarkers for Different Outcomes.
- Author
-
Fraga-Silva TFC, Maruyama SR, Sorgi CA, Russo EMS, Fernandes APM, de Barros Cardoso CR, Faccioli LH, Dias-Baruffi M, and Bonato VLD
- Subjects
- Humans, Lung virology, SARS-CoV-2, Biomarkers analysis, COVID-19 immunology, COVID-19 pathology, Lung immunology, Lung pathology
- Abstract
In the last few months, the coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide and has provoked an exceptional effort from the scientific community to understand the disease. Clinical evidence suggests that severe COVID-19 is associated with both dysregulation of damage tolerance caused by pulmonary immunopathology and high viral load. In this review article, we describe and discuss clinical studies that show advances in the understanding of mild and severe illness and we highlight major points that are critical for improving the comprehension of different clinical outcomes. The understanding of pulmonary immunopathology will contribute to the identification of biomarkers in an attempt to classify mild, moderate, severe and critical COVID-19 illness. The interface of pulmonary immunopathology and the identification of biomarkers are critical for the development of new therapeutic strategies aimed to reduce the systemic and pulmonary hyperinflammation in severe COVID-19., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Fraga-Silva, Maruyama, Sorgi, Russo, Fernandes, de Barros Cardoso, Faccioli, Dias-Baruffi and Bonato.)
- Published
- 2021
- Full Text
- View/download PDF
18. A transcriptome and proteome of the tick Rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage.
- Author
-
Garcia GR, Chaves Ribeiro JM, Maruyama SR, Gardinassi LG, Nelson K, Ferreira BR, Andrade TG, and de Miranda Santos IKF
- Subjects
- Animals, Cattle immunology, Female, Male, Proteome, Rhipicephalus growth & development, Sequence Analysis, RNA, Cattle parasitology, Cattle Diseases parasitology, Host-Parasite Interactions, Proteomics methods, Rhipicephalus genetics, Tick Control, Tick Infestations parasitology, Tick Infestations veterinary, Transcriptome
- Abstract
The cattle tick, Rhipicephalus microplus, is a monoxenous tick that co-evolved with indicine cattle on the Indian subcontinent. It causes massive damage to livestock worldwide. Cattle breeds present heritable, contrasting phenotypes of tick loads, taurine breeds carrying higher loads of the parasite than indicine breeds. Thus, a useful model is available to analyze mechanisms that determine outcomes of parasitism. We sought to gain insights on these mechanisms and used RNA sequencing and Multidimensional Protein Identification Technology (MudPIT) to generate a transcriptome from whole larvae and salivary glands from nymphs, males and females feeding on genetically susceptible and resistant bovine hosts and their corresponding proteomes. 931,698 reads were annotated into 11,676 coding sequences (CDS), which were manually curated into 116 different protein families. Male ticks presented the most diverse armamentarium of mediators of parasitism. In addition, levels of expression of many genes encoding mediators of parasitism were significantly associated with the level and stage of host immunity and/or were temporally restricted to developmental stages of the tick. These insights should assist in developing novel, sustainable technologies for tick control.
- Published
- 2020
- Full Text
- View/download PDF
19. TLR4 abrogates the Th1 immune response through IRF1 and IFN-β to prevent immunopathology during L. infantum infection.
- Author
-
Sacramento LA, Benevides L, Maruyama SR, Tavares L, Fukutani KF, Francozo M, Sparwasser T, Cunha FQ, Almeida RP, da Silva JS, and Carregaro V
- Subjects
- Animals, Inflammation genetics, Inflammation immunology, Inflammation pathology, Interferon Regulatory Factor-1 genetics, Interferon-beta genetics, Leishmaniasis, Visceral genetics, Leishmaniasis, Visceral pathology, Mice, Mice, Knockout, Th1 Cells pathology, Toll-Like Receptor 4 genetics, Interferon Regulatory Factor-1 immunology, Interferon-beta immunology, Leishmania infantum immunology, Leishmaniasis, Visceral immunology, Th1 Cells immunology, Toll-Like Receptor 4 immunology
- Abstract
A striking feature of human visceral leishmaniasis (VL) is chronic inflammation in the spleen and liver, and VL patients present increased production levels of multiple inflammatory mediators, which contribute to tissue damage and disease severity. Here, we combined an experimental model with the transcriptional profile of human VL to demonstrate that the TLR4-IFN-β pathway regulates the chronic inflammatory process and is associated with the asymptomatic form of the disease. Tlr4-deficient mice harbored fewer parasites in their spleen and liver than wild-type mice. TLR4 deficiency enhanced the Th1 immune response against the parasite, which was correlated with an increased activation of dendritic cells (DCs). Gene expression analyses demonstrated that IRF1 and IFN-β were expressed downstream of TLR4 after infection. Accordingly, IRF1- and IFNAR-deficient mice harbored fewer parasites in the target organs than wild-type mice due to having an increased Th1 immune response. However, the absence of TLR4 or IFNAR increased the serum transaminase levels in infected mice, indicating the presence of liver damage in these animals. In addition, IFN-β limits IFN-γ production by acting directly on Th1 cells. Using RNA sequencing analysis of human samples, we demonstrated that the transcriptional signature for the TLR4 and type I IFN (IFN-I) pathways was positively modulated in asymptomatic subjects compared with VL patients and thus provide direct evidence demonstrating that the TLR4-IFN-I pathway is related to the nondevelopment of the disease. In conclusion, our results demonstrate that the TLR4-IRF1 pathway culminates in IFN-β production as a mechanism for dampening the chronic inflammatory process and preventing immunopathology development., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
20. Blood transcriptome profile induced by an efficacious vaccine formulated with salivary antigens from cattle ticks.
- Author
-
Maruyama SR, Carvalho B, González-Porta M, Rung J, Brazma A, Gustavo Gardinassi L, Ferreira BR, Banin TM, Veríssimo CJ, Katiki LM, and de Miranda-Santos IKF
- Abstract
Ticks cause massive damage to livestock and vaccines are one sustainable alternative for the acaricide poisons currently heavily used to control infestations. An experimental vaccine adjuvanted with alum and composed by four recombinant salivary antigens mined with reverse vaccinology from a transcriptome of salivary glands from Rhipicephalus microplus ticks was previously shown to present an overall efficacy of 73.2% and cause a significant decrease of tick loads in artificially tick-infested, immunized heifers; this decrease was accompanied by increased levels of antigen-specific IgG1 and IgG2 antibodies, which were boosted during a challenge infestation. In order to gain insights into the systemic effects induced by the vaccine and by the tick challenge we now report the gene expression profile of these hosts' whole-blood leukocytes with RNA-seq followed by functional analyses. These analyses show that vaccination induced unique responses to infestations; genes upregulated in the comparisons were enriched for processes associated with chemotaxis, cell adhesion, T-cell responses and wound repair. Blood transcriptional modules were enriched for activation of dendritic cells, cell cycle, phosphatidylinositol signaling, and platelets. Together, the results indicate that by neutralizing the tick's salivary mediators of parasitism with vaccine-induced antibodies, the bovine host is able to mount normal homeostatic responses that hinder tick attachment and haematophagy and that the tick otherwise suppresses with its saliva., Competing Interests: Competing interestsThe authors declare no competing interests., (© The Author(s) 2019.)
- Published
- 2019
- Full Text
- View/download PDF
21. Non-Leishmania Parasite in Fatal Visceral Leishmaniasis-Like Disease, Brazil.
- Author
-
Maruyama SR, de Santana AKM, Takamiya NT, Takahashi TY, Rogerio LA, Oliveira CAB, Milanezi CM, Trombela VA, Cruz AK, Jesus AR, Barreto AS, da Silva AM, Almeida RP, Ribeiro JM, and Silva JS
- Subjects
- Aged, Animals, Brazil epidemiology, DNA, Ribosomal Spacer, Genes, Helminth, Humans, Leishmaniasis, Visceral epidemiology, Leishmaniasis, Visceral parasitology, Male, Mice, Phylogeny, Trypanosomatina classification, Euglenozoa Infections epidemiology, Euglenozoa Infections parasitology, Trypanosomatina genetics
- Abstract
Through whole-genome sequencing analysis, we identified non-Leishmania parasites isolated from a man with a fatal visceral leishmaniasis-like illness in Brazil. The parasites infected mice and reproduced the patient's clinical manifestations. Molecular epidemiologic studies are needed to ascertain whether a new infectious disease is emerging that can be confused with leishmaniasis.
- Published
- 2019
- Full Text
- View/download PDF
22. Cytogenetics, genomics and biodiversity of the South American and African Arapaimidae fish family (Teleostei, Osteoglossiformes).
- Author
-
de Oliveira EA, Bertollo LAC, Rab P, Ezaz T, Yano CF, Hatanaka T, Jegede OI, Tanomtong A, Liehr T, Sember A, Maruyama SR, Feldberg E, Viana PF, and Cioffi MB
- Subjects
- Animals, South Africa, Biodiversity, DNA, Ribosomal genetics, Fishes classification, Fishes genetics, Genome, Polymorphism, Single Nucleotide
- Abstract
Osteoglossiformes represents one of the most ancestral teleost lineages, currently widespread over almost all continents, except for Antarctica. However, data involving advanced molecular cytogenetics or comparative genomics are yet largely limited for this fish group. Therefore, the present investigations focus on the osteoglossiform family Arapaimidae, studying a unique fish model group with advanced molecular cytogenetic genomic tools. The aim is to better explore and clarify certain events and factors that had impact on evolutionary history of this fish group. For that, both South American and African representatives of Arapaimidae, namely Arapaima gigas and Heterotis niloticus, were examined. Both species differed markedly by diploid chromosome numbers, with 2n = 56 found in A. gigas and 2n = 40 exhibited by H. niloticus. Conventional cytogenetics along with fluorescence in situ hybridization revealed some general trends shared by most osteoglossiform species analyzed thus far, such as the presence of only one chromosome pair bearing 18S and 5S rDNA sites and karyotypes dominated by acrocentric chromosomes, resembling thus the patterns of hypothetical ancestral teleost karyotype. Furthermore, the genomes of A. gigas and H. niloticus display remarkable divergence in terms of repetitive DNA content and distribution, as revealed by comparative genomic hybridization (CGH). On the other hand, genomic diversity of single copy sequences studied through principal component analyses (PCA) based on SNP alleles genotyped by the DArT seq procedure demonstrated a very low genetic distance between the South American and African Arapaimidae species; this pattern contrasts sharply with the scenario found in other osteoglossiform species. Underlying evolutionary mechanisms potentially explaining the obtained data have been suggested and discussed., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
23. From Chromosomes to Genome: Insights into the Evolutionary Relationships and Biogeography of Old World Knifefishes (Notopteridae; Osteoglossiformes).
- Author
-
Barby FF, Ráb P, Lavoué S, Ezaz T, Bertollo LAC, Kilian A, Maruyama SR, Aguiar de Oliveira E, Artoni RF, Santos MH, Ilesanmi Jegede O, Hatanaka T, Tanomtong A, Liehr T, and Cioffi MB
- Abstract
In addition to its wide geographical distribution, osteoglossiform fishes represent one of the most ancient freshwater teleost lineages; making it an important group for systematic and evolutionary studies. These fishes had a Gondwanan origin and their past distribution may have contributed to the diversity present in this group. However, cytogenetic and genomic data are still scarce, making it difficult to track evolutionary trajectories within this order. In addition, their wide distribution, with groups endemic to different continents, hinders an integrative study that allows a globalized view of its evolutionary process. Here, we performed a detailed chromosomal analysis in Notopteridae fishes, using conventional and advanced molecular cytogenetic methods. Moreover, the genetic distances of examined species were assessed by genotyping using diversity arrays technology sequencing (DArTseq). These data provided a clear picture of the genetic diversity between African and Asian Notopteridae species, and were highly consistent with the chromosomal, geographical, and historical data, enlightening their evolutionary diversification. Here, we discuss the impact of continental drift and split of Pangea on their recent diversity, as well as the contribution to biogeographical models that explain their distribution, highlighting the role of the Indian subcontinent in the evolutionary process within the family.
- Published
- 2018
- Full Text
- View/download PDF
24. CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses.
- Author
-
Russo PST, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, Hirata TDC, Lima DS, Passos FM, Fukutani KF, Lever M, Silva JS, Maracaja-Coutinho V, and Nakaya HI
- Subjects
- Automation, Databases, Genetic, Dengue genetics, Gene Expression Profiling, Humans, Leishmaniasis, Visceral genetics, Psoriasis genetics, Sequence Analysis, RNA, Transcriptome genetics, Gene Expression Regulation, Gene Regulatory Networks, Software
- Abstract
Background: The analysis of modular gene co-expression networks is a well-established method commonly used for discovering the systems-level functionality of genes. In addition, these studies provide a basis for the discovery of clinically relevant molecular pathways underlying different diseases and conditions., Results: In this paper, we present a fast and easy-to-use Bioconductor package named CEMiTool that unifies the discovery and the analysis of co-expression modules. Using the same real datasets, we demonstrate that CEMiTool outperforms existing tools, and provides unique results in a user-friendly html report with high quality graphs. Among its features, our tool evaluates whether modules contain genes that are over-represented by specific pathways or that are altered in a specific sample group, as well as it integrates transcriptomic data with interactome information, identifying the potential hubs on each network. We successfully applied CEMiTool to over 1000 transcriptome datasets, and to a new RNA-seq dataset of patients infected with Leishmania, revealing novel insights of the disease's physiopathology., Conclusion: The CEMiTool R package provides users with an easy-to-use method to automatically implement gene co-expression network analyses, obtain key information about the discovered gene modules using additional downstream analyses and retrieve publication-ready results via a high-quality interactive report.
- Published
- 2018
- Full Text
- View/download PDF
25. Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Amblyomma sculptum Ticks and Descriptive Proteome of the Saliva.
- Author
-
Esteves E, Maruyama SR, Kawahara R, Fujita A, Martins LA, Righi AA, Costa FB, Palmisano G, Labruna MB, Sá-Nunes A, Ribeiro JMC, and Fogaça AC
- Subjects
- Animals, Arthropod Proteins genetics, Arthropod Proteins metabolism, Blood, Disease Vectors, Female, Gene Expression Profiling, Gene Expression Regulation, High-Throughput Nucleotide Sequencing, Host-Pathogen Interactions genetics, Host-Pathogen Interactions physiology, Insect Vectors metabolism, Insect Vectors microbiology, Ixodidae classification, Ixodidae genetics, Ixodidae microbiology, Phylogeny, RNA analysis, Rabbits, Real-Time Polymerase Chain Reaction, Rickettsia rickettsii, Rocky Mountain Spotted Fever microbiology, Rocky Mountain Spotted Fever transmission, Saliva chemistry, Salivation, Sequence Alignment, Sequence Analysis, RNA, Signal Transduction, Ticks genetics, Ticks microbiology, Animal Feed, Feeding Behavior, Ixodidae metabolism, Proteome analysis, Salivary Glands metabolism, Ticks metabolism, Transcriptome genetics
- Abstract
Ticks are obligate blood feeding ectoparasites that transmit a wide variety of pathogenic microorganisms to their vertebrate hosts. Amblyomma sculptum is vector of Rickettsia rickettsii , the causative agent of Rocky Mountain spotted fever (RMSF), the most lethal rickettsiosis that affects humans. It is known that the transmission of pathogens by ticks is mainly associated with the physiology of the feeding process. Pathogens that are acquired with the blood meal must first colonize the tick gut and later the salivary glands (SG) in order to be transmitted during a subsequent blood feeding via saliva. Tick saliva contains a complex mixture of bioactive molecules with anticlotting, antiplatelet aggregation, vasodilatory, anti-inflammatory, and immunomodulatory properties to counteract both the hemostasis and defense mechanisms of the host. Besides facilitating tick feeding, the properties of saliva may also benefits survival and establishment of pathogens in the host. In the current study, we compared the sialotranscriptome of unfed A. sculptum ticks and those fed for 72 h on rabbits using next generation RNA sequencing (RNA-seq). The total of reads obtained were assembled in 9,560 coding sequences (CDSs) distributed in different functional classes. CDSs encoding secreted proteins, including lipocalins, mucins, protease inhibitors, glycine-rich proteins, metalloproteases, 8.9 kDa superfamily members, and immunity-related proteins were mostly upregulated by blood feeding. Selected CDSs were analyzed by real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR), corroborating the transcriptional profile obtained by RNA-seq. Finally, high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis revealed 124 proteins in saliva of ticks fed for 96-120 h. The corresponding CDSs of 59 of these proteins were upregulated in SG of fed ticks. To the best of our knowledge, this is the first report on the proteome of A. sculptum saliva. The functional characterization of the identified proteins might reveal potential targets to develop vaccines for tick control and/or blocking of R. rickettsii transmission as well as pharmacological bioproducts with antihemostatic, anti-inflammatory and antibacterial activities.
- Published
- 2017
- Full Text
- View/download PDF
26. Complete Coding Genome Sequence for Mogiana Tick Virus, a Jingmenvirus Isolated from Ticks in Brazil.
- Author
-
Villa EC, Maruyama SR, de Miranda-Santos IKF, Palacios G, and Ladner JT
- Abstract
Mogiana tick virus (MGTV) is a segmented jingmenvirus isolated in 2011 from cattle ticks in Brazil. Here, we present a complete coding genome sequence for MGTV isolate MGTV/V4/11, including all four segments. MGTV is evolutionarily related to the Jingmen tick virus isolates SY84 and RC27., (Copyright © 2017 Villa et al.)
- Published
- 2017
- Full Text
- View/download PDF
27. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations.
- Author
-
Maruyama SR, Garcia GR, Teixeira FR, Brandão LG, Anderson JM, Ribeiro JMC, Valenzuela JG, Horackova J, Veríssimo CJ, Katiki LM, Banin TM, Zangirolamo AF, Gardinassi LG, Ferreira BR, and de Miranda-Santos IKF
- Subjects
- Animals, Drug Discovery, Vaccines isolation & purification, Antigens biosynthesis, Arthropod Proteins biosynthesis, Gene Expression Profiling, Rhipicephalus physiology, Salivary Proteins and Peptides biosynthesis, Tick Infestations parasitology
- Abstract
Background: Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines., Results: Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them., Conclusion: Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.
- Published
- 2017
- Full Text
- View/download PDF
28. Immune recognition of salivary proteins from the cattle tick Rhipicephalus microplus differs according to the genotype of the bovine host.
- Author
-
Garcia GR, Maruyama SR, Nelson KT, Ribeiro JM, Gardinassi LG, Maia AA, Ferreira BR, Kooyman FN, and de Miranda Santos IK
- Subjects
- Animals, Cattle, Cattle Diseases blood, Female, Genotype, Male, Rhipicephalus genetics, Tick Infestations genetics, Tick Infestations immunology, Tick Infestations parasitology, Arthropod Proteins immunology, Cattle Diseases genetics, Cattle Diseases immunology, Rhipicephalus immunology, Salivary Proteins and Peptides immunology, Tick Infestations veterinary
- Abstract
Background: Males of the cattle tick Rhipicephalus microplus produce salivary immunoglobulin-binding proteins and allotypic variations in IgG are associated with tick loads in bovines. These findings indicate that antibody responses may be essential to control tick infestations. Infestation loads with cattle ticks are heritable: some breeds carry high loads of reproductively successful ticks, in others, few ticks feed and they reproduce inefficiently. Different patterns of humoral immunity against tick salivary proteins may explain these phenotypes., Methods: We describe the profiles of humoral responses against tick salivary proteins elicited during repeated artificial infestations of bovines of a tick-resistant (Nelore) and a tick-susceptible (Holstein) breed. We measured serum levels of total IgG1, IgG2 and IgE immunoglobulins and of IgG1 and IgG2 antibodies specific for tick salivary proteins. With liquid chromatography followed by mass spectrometry we identified tick salivary proteins that were differentially recognized by serum antibodies from tick-resistant and tick-susceptible bovines in immunoblots of tick salivary proteins separated by two-dimensional electrophoresis., Results: Baseline levels of total IgG1 and IgG2 were significantly higher in tick-susceptible Holsteins compared with resistant Nelores. Significant increases in levels of total IgG1, but not of IgG2 accompanied successive infestations in both breeds. Resistant Nelores presented with significantly higher levels of salivary-specific antibodies before and at the first challenge with tick larvae; however, by the third challenge, tick-susceptible Holsteins presented with significantly higher levels of IgG1 and IgG2 tick salivary protein-specific antibodies. Importantly, sera from tick-resistant Nelores reacted with 39 tick salivary proteins in immunoblots of salivary proteins separated in two dimensions by electrophoresis versus only 21 spots reacting with sera from tick-susceptible Holsteins., Conclusions: Levels of tick saliva-specific antibodies were not directly correlated with infestation phenotypes. However, in spite of receiving apparently lower amounts of tick saliva, tick-resistant bovines recognized more tick salivary proteins. These reactive salivary proteins are putatively involved in several functions of parasitism and blood-feeding. Our results indicate that neutralization by host antibodies of tick salivary proteins involved in parasitism is essential to control tick infestations.
- Published
- 2017
- Full Text
- View/download PDF
29. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.
- Author
-
Franzin AM, Maruyama SR, Garcia GR, Oliveira RP, Ribeiro JM, Bishop R, Maia AA, Moré DD, Ferreira BR, and Santos IK
- Subjects
- Animals, Arthropod Proteins genetics, Arthropod Proteins metabolism, Cattle, Cattle Diseases genetics, Cattle Diseases parasitology, Cytokines genetics, Dermatitis genetics, Dermatitis immunology, Dermatitis parasitology, Dermatitis veterinary, Disease Susceptibility parasitology, Gene Expression Profiling, Host-Parasite Interactions genetics, Host-Parasite Interactions immunology, Inflammation genetics, Interleukin-6 genetics, Larva physiology, Nymph physiology, Skin parasitology, Skin pathology, Tick Infestations genetics, Tick Infestations immunology, Cattle Diseases immunology, Genetic Predisposition to Disease, Rhipicephalus immunology, Skin immunology, Tick Infestations veterinary
- Abstract
Background: Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently., Methods: In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds., Results: Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more abundant in larval and in nymphal salivary glands from ticks feeding on susceptible bovines., Conclusions: Compared with tick-susceptible hosts, genes encoding enzymes producing volatile compounds exhibit significantly lower expression in resistant hosts, which may render them less attractive to larvae; resistant hosts expose ticks to an earlier inflammatory response, which in ticks is associated with significantly lower expression of genes encoding salivary proteins that suppress host immunity, inflammation and coagulation.
- Published
- 2017
- Full Text
- View/download PDF
30. NOD2-RIP2-Mediated Signaling Helps Shape Adaptive Immunity in Visceral Leishmaniasis.
- Author
-
Nascimento MS, Ferreira MD, Quirino GF, Maruyama SR, Krishnaswamy JK, Liu D, Berlink J, Fonseca DM, Zamboni DS, Carregaro V, Almeida RP, Cunha TM, Eisenbarth SS, and Silva JS
- Subjects
- Animals, Disease Models, Animal, Gene Expression Profiling, Humans, Mice, Inbred C57BL, Mice, Knockout, Parasite Load, Receptor-Interacting Protein Serine-Threonine Kinases metabolism, Th1 Cells immunology, Th17 Cells immunology, Adaptive Immunity, Leishmaniasis, Visceral immunology, Nod2 Signaling Adaptor Protein metabolism, Receptor-Interacting Protein Serine-Threonine Kinase 2 metabolism, Signal Transduction
- Abstract
Interferon γ (IFN-γ) and interleukin 17A (IL-17A)-producing cells are described to be related to the protection against Leishmania infantum infection. How the immune system coordinates the balance between T-helper type 1 (Th1) and 17 (Th17) responses during visceral leishmaniasis (VL) is still unknown. Here, we combined transcriptional profiling, using RNA sequencing analysis of human samples, with an experimental model to show that Th17-related genes are suppressed and that Th1 signature genes are induced during human VL. The high amount of Th1 cells in VL was dependent on the NOD2-RIP2 signaling in dendritic cells, which was crucial for interleukin 12 production through the phosphorylation of MAPK. On the other hand, this pathway inhibits Th17 cells by limiting interleukin 23 production. As a consequence, Nod2
-/- and Rip2-/- mice showed defects in Th1 responses and higher parasite loads as compared to WT mice. Together, the data demonstrate that the NOD2-RIP2 pathway is activated in murine and human VL and plays a role in shaping adaptive immunity toward a Th1 profile., (© The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.)- Published
- 2016
- Full Text
- View/download PDF
31. The sialotranscriptome of Amblyomma triste, Amblyomma parvum and Amblyomma cajennense ticks, uncovered by 454-based RNA-seq.
- Author
-
Garcia GR, Gardinassi LG, Ribeiro JM, Anatriello E, Ferreira BR, Moreira HN, Mafra C, Martins MM, Szabó MP, de Miranda-Santos IK, and Maruyama SR
- Subjects
- Animals, Arthropod Proteins genetics, Female, Ixodidae genetics, Nucleic Acid Amplification Techniques, RNA genetics, Salivary Glands metabolism, Species Specificity, Arthropod Proteins metabolism, Ixodidae metabolism, Saliva chemistry, Transcriptome
- Abstract
Background: Tick salivary constituents antagonize inflammatory, immune and hemostatic host responses, favoring tick blood feeding and the establishment of tick-borne pathogens in hosts during hematophagy. Amblyomma triste, A. cajennense and A. parvum ticks are very important in veterinary and human health because they are vectors of the etiological agents for several diseases. Insights into the tick salivary components involved in blood feeding are essential to understanding vector-pathogen-host interactions, and transcriptional profiling of salivary glands is a powerful tool to do so. Here, we functionally annotated the sialotranscriptomes of these three Amblyomma species, which allowed comparisons between these and other hematophagous arthropod species., Methods: mRNA from the salivary glands of A. triste, A. cajennense and A. parvum ticks fed on different host species were pyrosequenced on a 454-Roche platform to generate four A. triste (nymphs fed on guinea pigs and females fed on dogs) libraries, one A. cajennense (females fed on rabbits) library and one was A. parvum (females fed on dogs) library. Bioinformatic analyses used in-house programs with a customized pipeline employing standard assembly and alignment algorithms, protein databases and protein servers., Results: Each library yielded an average of 100,000 reads, which were assembled to obtain contigs of coding sequences (CDSs). The sialotranscriptome analyses of A. triste, A. cajennense and A. parvum ticks produced 11,240, 4,604 and 3,796 CDSs, respectively. These CDSs were classified into over 100 distinct protein families with a wide range of putative functions involved in physiological and blood feeding processes and were catalogued in annotated, hyperlinked spreadsheets. We highlighted the putative transcripts encoding saliva components with critical roles during parasitism, such as anticoagulants, immunosuppressants and anti-inflammatory molecules. The salivary content underwent changes in the abundance and repertoire of many transcripts, which depended on the tick and host species., Conclusions: The annotated sialotranscriptomes described herein richly expand the biological knowledge of these three Amblyomma species. These comprehensive databases will be useful for the characterization of salivary proteins and can be applied to control ticks and tick-borne diseases.
- Published
- 2014
- Full Text
- View/download PDF
32. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil.
- Author
-
Maruyama SR, Castro-Jorge LA, Ribeiro JM, Gardinassi LG, Garcia GR, Brandão LG, Rodrigues AR, Okada MI, Abrão EP, Ferreira BR, Fonseca BA, and Miranda-Santos IK
- Subjects
- Animals, Brazil, Cattle, Conserved Sequence genetics, Flavivirus classification, Flavivirus isolation & purification, Gene Library, Hydrophobic and Hydrophilic Interactions, Phylogeny, Polymerase Chain Reaction, RNA Helicases chemistry, Sequence Alignment statistics & numerical data, Sequence Analysis, Protein methods, Serine Endopeptidases chemistry, Tissue Extracts analysis, Transcriptome genetics, Flavivirus chemistry, RNA, Viral isolation & purification, Rhipicephalus virology, Viral Nonstructural Proteins chemistry
- Abstract
Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen.
- Published
- 2014
- Full Text
- View/download PDF
33. The sialotranscriptome of Antricola delacruzi female ticks is compatible with non-hematophagous behavior and an alternative source of food.
- Author
-
Ribeiro JM, Labruna MB, Mans BJ, Maruyama SR, Francischetti IM, Barizon GC, and de Miranda Santos IK
- Subjects
- Adaptation, Physiological, Amino Acid Sequence, Animals, Argasidae genetics, Chiroptera parasitology, Feces, Female, Gene Expression Profiling, Gene Library, Genes, Essential, Genetic Speciation, Molecular Sequence Data, Salivary Glands metabolism, Argasidae metabolism, Feeding Behavior, Saliva metabolism, Transcriptome
- Abstract
The hosts for Antricola delacruzi ticks are insectivorous, cave-dwelling bats on which only larvae are found. The mouthparts of nymphal and adult A. delacruzi are compatible with scavenging feeding because the hypostome is small and toothless. How a single blood meal of a larva provides energy for several molts as well as for oviposition by females is not known. Adults of A. delacruzi possibly feed upon an unknown food source in bat guano, a substrate on which nymphal and adult stages are always found. Guano produced by insectivorous bats contains twice the amount of protein and 60 times the amount of iron as beef. In addition, bacteria and chitin-rich fungi proliferate on guano. Comparative data on the transcriptome of the salivary glands of A. delacruzi is nonexistent and would help to understand the physiological adaptations of salivary glands that accompany different sources of food as well as the steps taken by the Acari toward haematophagy, believed to have evolved from scavenging dead animals. Annotation of the transcriptome of salivary glands from female instars of A. delacruzi collected on guano categorized 5.7% of the clusters of expressed genes as putative secreted proteins. They included abundantly expressed TIL-domain-containing proteins (possible anti-microbials), an abundantly expressed protein similar to a serum amyloid found in the sialotranscriptomes of Ornithodoros spp., a savignygrin, a family of mucin/peritrophin/cuticle-like proteins, anti-microbials and an HIV envelope-like glycoprotein also found in soft ticks. When comparing the transcriptome of A. delacruzi with those of blood-feeding female soft and hard ticks some notable differences were observed; they consisted of the following transcripts over- or under-represented or absent in the sialotranscriptome of A. delacruzi that may reflect its source of food: ferritin, mucins with chitin-binding domains and TIL-domain-containing proteins versus lipocalins, basic tail proteins, metalloproteases, glycine-rich proteins and Kunitz protease inhibitors, respectively., (Copyright © 2012 Elsevier Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
34. Haplotypes of the bovine IgG2 heavy gamma chain in tick-resistant and tick-susceptible breeds of cattle.
- Author
-
Carvalho WA, Ianella P, Arnoldi FG, Caetano AR, Maruyama SR, Ferreira BR, Conti LH, da Silva MR, Paula JO, Maia AA, and Santos IK
- Subjects
- Amino Acid Sequence, Animals, Base Sequence, Cattle immunology, Cattle Diseases immunology, Cattle Diseases parasitology, Haplotypes, Male, Molecular Sequence Data, Polymorphism, Single Nucleotide, Salivary Glands immunology, Tick Infestations genetics, Tick Infestations immunology, Ticks immunology, Cattle genetics, Cattle Diseases genetics, Genetic Predisposition to Disease, Immunoglobulin Heavy Chains genetics, Immunoglobulin gamma-Chains genetics, Tick Infestations veterinary
- Abstract
Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations.
- Published
- 2011
- Full Text
- View/download PDF
35. Vaccines for the leishmaniases: proposals for a research agenda.
- Author
-
Costa CH, Peters NC, Maruyama SR, de Brito EC Jr, and Santos IK
- Subjects
- Antigens, Protozoan immunology, Biomedical Research trends, Humans, Leishmania immunology, Leishmaniasis immunology, Leishmaniasis epidemiology, Leishmaniasis prevention & control, Leishmaniasis Vaccines immunology
- Published
- 2011
- Full Text
- View/download PDF
36. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus.
- Author
-
Anatriello E, Ribeiro JM, de Miranda-Santos IK, Brandão LG, Anderson JM, Valenzuela JG, Maruyama SR, Silva JS, and Ferreira BR
- Subjects
- Amino Acid Sequence, Animals, Female, Gene Expression Profiling, Insect Proteins chemistry, Insect Proteins genetics, Male, Molecular Sequence Data, Multigene Family, Phylogeny, Salivary Glands metabolism, Sequence Alignment, Sequence Homology, Amino Acid, Ticks chemistry, Transcription, Genetic, Ticks genetics
- Abstract
Background: Rhipicephalus sanguineus, known as the brown dog tick, is a common ectoparasite of domestic dogs and can be found worldwide. R.sanguineus is recognized as the primary vector of the etiological agent of canine monocytic ehrlichiosis and canine babesiosis. Here we present the first description of a R. sanguineus salivary gland transcriptome by the production and analysis of 2,034 expressed sequence tags (EST) from two cDNA libraries, one consctructed using mRNA from dissected salivary glands from female ticks fed for 3-5 days (early to mid library, RsSGL1) and the another from ticks fed for 5 days (mid library, RsSGL2), identifying 1,024 clusters of related sequences., Results: Based on sequence similarities to nine different databases, we identified transcripts of genes that were further categorized according to function. The category of putative housekeeping genes contained approximately 56% of the sequences and had on average 2.49 ESTs per cluster, the secreted protein category contained 26.6% of the ESTs and had 2.47 EST's/clusters, while 15.3% of the ESTs, mostly singletons, were not classifiable, and were annotated as "unknown function". The secreted category included genes that coded for lipocalins, proteases inhibitors, disintegrins, metalloproteases, immunomodulatory and antiinflammatory proteins, as Evasins and Da-p36, as well as basic-tail and 18.3 kDa proteins, cement proteins, mucins, defensins and antimicrobial peptides. Comparison of the abundance of ESTs from similar contigs of the two salivary gland cDNA libraries allowed the identification of differentially expressed genes, such as genes coding for Evasins and a thrombin inhibitor, which were over expressed in the RsSGL1 (early to mid library) versus RsSGL2 (mid library), indicating their role in inhibition of inflammation at the tick feeding site from the very beginning of the blood meal. Conversely, sequences related to cement (64P), which function has been correlated with tick attachment, was largely expressed in the mid library., Conclusions: Our survey provided an insight into the R. sanguineus sialotranscriptome, which can assist the discovery of new targets for anti-tick vaccines, as well as help to identify pharmacologically active proteins.
- Published
- 2010
- Full Text
- View/download PDF
37. The expression of genes coding for distinct types of glycine-rich proteins varies according to the biology of three metastriate ticks, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Amblyomma cajennense.
- Author
-
Maruyama SR, Anatriello E, Anderson JM, Ribeiro JM, Brandão LG, Valenzuela JG, Ferreira BR, Garcia GR, Szabó MP, Patel S, Bishop R, and de Miranda-Santos IK
- Subjects
- Amino Acid Sequence, Animals, Computational Biology, Databases, Genetic, Expressed Sequence Tags, Female, Gene Library, Molecular Sequence Data, Phylogeny, Polymerase Chain Reaction, Proteins classification, Rhipicephalus sanguineus genetics, Sequence Alignment, Silk chemistry, Software, Gene Expression Profiling, Genetic Variation, Glycine, Ixodidae genetics, Proteins chemistry, Proteins genetics
- Abstract
Background: Ticks secrete a cement cone composed of many salivary proteins, some of which are rich in the amino acid glycine in order to attach to their hosts' skin. Glycine-rich proteins (GRPs) are a large family of heterogeneous proteins that have different functions and features; noteworthy are their adhesive and tensile characteristics. These properties may be essential for successful attachment of the metastriate ticks to the host and the prolonged feeding necessary for engorgement. In this work, we analyzed Expressed Sequence Tags (ESTs) similar to GRPs from cDNA libraries constructed from salivary glands of adult female ticks representing three hard, metastriate species in order to verify if their expression correlated with biological differences such as the numbers of hosts ticks feed on during their parasitic life cycle, whether one (monoxenous parasite) or two or more (heteroxenous parasite), and the anatomy of their mouthparts, whether short (Brevirostrata) or long (Longirostrata). These ticks were the monoxenous Brevirostrata tick, Rhipicephalus (Boophilus) microplus, a heteroxenous Brevirostrata tick, Rhipicephalus sanguineus, and a heteroxenous Longirostrata tick, Amblyomma cajennense. To further investigate this relationship, we conducted phylogenetic analyses using sequences of GRPs from these ticks as well as from other species of Brevirostrata and Longirostrata ticks., Results: cDNA libraries from salivary glands of the monoxenous tick, R. microplus, contained more contigs of glycine-rich proteins than the two representatives of heteroxenous ticks, R. sanguineus and A. cajennense (33 versus, respectively, 16 and 11). Transcripts of ESTs encoding GRPs were significantly more numerous in the salivary glands of the two Brevirostrata species when compared to the number of transcripts in the Longirostrata tick. The salivary gland libraries from Brevirostrata ticks contained numerous contigs significantly similar to silks of true spiders (17 and 8 in, respectively, R. microplus and R. sanguineus), whereas the Longirostrata tick contained only 4 contigs. The phylogenetic analyses of GRPs from various species of ticks showed that distinct clades encoding proteins with different biochemical properties are represented among species according to their biology., Conclusions: We found that different species of ticks rely on different types and amounts of GRPs in order to attach and feed on their hosts. Metastriate ticks with short mouthparts express more transcripts of GRPs than a tick with long mouthparts and the tick that feeds on a single host during its life cycle contain a greater variety of these proteins than ticks that feed on several hosts.
- Published
- 2010
- Full Text
- View/download PDF
38. Rhipicephalus (Boophilus) microplus: clotting time in tick-infested skin varies according to local inflammation and gene expression patterns in tick salivary glands.
- Author
-
Carvalho WA, Maruyama SR, Franzin AM, Abatepaulo AR, Anderson JM, Ferreira BR, Ribeiro JM, Moré DD, Augusto Mendes Maia A, Valenzuela JG, Garcia GR, and de Miranda Santos IK
- Subjects
- Analysis of Variance, Animals, Cattle, Cattle Diseases genetics, Cattle Diseases parasitology, Cattle Diseases pathology, Computational Biology, DNA, Complementary chemistry, Female, Gene Expression Profiling, Gene Library, Host-Parasite Interactions, Inflammation blood, Inflammation parasitology, Inflammation veterinary, Male, Metalloproteases antagonists & inhibitors, Metalloproteases genetics, RNA, Messenger genetics, RNA, Messenger isolation & purification, Rhipicephalus genetics, Salivary Glands enzymology, Salivary Glands physiology, Salivary Proteins and Peptides genetics, Skin blood supply, Skin pathology, Tick Infestations blood, Tick Infestations genetics, Tick Infestations pathology, Whole Blood Coagulation Time, Cattle Diseases blood, Rhipicephalus physiology, Skin parasitology, Tick Infestations veterinary
- Abstract
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host's local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick's blood meal., (Copyright 2010 Elsevier Inc. All rights reserved.)
- Published
- 2010
- Full Text
- View/download PDF
39. Meiosis, spermatogenesis and nucleolar behavior in the seminiferous tubules of Alydidae, Coreidae and Rhopalidae (Heteroptera) species.
- Author
-
Souza HV, Souza FB, Maruyama SR, Castanhole MM, and Itoyama MM
- Subjects
- Animals, Heteroptera genetics, Male, Sex Chromosomes, Cell Nucleolus physiology, Heteroptera physiology, Meiosis, Seminiferous Tubules physiology, Spermatogenesis
- Abstract
We studied the karyotype, spermatogenesis and nucleolar activity at spermatogenesis in five species of Heteropera: Hyalymenus sp and Neomegalotomus pallescens, Alydidae; Catorhintha guttula and Hypselonotus fulvus, Coreidae; and Niesthrea sidae, Rhopalidae. They showed a red (Alydidae) or orange (Coreidae and Rhopalidae) membrane covering the testes, which consisted of seven testicular lobes, except in N. pallescens, which had only five. All the species had m-chromosomes, an X0 sex chromosome system and 10 (Hyalymenus sp, N. pallescens, and N. sidae), 16 (H. fulvus) or 22 (C. guttula) autosomes. Similar to the other species described to date, all these species showed holocentric chromosomes, interstitial chiasmata in most autosomes, and autosomes dividing reductionally in the first meiotic division and equationally in the second, while sex chromosomes, divided equationally and reductionally in the first and second meiotic divisions, respectively. In addition, we observed that the sex chromosome is heteropycnotic at prophase and that heteropycnotic chromosomal material is found in the nuclei at spermatogenesis; variation in size, shape and location of the nucleolar material occurs during spermatogenesis, denoting a variable degree of activity in the different stages.
- Published
- 2009
- Full Text
- View/download PDF
40. The genome sequence of taurine cattle: a window to ruminant biology and evolution.
- Author
-
Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigó R, Hamernik DL, Kappes SM, Lewin HA, Lynn DJ, Nicholas FW, Reymond A, Rijnkels M, Skow LC, Zdobnov EM, Schook L, Womack J, Alioto T, Antonarakis SE, Astashyn A, Chapple CE, Chen HC, Chrast J, Câmara F, Ermolaeva O, Henrichsen CN, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Kokocinski F, Landrum M, Maglott D, Pruitt K, Sapojnikov V, Searle SM, Solovyev V, Souvorov A, Ucla C, Wyss C, Anzola JM, Gerlach D, Elhaik E, Graur D, Reese JT, Edgar RC, McEwan JC, Payne GM, Raison JM, Junier T, Kriventseva EV, Eyras E, Plass M, Donthu R, Larkin DM, Reecy J, Yang MQ, Chen L, Cheng Z, Chitko-McKown CG, Liu GE, Matukumalli LK, Song J, Zhu B, Bradley DG, Brinkman FS, Lau LP, Whiteside MD, Walker A, Wheeler TT, Casey T, German JB, Lemay DG, Maqbool NJ, Molenaar AJ, Seo S, Stothard P, Baldwin CL, Baxter R, Brinkmeyer-Langford CL, Brown WC, Childers CP, Connelley T, Ellis SA, Fritz K, Glass EJ, Herzig CT, Iivanainen A, Lahmers KK, Bennett AK, Dickens CM, Gilbert JG, Hagen DE, Salih H, Aerts J, Caetano AR, Dalrymple B, Garcia JF, Gill CA, Hiendleder SG, Memili E, Spurlock D, Williams JL, Alexander L, Brownstein MJ, Guan L, Holt RA, Jones SJ, Marra MA, Moore R, Moore SS, Roberts A, Taniguchi M, Waterman RC, Chacko J, Chandrabose MM, Cree A, Dao MD, Dinh HH, Gabisi RA, Hines S, Hume J, Jhangiani SN, Joshi V, Kovar CL, Lewis LR, Liu YS, Lopez J, Morgan MB, Nguyen NB, Okwuonu GO, Ruiz SJ, Santibanez J, Wright RA, Buhay C, Ding Y, Dugan-Rocha S, Herdandez J, Holder M, Sabo A, Egan A, Goodell J, Wilczek-Boney K, Fowler GR, Hitchens ME, Lozado RJ, Moen C, Steffen D, Warren JT, Zhang J, Chiu R, Schein JE, Durbin KJ, Havlak P, Jiang H, Liu Y, Qin X, Ren Y, Shen Y, Song H, Bell SN, Davis C, Johnson AJ, Lee S, Nazareth LV, Patel BM, Pu LL, Vattathil S, Williams RL Jr, Curry S, Hamilton C, Sodergren E, Wheeler DA, Barris W, Bennett GL, Eggen A, Green RD, Harhay GP, Hobbs M, Jann O, Keele JW, Kent MP, Lien S, McKay SD, McWilliam S, Ratnakumar A, Schnabel RD, Smith T, Snelling WM, Sonstegard TS, Stone RT, Sugimoto Y, Takasuga A, Taylor JF, Van Tassell CP, Macneil MD, Abatepaulo AR, Abbey CA, Ahola V, Almeida IG, Amadio AF, Anatriello E, Bahadue SM, Biase FH, Boldt CR, Carroll JA, Carvalho WA, Cervelatti EP, Chacko E, Chapin JE, Cheng Y, Choi J, Colley AJ, de Campos TA, De Donato M, Santos IK, de Oliveira CJ, Deobald H, Devinoy E, Donohue KE, Dovc P, Eberlein A, Fitzsimmons CJ, Franzin AM, Garcia GR, Genini S, Gladney CJ, Grant JR, Greaser ML, Green JA, Hadsell DL, Hakimov HA, Halgren R, Harrow JL, Hart EA, Hastings N, Hernandez M, Hu ZL, Ingham A, Iso-Touru T, Jamis C, Jensen K, Kapetis D, Kerr T, Khalil SS, Khatib H, Kolbehdari D, Kumar CG, Kumar D, Leach R, Lee JC, Li C, Logan KM, Malinverni R, Marques E, Martin WF, Martins NF, Maruyama SR, Mazza R, McLean KL, Medrano JF, Moreno BT, Moré DD, Muntean CT, Nandakumar HP, Nogueira MF, Olsaker I, Pant SD, Panzitta F, Pastor RC, Poli MA, Poslusny N, Rachagani S, Ranganathan S, Razpet A, Riggs PK, Rincon G, Rodriguez-Osorio N, Rodriguez-Zas SL, Romero NE, Rosenwald A, Sando L, Schmutz SM, Shen L, Sherman L, Southey BR, Lutzow YS, Sweedler JV, Tammen I, Telugu BP, Urbanski JM, Utsunomiya YT, Verschoor CP, Waardenberg AJ, Wang Z, Ward R, Weikard R, Welsh TH Jr, White SN, Wilming LG, Wunderlich KR, Yang J, and Zhao FQ
- Subjects
- Alternative Splicing, Animals, Animals, Domestic, Cattle, Evolution, Molecular, Female, Genetic Variation, Humans, Male, MicroRNAs genetics, Molecular Sequence Data, Proteins genetics, Sequence Analysis, DNA, Species Specificity, Synteny, Biological Evolution, Genome
- Abstract
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.