1. Separation of Surface Grafted Microparticles via Light and Temperature
- Author
-
Daniela Vasquez‐Muñoz, Fabian Rohne, Isabel Meier, Cevin Braksch, Nino Lomadze, Anahita Heraji Esfahani, Anne Nitschke, Andreas Taubert, Svetlana Santer, Matthias Hartlieb, and Marek Bekir
- Subjects
active colloids ,azobenzene‐containing surfactants ,microfluidics ,PI‐RAFT polymerization ,polymer brushes ,volume phase transition temperature ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Separation of equally sized particles distinguished solely by interfacial properties remains a highly challenging task. Herein, a particle fractioning method is proposed, which is suitable to differentiate between polymer‐grafted microparticles that are equal in size. The separation relies on the combination of a pressure driven microfluidic flow, together with simultaneous light illumination and temperature control. Heating the solution forces thermo‐responsive surface grafts to undergo a volume phase transition and therefore locally changing the interfacial properties of the microparticles. Light illumination induces the phoretic/osmotic activity of the microparticles and lifts them into a higher plane, where hovering particles experience a different shear stress proportional to the height. The light‐induced hovering height depends on the interfacial properties, and this complex interaction leads to different movements of the microparticles as a function of their surface grafting. The concepts are visualized in experimental studies, where the complex physical principle provides a simple method for fractioning a binary mixture with at least one thermo‐responsive polymer graft.
- Published
- 2024
- Full Text
- View/download PDF