35,307 results on '"Maurya, A"'
Search Results
2. Technology and women: Using ICT for gender empowerment
- Author
-
Mishra, Ayush, Malik, Joginder Singh, Maurya, Abhilash Singh, and Bhavesh
- Published
- 2024
- Full Text
- View/download PDF
3. Research Productivity at the National Institute of Technology, Hamirpur: A Bibliometric Analysis
- Author
-
Maurya, Amarjeet, Muruli, N, and Naryal, Anjali
- Published
- 2024
- Full Text
- View/download PDF
4. Novel chewable gum sticks for the treatment of oral candidiasis
- Author
-
Agnihotri, Jaya, Yadav, Poonam, Maurya, Anjali, and Vishwakarma, Akash
- Published
- 2023
- Full Text
- View/download PDF
5. Yield and nutrient uptake of rapeseed (Brassica campestris var. Toria) as influenced by phosphorus sources and levels in Acidic Soils of Meghalaya
- Author
-
Maurya, Alok and Swami, Sanjay
- Published
- 2023
- Full Text
- View/download PDF
6. Role of Plant Quarantine in Preventing Entry of Exotic Pests
- Author
-
Chalam, V Celia, Gupta, Kavita, Singh, MC, Khan, Z, Akhtar, J, Gawade, BH, Kumari, Pooja, Kumar, Pardeep, Meena, BR, Maurya, AK, and Meena, DS
- Published
- 2022
- Full Text
- View/download PDF
7. Condition of labor in the carpet industry: A case study of Bhadohi District
- Author
-
Maurya, Archana
- Published
- 2022
- Full Text
- View/download PDF
8. Article in Hindi
- Author
-
Maurya, Arjun Kumar and Shukla, Jai Shankar
- Published
- 2022
9. Molecular cloning and In-silico characterization of NAC86 of Kalmegh (Andrographis paniculata)
- Author
-
Kumar, Ramesh, Kumar, Chavlesh, Jain, Rishu, Maurya, Avantika, Kumar, Ashok, Kumari, Abha, and Singh, Rakesh
- Published
- 2022
- Full Text
- View/download PDF
10. Measurement of the time-integrated CP asymmetry in $D^{0}\rightarrow K^{0}_{S}K^{0}_{S}$ decays using Belle and Belle II data
- Author
-
Belle, Collaborations, Belle II, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Babu, V., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Bartl, M., Baudot, J., Beaubien, A., Becker, J., Bennett, J. V., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Biswas, D., Bobrov, A., Bodrov, D., Bolz, A., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Das, S., De La Cruz-Burelo, E., De La Motte, S. A., De Pietro, G., de Sangro, R., Destefanis, M., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dossett, D., Dujany, G., Ecker, P., Eppelt, J., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironell, P. Gironella, Glazov, A., Gobbo, B., Godang, R., Goldenzweig, P., Gradl, W., Graziani, E., Greenwald, D., Gruberová, Z., Guan, Y., Gudkova, K., Haide, I., Hara, T., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jacobs, W. W., Jaffe, D. E., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kaliyar, A. B., Kandra, J., Karyan, G., Keil, F., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lalwani, K., Lam, T., Lange, J. S., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, C., Li, L. K., Li, Q. M., Li, W. Z., Li, Y. B., Liao, Y. P., Libby, J., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Madaan, C., Maggiora, M., Maharana, S. P., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matvienko, D., Maurya, S. K., Maushart, M., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Oxford, E. R., Pakhlova, G., Pardi, S., Parham, K., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Pedlar, T. K., Peruzzi, I., Peschke, R., Piccolo, M., Piilonen, L. E., Podesta-Lerma, P. L. M., Podobnik, T., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Purwar, H., Raiz, S., Rauls, N., Rehman, J. U., Reif, M., Reiter, S., Reuter, L., Herrmann, D. Ricalde, Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schnepf, M., Schwanda, C., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Shi, X. D., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sumihama, M., Sumisawa, K., Svidras, H., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Ueda, I., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Won, E., Yabsley, B. D., Yamada, S., Yan, W., Yelton, J., Yin, J. H., Yoshihara, K., Yuan, J., Zani, L., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhu, L., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We measure the time-integrated CP asymmetry in $D^{0} \rightarrow K^{0}_{S}K^{0}_{S}$ decays reconstructed in $e^{+}e^{-} \rightarrow c\overline{c}$ events collected by the Belle and Belle II experiments. The corresponding data samples have integrated luminosities of 980 fb$^{-1}$ and 427 fb$^{-1}$, respectively. The D$^{0}$ decays are required to originate from the $D^{*+} \rightarrow D^{0}\pi^{+}$ decay, which determines the charm flavor at production time. A control sample of $D^{0} \rightarrow K^{+}K^{-}$ decays is used to correct for production and detection asymmetries.The result, ($-$1.4 $\pm$ 1.3(\text{stat.})$\pm$ 0.1(\text{syst.}))\%, is consistent with previous determinations and with CP symmetry., Comment: 10 pages, 3 figures. arXiv admin note: text overlap with arXiv:2410.22961
- Published
- 2024
11. Minute time scale variability in $\gamma$-ray flare of BL Lacertae
- Author
-
Majumdar, Joysankar, Prince, Raj, and Maurya, Sakshi
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
In October 2024, The object BL Lac experienced a brightest flaring event in gamma-ray ($>$100 MeV) with a historical $\gamma$-ray flux of $\sim$10$^{-5}$ erg cm$^{-2}$ s$^{-1}$. Soon after the event was followed across the waveband and in X-ray (0.3-10 keV) it was also found to be flaring with the maximum flux achieved during this event as 8.30$\times$10$^{-11}$ erg cm$^{-2}$ s$^{-1}$. The high gamma-ray significance enables us to probe the shortest time scale variability possible and for that, we produced the orbital binned light curve, 5 minutes binned light curve, and the 2 minutes binned light curve. A clear variation is seen in the 5-minute light curve and is fitted with the sum of exponentials to derive the rise and decay time scale which ranges between 3 to 12 minutes. The fastest variability time is also estimated to be an order of 1 minute from 2 minute. The estimated size of the emission region is very small (10$^{13}$ cm) compared to the size of the black hole event horizon. The location of the emission region is estimated to be very close to the supermassive black hole (10$^{14}$ cm) and much inside the BLR (0.1 pc). We discussed the possible way to explain this fast-flux variability in BL Lac., Comment: Submitted
- Published
- 2024
12. On the origin of multifrequency temporal and spectral variability in Ton 599
- Author
-
Maurya, Sakshi, Prince, Raj, and Majumdar, Joysankar
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
In this work, we studied the broadband temporal and spectral properties of the flat-spectrum radio quasar (FSRQ) Ton 599 and explored the one-zone leptonic model to fit the broadband spectral energy distribution (SED). We collected the long-term data from June 2020 to August 2024 when the source was in a long flaring episode. We used the Bayesian block methodology to identify the various flux states which included three flares. The broadband fractional variability is estimated during two flaring states and in the total light curve. The Fvar distribution with respect to frequency shows a double hump structure similar to broadband SED. The Power spectral density (PSD) shows a pink-noise kind of stochastic variability in the light curve and we do not see any break in the power spectrum suggesting a much longer characteristic time scale is involved in gamma-ray variability. The flux distribution is well-fitted with a double log-normal flux distribution suggesting the variability of non-linear in nature. The gamma-ray, optical, and X-ray emissions were found to be highly correlated with a zero time lag suggesting a co-spatial origin. We used the one-zone leptonic model to reproduce the broad-band spectrum in the energy range from IR to very high-energy gamma-ray. The increase in the magnetic field and the Doppler factor were found to be the main cause for high flux states. The XMM-Newton spectra taken during one of the flaring durations exhibit a signature of black body emission from the accretion disk suggesting a possible disk-jet coupling. This has also been indicated by the gamma-ray flux distribution which shows the distribution as non-linear in nature mostly seen in galactic X-ray binaries or AGN where emission is dominated by the accretion disk. This possibility of disk-jet coupling will be explored in the coming works., Comment: Submitted
- Published
- 2024
13. Model-independent measurement of $D^0$-$\overline{D}{}^0$ mixing parameters in $D^0\rightarrow K^0_{S}\pi^+\pi^-$ decays at Belle and Belle II
- Author
-
Belle, Collaborations, Belle II, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Baghel, N. K., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Bartl, M., Baudot, J., Beaubien, A., Becker, J., Bennett, J. V., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Biswas, D., Bodrov, D., Bolz, A., Bondar, A., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Casarosa, G., Cecchi, C., Chang, P., Cheaib, R., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Das, S., De La Cruz-Burelo, E., De La Motte, S. A., De Pietro, G., de Sangro, R., Destefanis, M., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dossett, D., Dujany, G., Ecker, P., Epifanov, D., Eppelt, J., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironell, P. Gironella, Glazov, A., Gobbo, B., Godang, R., Goldenzweig, P., Gong, G., Gradl, W., Graziani, E., Greenwald, D., Gruberová, Z., Gudkova, K., Haide, I., Hara, T., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Itoh, R., Iwasaki, M., Jacobs, W. W., Jang, E. -J., Ji, Q. P., Jin, Y., Johnson, A., Junkerkalefeld, H., Kaliyar, A. B., Kandra, J., Karyan, G., Keil, F., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lalwani, K., Lam, T., Lange, J. S., Lau, T. S., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, C., Li, L. K., Li, Q. M., Li, W. Z., Li, Y., Li, Y. B., Libby, J., Liu, M. H., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Madaan, C., Maggiora, M., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matvienko, D., Maurya, S. K., Maushart, M., McKenna, J. A., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, H., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Oxford, E. R., Pakhlova, G., Pardi, S., Parham, K., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Pedlar, T. K., Peschke, R., Piilonen, L. E., Podesta-Lerma, P. L. M., Podobnik, T., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Purwar, H., Raiz, S., Rehman, J. U., Reif, M., Reiter, S., Reuter, L., Herrmann, D. Ricalde, Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Shen, C. P., Shi, X. D., Shillington, T., Shiu, J. -G., Shtol, D., Sibidanov, A., Simon, F., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Sumihama, M., Sumisawa, K., Svidras, H., Takizawa, M., Tanida, K., Tenchini, F., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Uchida, M., Ueda, I., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Yabsley, B. D., Yamada, S., Yan, W., Yin, J. H., Yoshihara, K., Yuan, J., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhu, L., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We perform a model-independent measurement of the $D^0$-$\overline{D}{}^0$ mixing parameters using samples of $e^+e^-$-collision data collected by the Belle and Belle II experiments that have integrated luminosities of $951\ \text{fb}^{-1}$ and $408\ \text{fb}^{-1}$, respectively. Approximately $2.05\times10^6$ neutral $D$ mesons are reconstructed in the $D^0\rightarrow K^0_{S}\pi^+\pi^-$ channel, with the neutral $D$ flavor tagged by the charge of the pion in the $D^{*+}\rightarrow D^0\pi^+$ decay. Assuming charge-parity symmetry, the mixing parameters are measured to be $ x = (4.0\pm1.7\pm0.4)\times 10^{-3} $ and $ y = (2.9\pm1.4\pm0.3)\times 10^{-3}$, where the first uncertainties are statistical and the second systematic. The results are consistent with previous determinations.
- Published
- 2024
14. Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading
- Author
-
Maurya, Avinash, Ye, Jie, Rafique, M. Mustafa, Cappello, Franck, and Nicolae, Bogdan
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Emerging Technologies ,Computer Science - Performance - Abstract
Transformers and large language models~(LLMs) have seen rapid adoption in all domains. Their sizes have exploded to hundreds of billions of parameters and keep increasing. Under these circumstances, the training of transformers is very expensive and often hits a ``memory wall'', i.e., even when using 3D parallelism (pipeline, tensor, data) and aggregating the memory of many GPUs, it is still not enough to hold the necessary data structures (model parameters, optimizer state, gradients, activations) in GPU memory. To compensate, state-of-the-art approaches offload the optimizer state, at least partially, to the host memory and perform hybrid CPU-GPU computations. However, the management of the combined host-GPU memory is often suboptimal and results in poor overlapping between data movements and computations. This leads to missed opportunities to simultaneously leverage the interconnect bandwidth and computational capabilities of CPUs and GPUs. In this paper, we leverage a key observation that the interleaving of the forward, backward and update phases generate fluctuations in the GPU memory utilization, which can be exploited to dynamically move a part of the optimizer state between the host and the GPU memory at each iteration. To this end, we design and implement \proj, a novel technique to split the LLM into subgroups, whose update phase is scheduled on either the CPU or the GPU based on our proposed performance model that addresses the trade-off between data movement cost, acceleration on the GPUs vs the CPUs, and competition for shared resources. We integrate our approach with DeepSpeed and demonstrate 2.5$\times$ faster iterations over state-of-the-art approaches using extensive experiments.
- Published
- 2024
- Full Text
- View/download PDF
15. The $D$-dimensional charged AdS black holes solutions in polytropic dark energy from Barrow entropy
- Author
-
Sekhmani, Yassine, Hazarika, Bidyut, Phukon, P., Landry, Alexandre, Maurya, Sunil K., and Rayimbaev, J.
- Subjects
General Relativity and Quantum Cosmology ,High Energy Physics - Theory - Abstract
This paper mainly aims to solve the Anti deSitter Black Holes (AdS BH) under the Barrow entropy under polytropic gas fluid, especially the Chaplygin Gas. First, we develop this last polytropic model in detail to then obtain the possible solutions and thermodynamic conditions on the Energy-Momentum and the Barrow Entropy for spacetimes of spatial dimension $D>3$. Then, we focus on thermidynamic solutions and the different impacts on the Barrow entropy of the black hole, the temperature profile, the mass and the various physical quantities involved. Afterwards, we focus on the specific cases of the solutions of dimensions $D=4$ and $5$ in order to concretely test the models, especially from the point of view of the thermodynamic topology. Finally, we generalize everything by elaborating and testing the stability of the models to arrive at the thermal geometry of the AdS BH., Comment: 55 pages, 22 figures
- Published
- 2024
16. Reinforcement Learning For Quadrupedal Locomotion: Current Advancements And Future Perspectives
- Author
-
Gurram, Maurya, Uttam, Prakash Kumar, and Ohol, Shantipal S.
- Subjects
Computer Science - Robotics - Abstract
In recent years, reinforcement learning (RL) based quadrupedal locomotion control has emerged as an extensively researched field, driven by the potential advantages of autonomous learning and adaptation compared to traditional control methods. This paper provides a comprehensive study of the latest research in applying RL techniques to develop locomotion controllers for quadrupedal robots. We present a detailed overview of the core concepts, methodologies, and key advancements in RL-based locomotion controllers, including learning algorithms, training curricula, reward formulations, and simulation-to-real transfer techniques. The study covers both gait-bound and gait-free approaches, highlighting their respective strengths and limitations. Additionally, we discuss the integration of these controllers with robotic hardware and the role of sensor feedback in enabling adaptive behavior. The paper also outlines future research directions, such as incorporating exteroceptive sensing, combining model-based and model-free techniques, and developing online learning capabilities. Our study aims to provide researchers and practitioners with a comprehensive understanding of the state-of-the-art in RL-based locomotion controllers, enabling them to build upon existing work and explore novel solutions for enhancing the mobility and adaptability of quadrupedal robots in real-world environments., Comment: 12 pages, 3 figures
- Published
- 2024
17. Observation of time-dependent $CP$ violation and measurement of the branching fraction of $B^0 \to J/\psi \pi^0$ decays
- Author
-
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bianchi, F., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Epifanov, D., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironella, P., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Granderath, S., Graziani, E., Gruberová, Z., Guan, Y., Gudkova, K., Haide, I., Han, Y., Hara, T., Hayashii, H., Hazra, S., Hearty, C., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kalita, D., Kandra, J., Kang, K. H., Kang, S., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kim, Y. J., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, D., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lalwani, K., Lam, T., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, L. K., Li, Q. M., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Maggiora, M., Maharana, S. P., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Onuki, Y., Otani, F., Pakhlov, P., Pakhlova, G., Paoloni, E., Pardi, S., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Pedlar, T. K., Peruzzi, I., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schmitt, C., Schneider, S., Schnepf, M., Schoenning, K., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Song, W., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Uchida, M., Ueda, I., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Veronesi, M., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yelton, J., Yin, J. H., Yoshihara, K., Yusa, Y., Zani, L., Zeng, F., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We present a measurement of the branching fraction and time-dependent charge-parity ($CP$) decay-rate asymmetries in $B^0 \to J/\psi \pi^0$ decays. The data sample was collected with the Belle~II detector at the SuperKEKB asymmetric $e^+e^-$ collider in 2019-2022 and contains $(387\pm 6)\times 10^6$ $B\overline{B}$ meson pairs from $\Upsilon(4S)$ decays. We reconstruct $392\pm 24$ signal decays and fit the $CP$ parameters from the distribution of the proper-decay-time difference of the two $B$ mesons. We measure the branching fraction to be $B(B^0 \to J/\psi \pi^0)=(2.02 \pm 0.12 \pm 0.10)\times 10^{-5}$ and the direct and mixing-induced $CP$ asymmetries to be $C_{CP}=0.13 \pm 0.12 \pm 0.03$ and $S_{CP}=-0.88 \pm 0.17 \pm 0.03$, respectively, where the first uncertainties are statistical and the second are systematic. We observe mixing-induced $CP$ violation with a significance of $5.0$ standard deviations for the first time in this mode.
- Published
- 2024
18. Position: LLM Unlearning Benchmarks are Weak Measures of Progress
- Author
-
Thaker, Pratiksha, Hu, Shengyuan, Kale, Neil, Maurya, Yash, Wu, Zhiwei Steven, and Smith, Virginia
- Subjects
Computer Science - Computation and Language - Abstract
Unlearning methods have the potential to improve the privacy and safety of large language models (LLMs) by removing sensitive or harmful information post hoc. The LLM unlearning research community has increasingly turned toward empirical benchmarks to assess the effectiveness of such methods. In this paper, we find that existing benchmarks provide an overly optimistic and potentially misleading view on the effectiveness of candidate unlearning methods. By introducing simple, benign modifications to a number of popular benchmarks, we expose instances where supposedly unlearned information remains accessible, or where the unlearning process has degraded the model's performance on retained information to a much greater extent than indicated by the original benchmark. We identify that existing benchmarks are particularly vulnerable to modifications that introduce even loose dependencies between the forget and retain information. Further, we show that ambiguity in unlearning targets in existing benchmarks can easily lead to the design of methods that overfit to the given test queries. Based on our findings, we urge the community to be cautious when interpreting benchmark results as reliable measures of progress, and we provide several recommendations to guide future LLM unlearning research.
- Published
- 2024
19. Chasing the Shadows: TTPs in Action to Attribute Advanced Persistent Threats
- Author
-
Rani, Nanda, Saha, Bikash, Maurya, Vikas, and Shukla, Sandeep Kumar
- Subjects
Computer Science - Cryptography and Security - Abstract
The current state of Advanced Persistent Threats (APT) attribution primarily relies on time-consuming manual processes. These include mapping incident artifacts onto threat attribution frameworks and employing expert reasoning to uncover the most likely responsible APT groups. This research aims to assist the threat analyst in the attribution process by presenting an attribution method named CAPTAIN (Comprehensive Advanced Persistent Threat AttrIbutioN). This novel APT attribution approach leverages the Tactics, Techniques, and Procedures (TTPs) employed by various APT groups in past attacks. CAPTAIN follows two significant development steps: baseline establishment and similarity measure for attack pattern matching. This method starts by maintaining a TTP database of APTs seen in past attacks as baseline behaviour of threat groups. The attribution process leverages the contextual information added by TTP sequences, which reflects the sequence of behaviours threat actors demonstrated during the attack on different kill-chain stages. Then, it compares the provided TTPs with established baseline to identify the most closely matching threat group. CAPTAIN introduces a novel similarity measure for APT group attack-pattern matching that calculates the similarity between TTP sequences. The proposed approach outperforms traditional similarity measures like Cosine, Euclidean, and Longest Common Subsequence (LCS) in performing attribution. Overall, CAPTAIN performs attribution with the precision of 61.36% (top-1) and 69.98% (top-2), surpassing the existing state-of-the-art attribution methods., Comment: Under Review
- Published
- 2024
20. A generalized solution for anisotropic compact star model in F(Q) gravity
- Author
-
Paul, Sat, Kumar, Jitendra, Maurya, Sunil Kumar, Choudhary, Sourav, and Kiroriwala, Sweeti
- Subjects
General Relativity and Quantum Cosmology - Abstract
In this work, we investigate an anisotropic compact star's physical properties and stability in F(Q) gravity. The study focuses on the significance of F(Q) gravity on the structure and stability of compact star, considering non-perfect fluid. Buchdahl ansatz along with transformation used to solve the Einstein field equations. We investigate the physical parameters of the 4U1820-30 compact star using a static spherical metric in the interior region and a Schwarzschild (anti) de-sitter metric in the exterior region. We investigate the behaviour of energy density(rho), radial pressure(pr), tangential pressure(pt), anisotropy, metric potentials, energy state parameters, and energy requirements in the interior of the proposed stellar object. The equilibrium state of this star is analysed using the Tolman-Oppenheimer-Volkoff(TOV) equation and their stability is determined using the regularity condition, causality condition, the adiabatic index(Gamma) method, and Herrera cracking method.
- Published
- 2024
21. Search for $C\!P$ violation in $D^+_{(s)}\to{}K_{S}^{0}K^{-}\pi^{+}\pi^{+}$ decays using triple and quadruple products
- Author
-
Belle, Collaborations, Belle II, Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bianchi, F., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Epifanov, D., Eppelt, J., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironell, P. Gironella, Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Graziani, E., Gruberová, Z., Guan, Y., Gudkova, K., Haide, I., Han, Y., Hara, T., Hayashii, H., Hazra, S., Hearty, C., Heidelbach, A., de la Cruz, I. Heredia, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lalwani, K., Lam, T., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, C., Li, L. K., Li, Q. M., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Maggiora, M., Maharana, S. P., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Mondal, S., Moneta, S., Moser, H. -G., Nakamura, I., Nakao, M., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Otani, F., Oxford, E. R., Pakhlova, G., Paoloni, E., Pardi, S., Park, H., Park, J., Park, K., Park, S. -H., Passeri, A., Pedlar, T. K., Peruzzi, I., Pestotnik, R., Piccolo, M., Piilonen, L. E., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sakai, Y., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schneider, S., Schnepf, M., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Song, W., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Ueda, I., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Vahsen, S. E., van Tonder, R., Veronesi, M., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yelton, J., Yin, J. H., Yuan, C. Z., Zani, L., Zeng, F., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We perform the first search for $C\!P$ violation in ${D_{(s)}^{+}\to{}K_{S}^{0}K^{-}\pi^{+}\pi^{+}}$ decays. We use a combined data set from the Belle and Belle II experiments, which study $e^+e^-$ collisions at center-of-mass energies at or near the $\Upsilon(4S)$ resonance. We use 980 fb$^{-1}$ of data from Belle and 428 fb$^{-1}$ of data from Belle~II. We measure six $C\!P$-violating asymmetries that are based on triple products and quadruple products of the momenta of final-state particles, and also the particles' helicity angles. We obtain a precision at the level of 0.5% for $D^+\to{}K_{S}^{0}K^{-}\pi^{+}\pi^{+}$ decays, and better than 0.3% for $D^+_{s}\to{}K_{S}^{0}K^{-}\pi^{+}\pi^{+}$ decays. No evidence of $C\!P$ violation is found. Our results for the triple-product asymmetries are the most precise to date for singly-Cabibbo-suppressed $D^+$ decays. Our results for the other asymmetries are the first such measurements performed for charm decays., Comment: 21 pages, 10 figures
- Published
- 2024
22. Combining Open-box Simulation and Importance Sampling for Tuning Large-Scale Recommenders
- Author
-
Paneri, Kaushal, Munje, Michael, Maurya, Kailash Singh, Swaminathan, Adith, and Shi, Yifan
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Information Retrieval - Abstract
Growing scale of recommender systems require extensive tuning to respond to market dynamics and system changes. We address the challenge of tuning a large-scale ads recommendation platform with multiple continuous parameters influencing key performance indicators (KPIs). Traditional methods like open-box Monte Carlo simulators, while accurate, are computationally expensive due to the high cost of evaluating numerous parameter settings. To mitigate this, we propose a hybrid approach Simulator-Guided Importance Sampling (SGIS) that combines open-box simulation with importance sampling (IS). SGIS leverages the strengths of both techniques: it performs a coarse enumeration over the parameter space to identify promising initial settings and then uses IS to iteratively refine these settings. This approach significantly reduces computational costs while maintaining high accuracy in KPI estimation. We demonstrate the effectiveness of SGIS through simulations as well as real-world experiments, showing that it achieves substantial improvements in KPIs with lower computational overhead compared to traditional methods., Comment: Accepted at the CONSEQUENCES '24 workshop, co-located with ACM RecSys '24
- Published
- 2024
23. Constrained transit cosmological models in $f(R,L_{m},T)$-gravity
- Author
-
Maurya, Dinesh Chandra
- Subjects
General Relativity and Quantum Cosmology ,83F05, 83C10, 85A40, 83B05 - Abstract
In the present paper, we investigate constrained transit cosmological models in the most recent proposed modified gravity theory, $f(R,L_{m},T)$-gravity. We obtain the modified field equations for a flat homogeneous and isotropic Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) spacetime metric. We constrain the equation of continuity by imposing the equation of state for the perfect fluid source $p=-\frac{1}{3}\rho+p_{0}$ so that we get energy conservation equation as $\dot{\rho}+3H(\rho+p)=0$, (because generally, energy conservation law is not satisfied in $f(R,L_{m},T)$-gravity). Using this constraint, we establish a relation between the energy density parameters $\Omega_{m0}$, $\Omega_{r0}$, and $\Omega_{f0}$ and the Hubble function. After that, we made observational constraints on $H(z)$ to obtain the best-fit present values of $\Omega_{m0}$, $\Omega_{r0}$, and $H_{0}$. Then, we use these best-fit values of energy parameters to investigate cosmological parameters such as the deceleration parameter, the effective equation of state $\omega_{eff}$, and the energy density parameters $\Omega_{m}$, $\Omega_{r}$, and $\Omega_{f}$ to learn more about the components and history of the expanding universe. We found an effective EoS parameter in the range $-1\le \omega_{eff}\le\frac{1}{3}$ with a deceleration-acceleration transition redshift value of $z_{t}=0.6377, 0.6424$ along two datasets cosmic chronometer (CC) and Pantheon SNIa, respectively., Comment: 21 pages, 6 figures, Revision submitted to IJGMMP Journal
- Published
- 2024
24. ESIGMAHM: An Eccentric, Spinning inspiral-merger-ringdown waveform model with Higher Modes for the detection and characterization of binary black holes
- Author
-
Paul, Kaushik, Maurya, Akash, Henry, Quentin, Sharma, Kartikey, Satheesh, Pranav, Divyajyoti, Kumar, Prayush, and Mishra, Chandra Kant
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present a time-domain inspiral-merger-ringdowm (IMR) waveform model ESIGMAHM constructed within a framework we named ESIGMA for coalescing binaries of spinning black holes on moderately eccentric orbits (Huerta et al. (2018) [Phys. Rev. D 97, 024031]). We now include the effect of black hole spins on the dynamics of eccentric binaries, as well as model sub-dominant waveform harmonics emitted by them. The inspiral evolution is described by a consistent combination of latest results from post-Newtonian theory, self-force, and black hole perturbation theory. We assume that these moderately eccentric binaries radiate away most of their orbital eccentricity before merger, and seamlessly connect the eccentric inspiral with a numerical relativity based surrogate waveform model for mergers of spinning binaries on quasi-circular orbits. We validate ESIGMAHM against eccentric Numerical Relativity simulations, and also against contemporary effective-one-body and phenomenological models in the quasi-circular limit. We find that ESIGMAHM achieves match values greater than $99\%$ for quasi-circular spin-aligned binaries with mass ratios up to $8$, and above $97\%$ for non-spinning and spinning eccentric systems with small or positively aligned spins. Using IMRESIGMA, we quantify the impact of orbital eccentricity on GW signals, showing that next-generation detectors can detect eccentric sources up to $10\%$ louder than quasi-circular ones. We also show that current templated LIGO-Virgo searches will lose more than $10\%$ of optimal SNR for about $20\%$ of all eccentric sources by using only quasi-circular waveform templates. The same will result in a $25\%$ loss in detection rate for eccentric sources with mass ratios $m_1/m_2\geq 4$. Our results highlight the need for including eccentricity and higher-order modes in GW source models and searches for asymmetric eccentric BBH signals.
- Published
- 2024
25. Multiple ionization, fragmentation and dehydrogenation of coronene in collision with swift proton
- Author
-
Singh, Shashank, Maurya, Sanjeev Kumar, Gulyas, Laszlo, and Tribedi, Lokesh C.
- Subjects
Physics - Atomic Physics ,81V55 (Primary) 85-05(Secondary) - Abstract
The coronene molecules have been bombarded by protons of energy by 75 to 300 keV. The time of flight mass spectrum has been recorded using a two stage Wiley McLaren type spectrometer. A large enhancement in the doubly and triply ionized recoil ion is observed compared to the singly ionized one. The single, double and triple ionization yields have also been calculated using the continuum distorted wave eikonal initial state (CDW EIS) theoretical model and are compared with the experimental results. Experimental double to single ionization yield ratios and triple to single ionization yield ratios have been compared with the theoretical ratios which are found to be much higher w.r. t. the gas atoms. Evaporation peaks due to the loss of several neutral C2H2 and C3H3 are observed corresponding to their parent singly, doubly and triply charge coronene ions. Small fragmentation peaks CnHx+ (n = 3 to 7) are present in the spectra due to higher energy transfer by the projectile to the molecule. The hydrogen losses are observed in the cation, di-cation and tri-cation coronene peak structures. A maximum of the 7 H losses are detected which depends on the beam energy., Comment: After careful consideration, I have decided to withdraw this paper due to significant improvements needed in the paper and require extensive revisions. I plan to address these issues and resubmit a corrected version in the future."
- Published
- 2024
26. Adaptive Mixture Importance Sampling for Automated Ads Auction Tuning
- Author
-
Jia, Yimeng, Paneri, Kaushal, Huang, Rong, Maurya, Kailash Singh, Mallapragada, Pavan, and Shi, Yifan
- Subjects
Computer Science - Machine Learning ,Statistics - Applications ,68T05, 65C05, 68Q87 ,G.3 ,I.2.6 ,I.6.8 - Abstract
This paper introduces Adaptive Mixture Importance Sampling (AMIS) as a novel approach for optimizing key performance indicators (KPIs) in large-scale recommender systems, such as online ad auctions. Traditional importance sampling (IS) methods face challenges in dynamic environments, particularly in navigating through complexities of multi-modal landscapes and avoiding entrapment in local optima for the optimization task. Instead of updating importance weights and mixing samples across iterations, as in canonical adaptive IS and multiple IS, our AMIS framework leverages a mixture distribution as the proposal distribution and dynamically adjusts both the mixture parameters and their mixing rates at each iteration, thereby enhancing search diversity and efficiency. Through extensive offline simulations, we demonstrate that AMIS significantly outperforms simple Gaussian Importance Sampling (GIS), particularly in noisy environments. Moreover, our approach is validated in real-world scenarios through online A/B experiments on a major search engine, where AMIS consistently identifies optimal tuning points that are more likely to be adopted as mainstream configurations. These findings indicate that AMIS enhances convergence in noisy environments, leading to more accurate and reliable decision-making in the context of importance sampling off-policy estimators., Comment: Accepted at the CONSEQUENCES '24 workshop, co-located with ACM RecSys '24
- Published
- 2024
27. LLMs in Education: Novel Perspectives, Challenges, and Opportunities
- Author
-
Alhafni, Bashar, Vajjala, Sowmya, Bannò, Stefano, Maurya, Kaushal Kumar, and Kochmar, Ekaterina
- Subjects
Computer Science - Computation and Language - Abstract
The role of large language models (LLMs) in education is an increasing area of interest today, considering the new opportunities they offer for teaching, learning, and assessment. This cutting-edge tutorial provides an overview of the educational applications of NLP and the impact that the recent advances in LLMs have had on this field. We will discuss the key challenges and opportunities presented by LLMs, grounding them in the context of four major educational applications: reading, writing, and speaking skills, and intelligent tutoring systems (ITS). This COLING 2025 tutorial is designed for researchers and practitioners interested in the educational applications of NLP and the role LLMs have to play in this area. It is the first of its kind to address this timely topic., Comment: COLING 2025 Tutorial
- Published
- 2024
28. The effect of resummation on retarded Green's function and greybody factor in $AdS$ black holes
- Author
-
Amado, Julián Barragán, Chakrabortty, Shankhadeep, and Maurya, Arpit
- Subjects
High Energy Physics - Theory ,General Relativity and Quantum Cosmology - Abstract
We investigate the retarded Green's function and the greybody factor in asymptotically AdS black holes. Using the connection coefficients of the Heun equation, expressed in terms of the Nekrasov-Shatashvili (NS) free energy of an $SU(2)$ supersymmetric gauge theory with four fundamental hypermultiplets, we derive asymptotic expansions for both the retarded Green's function and the greybody factor in the small horizon limit. Furthermore, we compute the corrections to these asymptotic expansions resulting from the resummation procedure of the instanton part of the NS function., Comment: 37 pages, 5 figures
- Published
- 2024
29. Phytosanitary regulations and diagnostics for crop biosecurity against exotic pathogens
- Author
-
Chalam, V Celia, Kumari, P, Akhtar, J, Kumar, P, Meena, B R, Kalaiponmani, K, Yadav, P, Tripathi, A, and Maurya, A K
- Published
- 2022
30. Cooperative game theory approaches to manage traffic congestion in wireless network
- Author
-
Singh, Avinash, Maurya, A.K., Singh, Surya Pratap, Pandey, Himanshu, and Tripathi, Upendra Nath
- Published
- 2021
- Full Text
- View/download PDF
31. Influence of anti-ferromagnetic ordering and electron correlation on the electronic structure of MnTiO$_3$
- Author
-
Ali, Asif, Maurya, R. K., Bansal, Sakshi, Reddy, B. H., and Singh, Ravi Shankar
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Electron correlation and long-range magnetic ordering have a significant impact on the electronic structure and physical properties of solids. Here, we investigate the electronic structure of ilmenite MnTiO$_{3}$ using room temperature photoemission spectroscopy and theoretical approaches within density functional theory (DFT), DFT+$U$ and DFT+dynamical mean field theory (DMFT). Mn 2$p$ (Ti 2$p$) core level photoemission spectra, confirming Mn$^{2+}$ (Ti$^{4+}$) oxidation state, exhibit multiple satellites which are very similar to that of MnO (TiO$_{2}$), suggesting similar strength of various interactions in this system. Valence band spectra collected at different photon energies suggest dominant Mn 3$d$ character in the highest occupied band with a wide insulating gap. DFT(+$U$) correctly predicts the experimentally observed anti-ferromagnetic (AFM) insulating ground state for MnTiO$_3$ where the requirement of a large $U$ to reproduce the experimental values of magnetic moment and band gap signifies the importance of electron correlation. Magnetically disordered paramagnetic (PM) phase could be well captured within DFT+DMFT, which provides an excellent agreement for the experimental band gap, paramagnetic moment, valence band spectra as well as dominant Mn 3$d$ character in the highest occupied band. The calculated spectral function remains largely unaffected and exhibits sharper features in the magnetically ordered AFM phase. We show that the electronic structure of MnTiO$_{3}$ in both the PM and AFM phases can be accurately described within DFT+DMFT.
- Published
- 2024
- Full Text
- View/download PDF
32. SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models
- Author
-
Maurya, Kaushal Kumar, Srivatsa, KV Aditya, and Kochmar, Ekaterina
- Subjects
Computer Science - Computation and Language - Abstract
Large language models (LLMs) have gained increased popularity due to their remarkable success across various tasks, which has led to the active development of a large set of diverse LLMs. However, individual LLMs have limitations when applied to complex tasks because of such factors as training biases, model sizes, and the datasets used. A promising approach is to efficiently harness the diverse capabilities of LLMs to overcome these individual limitations. Towards this goal, we introduce a novel LLM selection algorithm called SelectLLM. This algorithm directs input queries to the most suitable subset of LLMs from a large pool, ensuring they collectively provide the correct response efficiently. SelectLLM uses a multi-label classifier, utilizing the classifier's predictions and confidence scores to design optimal policies for selecting an optimal, query-aware, and lightweight subset of LLMs. Our findings show that the proposed model outperforms individual LLMs and achieves competitive performance compared to similarly sized, computationally expensive top-performing LLM subsets. Specifically, with a similarly sized top-performing LLM subset, we achieve a significant reduction in latency on two standard reasoning benchmarks: 13% lower latency for GSM8K and 70% lower latency for MMLU. Additionally, we conduct comprehensive analyses and ablation studies, which validate the robustness of the proposed model.
- Published
- 2024
33. Geometrically deformed charged anisotropic models in $f(Q,T)$ gravity
- Author
-
Pradhan, Sneha, Maurya, Sunil Kumar, Sahoo, Pradyumn Kumar, and Mustafa, Ghulam
- Subjects
General Relativity and Quantum Cosmology - Abstract
In this study, we developed the geometrically deformed compact objects in the $f(Q, T)$ gravity theory under an electric field through gravitational decoupling via. minimal geometric deformation (MGD) technique for the first time. The decoupled field equations are solved via two different mimic approaches $\theta_0^0 = \rho$ and $\theta_1^1 = p_r$ through the Karmarkar condition. We conduct physical viability tests on our models and examine how decoupling parameters affect the physical qualities of objects. The obtained models are compared with the observational constraints for neutron stars PSR J1810+174, PSR J1959+2048, and PSR J2215+5135, including GW190814. Particularly, by modifying parameters $\alpha$ and $n$, we accomplish the occurrence of a "\textit{mass gap}" component. The resulting models exhibit stable, well-behaved mass profiles, regular behaviour, and no gravitational collapse, as verified by the Buchdahl--Andr\'{e}asson's limit. Furthermore, we provide a thorough physical analysis that is based on two parameters: $n$ ($f(Q,T)$--coupling parameter) and $\alpha$ (decoupling parameter). This work extends our current understanding of compact star configurations and sheds light on the behaviour of compact objects in the $f(Q,T)$ gravity., Comment: Fortschritte der Physik published version
- Published
- 2024
- Full Text
- View/download PDF
34. Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0\to\pi^- \ell^+ \nu_{\ell}$ and $B^+\to\rho^0 \ell^+\nu_{\ell}$ decays
- Author
-
Belle II Collaboration, Adachi, I., Aggarwal, L., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Baudot, J., Bauer, M., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bolz, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Corona, L., Cui, J. X., Dattola, F., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Nuccio, M., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dorigo, M., Dorner, D., Dort, K., Dossett, D., Dreyer, S., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Eliachevitch, M., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Granderath, S., Greenwald, D., Gruberová, Z., Gu, T., Gudkova, K., Haide, I., Halder, S., Han, Y., Hara, T., Harris, C., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kalita, D., Kaliyar, A. B., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, K. -H., Kim, Y. -K., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Konno, T., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, J., Kumar, M., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lalwani, K., Lam, T., Lanceri, L., Lange, J. S., Laurenza, M., Lautenbach, K., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Leo, P., Lemettais, C., Levit, D., Lewis, P. M., Li, L. K., Li, S. X., Li, Y., Li, Y. B., Libby, J., Liptak, Z., Liu, M. H., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Ma, Y., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matvienko, D., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Metzner, F., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mizuk, R., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mrvar, M., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Charan, A. Narimani, Naruki, M., Narwal, D., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Nazaryan, G., Neu, M., Niiyama, M., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Pakhlova, G., Pardi, S., Parham, K., Park, H., Park, J., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Robertson, S. H., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schmitt, C., Schneider, S., Schnepf, M., Schwanda, C., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanaka, S., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Tonelli, D., Torassa, E., Trabelsi, K., Uchida, M., Ueda, I., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Vossen, A., Wach, B., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yang, S. B., Yelton, J., Yin, J. H., Yook, Y. M., Yoshihara, K., Yuan, C. Z., Zani, L., Zeng, F., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhou, X. Y., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We present a measurement of $|V_{ub}|$ from a simultaneous study of the charmless semileptonic decays $B^0\to\pi^- \ell^+ \nu_{\ell}$ and $B^+\to\rho^0 \ell^+\nu_{\ell}$, where $\ell = e, \mu$. This measurement uses a data sample of 387 million $B\overline{B}$ meson pairs recorded by the Belle~II detector at the SuperKEKB electron-positron collider between 2019 and 2022. The two decays are reconstructed without identifying the partner $B$ mesons. We simultaneously measure the differential branching fractions of $B^0\to\pi^- \ell^+ \nu_{\ell}$ and $B^+\to\rho^0 \ell^+\nu_{\ell}$ decays as functions of $q^2$ (momentum transfer squared). From these, we obtain total branching fractions $B(B^0\to\pi^- \ell^+ \nu_{\ell}) = (1.516 \pm 0.042 (\mathrm{stat}) \pm 0.059 (\mathrm{syst})) \times 10^{-4}$ and $B(B^+\to\rho^0 \ell^+\nu_{\ell}) = (1.625 \pm 0.079 (\mathrm{stat}) \pm 0.180 (\mathrm{syst})) \times 10^{-4}$. By fitting the measured $B^0\to\pi^- \ell^+ \nu_{\ell}$ partial branching fractions as functions of $q^2$, together with constraints on the non-perturbative hadronic contribution from lattice QCD calculations, we obtain $|V_{ub}|$ = $(3.93 \pm 0.09 \pm 0.13 \pm 0.19) \times 10^{-3}$. Here, the first uncertainty is statistical, the second is systematic, and the third is theoretical.
- Published
- 2024
35. Machine Learning-Enhanced Design of Lead-Free Halide Perovskite Materials Using Density Functional Theory
- Author
-
Kumar, Upendra, Kim, Hyeon Woo, Maurya, Gyanendra Kumar, Raj, Bincy Babu, Singh, Sobhit, Kushwaha, Ajay Kumar, Cho, Sung Beom, and Ko, Hyunseok
- Subjects
Condensed Matter - Materials Science - Abstract
The investigation of emerging non-toxic perovskite materials has been undertaken to advance the fabrication of environmentally sustainable lead-free perovskite solar cells. This study introduces a machine learning methodology aimed at predicting innovative halide perovskite materials that hold promise for use in photovoltaic applications. The seven newly predicted materials are as follows: CsMnCl$_4$, Rb$_3$Mn$_2$Cl$_9$, Rb$_4$MnCl$_6$, Rb$_3$MnCl$_5$, RbMn$_2$Cl$_7$, RbMn$_4$Cl$_9$, and CsIn$_2$Cl$_7$. The predicted compounds are first screened using a machine learning approach, and their validity is subsequently verified through density functional theory calculations. CsMnCl$_4$ is notable among them, displaying a bandgap of 1.37 eV, falling within the Shockley-Queisser limit, making it suitable for photovoltaic applications. Through the integration of machine learning and density functional theory, this study presents a methodology that is more effective and thorough for the discovery and design of materials.
- Published
- 2024
36. Measurement of $CP$ asymmetries in $B^0 \to K^0_S \pi^0 \gamma$ decays at Belle II
- Author
-
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Bilokin, S., Biswas, D., Bodrov, D., Bolz, A., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Das, S., Dattola, F., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Nuccio, M., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dorigo, M., Dorner, D., Dort, K., Dossett, D., Dreyer, S., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Eliachevitch, M., Feichtinger, P., Ferber, T., Ferlewicz, D., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Grammatico, T., Graziani, E., Greenwald, D., Gruberová, Z., Gu, T., Guan, Y., Gudkova, K., Halder, S., Han, Y., Hara, K., Hara, T., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jaffe, D. E., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Joo, K. K., Junkerkalefeld, H., Kaleta, M., Kalita, D., Kaliyar, A. B., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, K. -H., Kim, Y. -K., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Kraetzschmar, T. M. G., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, J., Kumar, M., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lam, T., Lanceri, L., Lange, J. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Leo, P., Levit, D., Li, C., Li, L. K., Li, S. X., Li, Y., Li, Y. B., Libby, J., Lin, Y. -R., Liu, M. H., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Luo, T., Lyu, C., Ma, Y., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martel, L., Martellini, C., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matsuoka, K., Matvienko, D., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Metzner, F., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Miyake, H., Mizuk, R., Mohanty, G. B., Molina-Gonzalez, N., Mondal, S., Moneta, S., Moser, H. -G., Mrvar, M., Mussa, R., Nakamura, I., Nakamura, K. R., Nakao, M., Nakazawa, H., Nakazawa, Y., Charan, A. Narimani, Naruki, M., Narwal, D., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Onuki, Y., Oskin, P., Otani, F., Pakhlov, P., Pakhlova, G., Panta, A., Pardi, S., Parham, K., Park, H., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Ravindran, K., Reif, M., Reiter, S., Remnev, M., Ripp-Baudot, I., Rizzo, G., Robertson, S. H., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Russo, G., Sanders, D. A., Sandilya, S., Sangal, A., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schmitt, C., Schwanda, C., Schwartz, A. J., Schwickardi, M., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Sumihama, M., Sumisawa, K., Sutcliffe, W., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanaka, S., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Tonelli, D., Torassa, E., Trabelsi, K., Tsaklidis, I., Uchida, M., Ueda, I., Uematsu, Y., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wach, B., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Won, E., Xie, Y., Xu, X. P., Yabsley, B. D., Yamada, S., Yang, S. B., Yelton, J., Yin, J. H., Yoshihara, K., Yuan, C. Z., Yusa, Y., Zani, L., Zeng, F., Zhang, B., Zhang, Y., Zhilich, V., Zhou, Q. D., Zhou, X. Y., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We report measurements of time-dependent $CP$ asymmetries in $B^0 \to K^0_S \pi^0 \gamma$ decays based on a data sample of $(388\pm6)\times10^6$ $B\bar{B}$ events collected at the $\Upsilon(4S)$ resonance with the Belle II detector. The Belle II experiment operates at the SuperKEKB asymmetric-energy $e^+e^-$ collider. We measure decay-time distributions to determine $CP$-violating parameters $S$ and $C$. We determine these parameters for two ranges of $K^0_S \pi^0$ invariant mass: $m(K^0_S \pi^0)\in (0.8, 1.0)$ $GeV/c^2$, which is dominated by $B^0 \to K^{*0} (\to K^0_S \pi^0) \gamma$ decays, and a complementary region $m(K^0_S \pi^0)\in (0.6, 0.8)\cup(1.0, 1.8)$ $GeV/c^2$. Our results have improved precision as compared to previous measurements and are consistent with theory predictions., Comment: 10 pages, 4 figures
- Published
- 2024
37. Measurement of branching fractions, CP asymmetry, and isospin asymmetry for $\boldsymbol{B\rightarrow\rho\gamma}$ decays using Belle and Belle II data
- Author
-
Belle II Collaboration, Adachi, I., Adamczyk, K., Aggarwal, L., Aihara, H., Akopov, N., Aloisio, A., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Bilokin, S., Biswas, D., Bobrov, A., Bodrov, D., Bolz, A., Bondar, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Choi, S. -K., Choudhury, S., Corona, L., Das, S., Dattola, F., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Nuccio, M., De Pietro, G., de Sangro, R., Destefanis, M., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dort, K., Dossett, D., Dreyer, S., Dubey, S., Dujany, G., Ecker, P., Eliachevitch, M., Epifanov, D., Feichtinger, P., Ferber, T., Ferlewicz, D., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Grammatico, T., Graziani, E., Greenwald, D., Gruberová, Z., Gu, T., Guan, Y., Gudkova, K., Halder, S., Han, Y., Hara, T., Hayashii, H., Hazra, S., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Joo, K. K., Junkerkalefeld, H., Kalita, D., Kaliyar, A. B., Kandra, J., Kang, K. H., Karyan, G., Kawasaki, T., Keil, F., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, K. -H., Kim, Y. -K., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Kraetzschmar, T. M. G., Križan, P., Krokovny, P., Kuhr, T., Kumar, J., Kumar, M., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lam, T., Lanceri, L., Lange, J. S., Laurenza, M., Lautenbach, K., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Levit, D., Lewis, P. M., Li, C., Li, L. K., Li, Y., Li, Y. B., Libby, J., Liu, M. H., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Ma, Y., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martel, L., Martellini, C., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matvienko, D., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Metzner, F., Miller, C., Mirra, M., Miyabayashi, K., Miyake, H., Mizuk, R., Mohanty, G. B., Molina-Gonzalez, N., Mondal, S., Moneta, S., Moser, H. -G., Mrvar, M., Mussa, R., Nakamura, I., Nakamura, K. R., Nakao, M., Nakazawa, Y., Charan, A. Narimani, Naruki, M., Narwal, D., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Oskin, P., Otani, F., Pakhlov, P., Pakhlova, G., Panta, A., Pardi, S., Parham, K., Park, H., Park, S. -H., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Ripp-Baudot, I., Rizzo, G., Robertson, S. H., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Russo, G., Sanders, D. A., Sandilya, S., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schmitt, C., Schwanda, C., Schwartz, A. J., Schwickardi, M., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Sumihama, M., Sumisawa, K., Sutcliffe, W., Svidras, H., Takizawa, M., Tamponi, U., Tanaka, S., Tanida, K., Tenchini, F., Tittel, O., Tiwary, R., Tonelli, D., Torassa, E., Trabelsi, K., Tsaklidis, I., Uchida, M., Ueda, I., Uematsu, Y., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wach, B., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Wiechczynski, J., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yang, S. B., Yelton, J., Yin, J. H., Yoshihara, K., Yuan, C. Z., Zani, L., Zhang, B., Zhang, Y., Zhilich, V., Zhou, Q. D., Zhou, X. Y., and Zhukova, V. I.
- Subjects
High Energy Physics - Experiment - Abstract
We present measurements of $B^{+}\rightarrow\rho^{+}\gamma$ and $B^{0}\rightarrow\rho^{0}\gamma$ decays using a combined data sample of $772 \times 10^6$ $B\overline{B}$ pairs collected by the Belle experiment and $387\times 10^6$ $B\overline{B}$ pairs collected by the Belle II experiment in $e^{+}e^{-}$ collisions at the $\Upsilon (4S)$ resonance. After an optimized selection, a simultaneous fit to the Belle and Belle II data sets yields $114\pm 12$ $B^{+}\rightarrow\rho^{+}\gamma$ and $99\pm 12$ $B^{0}\rightarrow\rho^{0}\gamma$ decays. The measured branching fractions are $(13.1^{+2.0 +1.3}_{-1.9 -1.2})\times 10^{-7}$ and $(7.5\pm 1.3^{+1.0}_{-0.8})\times 10^{-7}$ for $B^{+}\rightarrow\rho^{+}\gamma$ and $B^{0}\rightarrow\rho^{0}\gamma$ decays, respectively, where the first uncertainty is statistical and the second is systematic. We also measure the isospin asymmetry $A_{\rm I}(B\rightarrow\rho\gamma)=(10.9^{+11.2 +7.8}_{-11.7 -7.3})\%$ and the direct CP asymmetry $A_{CP}(B^{+}\rightarrow\rho^{+}\gamma)=(-8.2\pm 15.2^{+1.6}_{-1.2})\%$., Comment: 12 pages, 4 figures
- Published
- 2024
38. Topological AdS black holes surrounded by Chaplygin dark fluid: from stability to geometrothermodynamic analysis
- Author
-
Sekhmani, Y., Luciano, G. G., Rayimbaev, J., Jasim, M. K., Al-Badawi, A., and Maurya, S. K.
- Subjects
General Relativity and Quantum Cosmology ,High Energy Physics - Theory - Abstract
Implementing the concept of Dark Fluid with a Chaplygin-like equation of state within General Relativity, we construct a new higher-dimensional, static, and spherically symmetric anti-de Sitter (AdS) black hole solution. Energy conditions are explored alongside curvature singularity tools. The inspection at the level of the phase structure and $P-v$ critical behavior is carried out in the context of the extended phase space, where the cosmological constant appears as pressure. Our findings disclose non-trivial similarities between the small/large phase transition of AdS black holes surrounded by Chaplygin dark fluid and van der Waals systems' liquid/gas phase transition. This analysis offers insights into the physical interpretation of the $P-v$ diagram and identifies critical exponents that reveal the scaling behavior of thermodynamic quantities close to criticality in a universal manner. We finally deepen our understanding of the thermodynamic properties and microstructure of AdS black holes by leveraging the geometrothermodynamic formalism. Specifically, we employ tools, including Weinhold, Ruppeiner, Hendi-Panahiyan-Eslam-Momennia (HPEM) and Quevedo classes I and II. We show that each class of metrics predicts either the physical limitation point and/or the phase-transition critical points, with HPEM and Quevedo formulations providing richer information about the phase transitions. Altogether, this study contributes to advancing our knowledge of the role of Chaplygin gas in General Relativity and thoroughly examining the thermodynamic phase structure of high-dimensional AdS black holes under extreme conditions., Comment: 26 pages, 11 labeled figure, accepted for publication in Phys. Dark. Univ
- Published
- 2024
- Full Text
- View/download PDF
39. Search for the baryon number and lepton number violating decays $\tau^-\to \Lambda\pi^-$ and $\tau^-\to \bar{\Lambda}\pi^-$ at Belle II
- Author
-
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Borah, J., Boschetti, A., Bozek, A., Branchini, P., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Cheaib, R., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dorigo, M., Dort, K., Dossett, D., Dubey, S., Dujany, G., Ecker, P., Epifanov, D., Eppelt, J., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Gironella, P., Glazov, A., Gobbo, B., Godang, R., Goldenzweig, P., Gradl, W., Graziani, E., Greenwald, D., Gruberová, Z., Gudkova, K., Haide, I., Halder, S., Hara, K., Harris, C., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jacobs, W. W., Jaffe, D. E., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Junkerkalefeld, H., Kandra, J., Kang, K. H., Karyan, G., Kawasaki, T., Keil, F., Kiesling, C., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kumar, R., Kumara, K., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lalwani, K., Lam, T., Lanceri, L., Lange, J. S., Laurenza, M., Lautenbach, K., Leboucher, R., Lee, M. J., Leo, P., Levit, D., Lewis, P. M., Li, C., Li, L. K., Li, W. Z., Li, Y., Li, Y. B., Libby, J., Lin, J., Liu, M. H., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Ma, Y., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matsuda, T., Matvienko, D., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Narwal, D., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Nishida, S., Ogawa, S., Ono, H., Pakhlov, P., Paoloni, E., Pardi, S., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Pedlar, T. K., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Purwar, H., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Roney, J. M., Rout, N., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schnepf, M., Schwanda, C., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Song, W., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Tittel, O., Tiwary, R., Tonelli, D., Torassa, E., Trabelsi, K., Ueda, I., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yang, S. B., Yelton, J., Yin, J. H., Yoshihara, K., Yuan, C. Z., Zani, L., Zhang, B., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We present a search for the baryon number $B$ and lepton number $L$ violating decays $\tau^- \rightarrow \Lambda \pi^-$ and $\tau^- \rightarrow \bar{\Lambda} \pi^-$ produced from the $e^+e^-\to \tau^+\tau^-$ process, using a 364 fb$^{-1}$ data sample collected by the Belle~II experiment at the SuperKEKB collider. No evidence of signal is found in either decay mode, which have $|\Delta(B-L)|$ equal to $2$ and $0$, respectively. Upper limits at 90\% credibility level on the branching fractions of $\tau^- \rightarrow \Lambda\pi^-$ and $\tau^- \rightarrow \bar{\Lambda}\pi^-$ are determined to be $4.7 \times 10^{-8}$ and $4.3 \times 10^{-8}$, respectively., Comment: 8 pages, 4 figures
- Published
- 2024
40. Measurement of the integrated luminosity of data samples collected during 2019-2022 by the Belle II experiment
- Author
-
The Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Ahn, J. K., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Bahinipati, S., Bambade, P., Banerjee, Sw., Barrett, M., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Borah, J., Boschetti, A., Bozek, A., Branchini, P., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Das, S., De La Cruz-Burelo, E., De La Motte, S. A., de Marino, G., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dort, K., Dossett, D., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Epifanov, D., Eppelt, J., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironella, P., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Graziani, E., Greenwald, D., Gruberová, Z., Gu, T., Gudkova, K., Haide, I., Halder, S., Han, Y., Hara, K., Hara, T., Harris, C., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jacobs, W. W., Jaffe, D. E., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kaleta, M., Kalita, D., Kandra, J., Kang, K. H., Karyan, G., Kawasaki, T., Keil, F., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kim, Y. J., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kumar, R., Kumara, K., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lalwani, K., Lam, T., Lanceri, L., Lange, J. S., Laurenza, M., Lautenbach, K., Leboucher, R., Lee, M. J., Lemettais, C., Leo, P., Levit, D., Lewis, P. M., Li, C., Li, L. K., Li, S. X., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liu, M. H., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Ma, Y., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matsuoka, K., Matvienko, D., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Narwal, D., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Pakhlov, P., Pakhlova, G., Paoloni, E., Pardi, S., Parham, K., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Pedlar, T. K., Peschke, R., Pestotnik, R., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Robertson, S. H., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sandilya, S., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schnepf, M., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Song, W., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Ueda, I., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Vossen, A., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yang, S. B., Yelton, J., Yin, J. H., Yoshihara, K., Yuan, C. Z., Zani, L., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
A series of data samples was collected with the Belle~II detector at the SuperKEKB collider from March 2019 to June 2022. We determine the integrated luminosities of these data samples using three distinct methodologies involving Bhabha ($e^+e^- \to e^+e^-(n\gamma)$), digamma ($e^+e^- \to \gamma\gamma(n\gamma)$), and dimuon ($e^+e^- \to \mu^+ \mu^- (n\gamma)$) events. The total integrated luminosity obtained with Bhabha, digamma, and dimuon events is ({426.88} $\pm$ 0.03 $\pm$ {2.61})~fb$^{-1}$, ({429.28} $\pm$ 0.03 $\pm$ {2.62})~fb$^{-1}$, and ({423.99} $\pm$ 0.04 $\pm$ {3.83})~fb$^{-1}$, where the first uncertainties are statistical and the second are systematic. The resulting total integrated luminosity obtained from the combination of the three methods is ({427.87 $\pm$ 2.01})~fb$^{-1}$., Comment: 12 pages, 3 figures; accepted for publication in Chinese Physics C
- Published
- 2024
41. Study of $\chi_{bJ}(2P)\to\omega\Upsilon(1S)$ at Belle
- Author
-
Belle Collaboration, Stottler, Z. S., Pedlar, T. K., Fulsom, B. G., Adachi, I., Adamczyk, K., Aihara, H., Said, S. Al, Asner, D. M., Atmacan, H., Aushev, T., Ayad, R., Babu, V., Banerjee, Sw., Bauer, M., Behera, P., Belous, K., Bennett, J., Bernlochner, F., Bessner, M., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bonvicini, G., Borah, J., Bozek, A., Branchini, P., Browder, T. E., Budano, A., Campajola, M., Cao, L., Červenkov, D., Chang, M. -C., Cheon, B. G., Chilikin, K., Cho, H. E., Cho, K., Choi, S. -K., Choi, Y., Choudhury, S., Cinabro, D., Das, S., De Nardo, G., De Pietro, G., Dhamija, R., Di Capua, F., Doležal, Z., Dong, T. V., Dubey, S., Ecker, P., Epifanov, D., Ferber, T., Ferlewicz, D., Gaur, V., Garmash, A., Giri, A., Goldenzweig, P., Graziani, E., Gu, T., Guan, Y., Gudkova, K., Hadjivasiliou, C., Hara, T., Hayasaka, K., Hazra, S., Hedges, M. T., Herrmann, D., Hou, W. -S., Hsu, C. -L., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Iwasaki, Y., Jacobs, W. W., Jia, S., Jin, Y., Kaliyar, A. B., Kawasaki, T., Kiesling, C., Kim, C. H., Kim, D. Y., Kim, K. -H., Kim, Y. -K., Kodyš, P., Korobov, A., Korpar, S., Kovalenko, E., Križan, P., Krokovny, P., Kuhr, T., Kumar, M., Kumar, R., Kumara, K., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lam, T., Laurenza, M., Lee, S. C., Levit, D., Lewis, P., Li, L. K., Libby, J., Lieret, K., Liventsev, D., Luo, T., Ma, Y., Masuda, M., Maurya, S. K., Meier, F., Merola, M., Miyabayashi, K., Mohanty, G. B., Nakamura, I., Nakao, M., Natochii, A., Nayak, L., Nisar, N. K., Nishida, S., Ogawa, K., Ogawa, S., Ono, H., Oskin, P., Pakhlov, P., Pakhlova, G., Pang, T., Pardi, S., Park, J., Park, S. -H., Patra, S., Paul, S., Pestotnik, R., Piilonen, L. E., Podobnik, T., Prencipe, E., Prim, M. T., Rout, N., Russo, G., Sandilya, S., Sangal, A., Santelj, L., Savinov, V., Schnell, G., Schwanda, C., Seino, Y., Senyo, K., Shan, W., Shapkin, M., Sharma, C., Shiu, J. -G., Sokolov, A., Solovieva, E., Starič, M., Sumihama, M., Sutcliffe, W., Takizawa, M., Tanida, K., Tenchini, F., Tiwary, R., Uchida, M., Unno, Y., Uno, S., Vahsen, S. E., Varner, G., Wang, D., Wang, E., Wang, M. -Z., Watanuki, S., Werbycka, O., Won, E., Yabsley, B. D., Yan, W., Yin, J. H., Yuan, C. Z., Yuan, L., Yusa, Y., Zhang, Z. P., Zhilich, V., and Zhukova, V.
- Subjects
High Energy Physics - Experiment - Abstract
We report a study of the hadronic transitions $\chi_{bJ}(2P)\to\omega\Upsilon(1S)$, with $\omega\to\pi^{+}\pi^{-}\pi^{0}$, using $28.2\times10^6~\Upsilon(3S)$ mesons recorded by the Belle detector. We present the first evidence for the near--threshold transition $\chi_{b0}(2P)\to\omega\Upsilon(1S)$, the analog of the charm sector decay $\chi_{c1}(3872)\to\omega J/\psi$, with a branching fraction of $B\big(\chi_{b0}(2P)\to\omega\Upsilon(1S)\big) = \big(0.55\pm0.19\pm0.07\big)\%$. We also obtain branching fractions of $B\big(\chi_{b1}(2P)\to\omega\Upsilon(1S)\big) = \big(2.39{}^{+0.20}_{-0.19}\pm0.24\big)\%$ and $B\big(\chi_{b2}(2P)\to\omega\Upsilon(1S)\big) = \big(0.47{}^{+0.13}_{-0.12}\pm0.06\big)\%$, confirming the measurement of the $\omega$ transitions of the $J=1,2~P$--wave states. The ratio for the $J=2$ to $J=1$ transitions is also measured and found to differ by 3.3 standard deviations from the expected value in the QCD multipole expansion., Comment: 6 pages, 2 figures
- Published
- 2024
42. Origin of extended Main Sequence Turn Off in open cluster NGC 2355
- Author
-
Maurya, Jayanand, Samal, M. R., Amard, Louis, Zhang, Yu, Niu, Hubiao, Kim, Sang Chul, Joshi, Y. C., and Kumar, B.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
The presence of extended Main Sequence Turn-Off (eMSTO) in the open clusters has been attributed to various factors, such as spread in rotation rates, binary stars, and dust-like extinction from stellar excretion discs. We present a comprehensive analysis of the eMSTO in the open cluster NGC 2355. Using spectra from the Gaia-ESO archives, we find that the stars in the red part of the eMSTO have a higher mean v sin i value of 135.3$\pm$4.6 km s$^{-1}$ compared to the stars in the blue part that have an average v sin i equal to 81.3$\pm$5.6 km s$^{-1}$. This suggests that the eMSTO in NGC 2355 is possibly caused by the spread in rotation rates of stars. We do not find any substantial evidence of the dust-like extinction from the eMSTO stars using ultraviolet data from the Swift survey. The estimated synchronization time for low mass ratio close binaries in the blue part of the eMSTO suggests that they would be mostly slow-rotating if present. However, the stars in the blue part of the eMSTO are preferentially located in the outer region of the cluster indicating that they may lack low mass ratio close binaries. The spread in rotation rates of eMSTO stars in NGC 2355 is most likely caused by the star-disc interaction mechanism. The stars in the lower main sequence beyond the eMSTO region of NGC 2355 are slow-rotating (mean v sin i = 26.5$\pm$1.3 km s$^{-1}$) possibly due to the magnetic braking of their rotations., Comment: 11 pages, 12 figures, accepted for publication in MNRAS
- Published
- 2024
43. Managing Classical Processing Requirements for Quantum Error Correction
- Author
-
Maurya, Satvik and Tannu, Swamit
- Subjects
Quantum Physics ,Computer Science - Hardware Architecture - Abstract
Quantum Error Correction requires decoders to process syndromes generated by the error-correction circuits. These decoders must process syndromes faster than they are being generated to prevent a backlog of undecoded syndromes that can exponentially increase the memory and time required to execute the program. This has resulted in the development of fast hardware decoders that accelerate decoding. Applications utilizing error-corrected quantum computers will require hundreds to thousands of logical qubits and provisioning a hardware decoder for every logical qubit can be very costly. In this work, we present a framework to reduce the number of hardware decoders and navigate the compute-memory trade-offs without sacrificing the performance or reliability of program execution. Through workload-centric characterizations, we propose efficient decoder scheduling policies which can reduce the number of hardware decoders required to run a program by up to 10x while consuming less than 100 MB of memory.
- Published
- 2024
44. Search for charmed baryons in the $\Lambda_c^+\eta$ system and measurement of the branching fractions of $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+$ decaying to $\Lambda_c^+\eta$ and $pD^0$ relative to $\Sigma_c(2455)\pi$
- Author
-
Belle Collaboration, Li, S. X., Shen, C. P., Adachi, I., Ahn, J. K., Aihara, H., Asner, D. M., Atmacan, H., Aushev, T., Ayad, R., Banerjee, Sw., Belous, K., Bennett, J., Bessner, M., Bilka, T., Biswas, D., Bodrov, D., Bozek, A., Bračko, M., Branchini, P., Browder, T. E., Budano, A., Campajola, M., Chang, M. -C., Cheon, B. G., Chilikin, K., Cho, H. E., Cho, K., Choi, S. -K., Choi, Y., Choudhury, S., Dash, N., De Nardo, G., De Pietro, G., Dhamija, R., Dingfelder, J., Doležal, Z., Dong, T. V., Dubey, S., Ecker, P., Ferber, T., Fulsom, B. G., Gaur, V., Garmash, A., Goldenzweig, P., Graziani, E., Grube, B., Guan, Y., Gudkova, K., Hadjivasiliou, C., Hsu, C. -L., Ipsita, N., Itoh, R., Iwasaki, M., Jacobs, W. W., Ji, Q. P., Jia, S., Jin, Y., Joo, K. K., Kiesling, C., Kim, D. Y., Kim, Y. J., Kinoshita, K., Kodyš, P., Korobov, A., Korpar, S., Kovalenko, E., Križan, P., Krokovny, P., Kuhr, T., Kumar, R., Kumara, K., Kwon, Y. -J., Li, L. K., Li, Y., Li, Y. B., Liventsev, D., Masuda, M., Maurya, S. K., Meier, F., Merola, M., Miyabayashi, K., Mizuk, R., Mussa, R., Nakano, T., Nakao, M., Natochii, A., Nayak, M., Nishida, S., Pakhlov, P., Pakhlova, G., Pardi, S., Park, J., Park, S. -H., Patra, S., Paul, S., Pedlar, T. K., Pestotnik, R., Piilonen, L. E., Podobnik, T., Prencipe, E., Prim, M. T., Russo, G., Sandilya, S., Savinov, V., Schnell, G., Schwanda, C., Seino, Y., Senyo, K., Shiu, J. -G., Solovieva, E., Starič, M., Sumihama, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Uchida, M., Uglov, T., Uno, S., Wang, E., Won, E., Yabsley, B. D., Yan, W., Yelton, J., Yin, J. H., Yuan, L., and Zhilich, V.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
We search for excited charmed baryons in the $\Lambda_c^+\eta$ system using a data sample corresponding to an integrated luminosity of 980 $\rm fb^{-1}$. The data were collected by the Belle detector at the KEKB $e^{+}$$e^{-}$ asymmetric-energy collider. No significant signals are found in the $\Lambda_c^+\eta$ mass spectrum, including the known $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+$. Clear $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+$ signals are observed in the $pD^0$ mass spectrum. We set upper limits at 90\% credibility level on ratios of branching fractions of $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+$ decaying to $\Lambda_c^+\eta$ relative to $\Sigma_c(2455)\pi$ of $<0.13$ for the $\Lambda_c(2880)^+$ and $<1.11$ for the $\Lambda_c(2940)^+$. We measure ratios of branching fractions of $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+$ decaying to $pD^0$ relative to $\Sigma_c(2455)\pi$ of $0.75 \pm 0.03(\text{stat.}) \pm 0.07(\text{syst.})$ for the $\Lambda_c(2880)^+$ and $3.59 \pm 0.21(\text{stat.}) \pm 0.56(\text{syst.})$ for the $\Lambda_c(2940)^+$., Comment: 10 pages, 4 figures, accepted for publication as a Regular Article in Physical Review D
- Published
- 2024
- Full Text
- View/download PDF
45. Most general isotropic charged fluid solution for Buchdahl model in $\mathscr{F}(Q)$ gravity
- Author
-
Chaudharya, Sourav, Maurya, Sunil Kumar, Kumara, Jitendra, and Mustafa, Ghulam
- Subjects
General Relativity and Quantum Cosmology - Abstract
In this work, we investigated a most general isotropic charged fluid solution for the Buchdahl model via a two-step method in $\mathscr{F}(Q)$-gravity framework for the first time. In this context, a linear function of the form $\mathscr{F}(Q)=\zeta_1 Q+\zeta_2$ and a particular transformation is used to solve the Einstein-Maxwell Equations (EMEs) employing the Buchdahl ansatz: $ e^{\Upsilon(r)}=\frac{\mu(1+\lambda r^2)}{\mu+\lambda r^2}$, where $\zeta_1$, $\zeta_2$, $\lambda$ and $\mu$ are constant parameters. The Schwarzschild de Sitter~(AdS) exterior solution is joined to the interior solution at the boundary to determine the constant parameters. It should be emphasized that, for a given transformation, the Buchdahl ansatz only offers a mathematically feasible solution in the context of electric charge, where pressure and density are maximum at the center and decrease monotonically towards the boundary when $0<\mu<1$. We taken into account the compact star EX01785-248 with $M=(1.3\pm 0.2)M_{\odot}$; Radius $=12.02^{+0.55}_{-0.55}$~km for graphical analysis. The physical acceptability of the model in the context of $\mathscr{F}(Q)$ has been evaluated by looking at the necessary physical properties, including energy conditions, causality, hydrostatic equilibrium, pressure-density ratio, etc. Additionally, we predicted the maximum mass limit of different compact objects for various parameter values along with the mass-radius relation. The maximum masses range (1.927 - 2.321)~$M_\odot$ are obtained for our solution. It can be observed that when the coupling parameter $\zeta_1$ for $\mathscr{F}(Q)$ gravity is smaller, then our solution yields massive stars. The present investigation provides novel insights and realistic implications regarding the formation of compact astrophysical objects., Comment: 11 figures and 5 Tables
- Published
- 2024
46. Asymmetric dynamical localization and precision measurement of BEC micromotion
- Author
-
Maurya, S. Sagar, Kannan, J. Bharathi, Patel, Kushal, Dutta, Pranab, Biswas, Korak, Santhanam, M. S., and Rapol, Umakant D.
- Subjects
Quantum Physics - Abstract
We employ a Bose Einstein Condensate (BEC) based atom-optic kicked rotor to generate an asymmetrically localized momentum distribution that depends upon initial velocity of the BEC. Asymmetric features are shown to arise from the early-time dynamics induced by the broken parity symmetry and, asymptotically freeze as the dynamical localization stabilizes. The asymmetry in the momentum distribution critically depends upon the initial launch velocity and is sensitive to very small initial velocities ('micromotion') of the BEC. In this work, we also perform a precise measurement of the 'micromotion'. By utilizing the technique of measuring the early-time asymmetry of momentum distribution, we report measurement of micromotion down to (230 \pm 17 , \mu\text{m/s}).
- Published
- 2024
47. Breaking the Memory Wall: A Study of I/O Patterns and GPU Memory Utilization for Hybrid CPU-GPU Offloaded Optimizers
- Author
-
Maurya, Avinash, Ye, Jie, Rafique, M. Mustafa, Cappello, Franck, and Nicolae, Bogdan
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
Transformers and LLMs have seen rapid adoption in all domains. Their sizes have exploded to hundreds of billions of parameters and keep increasing. Under these circumstances, the training of transformers is slow and often takes in the order of weeks or months. Thanks to 3D model parallelism (data, pipeline, and tensor-level parallelism), the training can scale to a large number of GPUs, which reduces the duration of the training but dramatically increases the cost. Even when a large number of GPUs are available, the aggregated GPU memory is often not enough to hold the full training state (optimizer state, model parameters, and gradients). To compensate, state-of-the-art approaches offload the optimizer state at least partially to the host memory and perform hybrid CPU-GPU computations. Such flexible solutions dramatically reduce the GPU memory utilization, which makes it feasible to run the training on a smaller number of GPUs at the cost of performance penalty. Unfortunately, the challenges and bottlenecks of adopting this strategy are not sufficiently studied by state-of-the-art, which results in poor management of the combined host-GPU memory and poor overlapping between data movements and computations. In this paper, we aim to fill this gap by characterizing the behavior of offloaded training using the DeepSpeed runtime. Specifically, we study the GPU memory utilization over time during each iteration, the activity on the PCIe related to transfers between the host memory and the GPU memory, and the relationship between resource utilization and the steps involved in each iteration. Thanks to this study, we reveal opportunities for future improvements of offloading solutions, which enable greater flexibility to optimize the cost-performance trade-off in the context of transformer and LLM training., Comment: Accepted at FlexScience'24' Workshop on AI and Scientific Computing at Scale using Flexible Computing Infrastructures (co-located with HPDC'24)
- Published
- 2024
- Full Text
- View/download PDF
48. DataStates-LLM: Lazy Asynchronous Checkpointing for Large Language Models
- Author
-
Maurya, Avinash, Underwood, Robert, Rafique, M. Mustafa, Cappello, Franck, and Nicolae, Bogdan
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Machine Learning - Abstract
LLMs have seen rapid adoption in all domains. They need to be trained on high-end high-performance computing (HPC) infrastructures and ingest massive amounts of input data. Unsurprisingly, at such a large scale, unexpected events (e.g., failures of components, instability of the software, undesirable learning patterns, etc.), are frequent and typically impact the training in a negative fashion. Thus, LLMs need to be checkpointed frequently so that they can be rolled back to a stable state and subsequently fine-tuned. However, given the large sizes of LLMs, a straightforward checkpointing solution that directly writes the model parameters and optimizer state to persistent storage (e.g., a parallel file system), incurs significant I/O overheads. To address this challenge, in this paper we study how to reduce the I/O overheads for enabling fast and scalable checkpointing for LLMs that can be applied at high frequency (up to the granularity of individual iterations) without significant impact on the training process. Specifically, we introduce a lazy asynchronous multi-level approach that takes advantage of the fact that the tensors making up the model and optimizer state shards remain immutable for extended periods of time, which makes it possible to copy their content in the background with minimal interference during the training process. We evaluate our approach at scales of up to 180 GPUs using different model sizes, parallelism settings, and checkpointing frequencies. The results show up to 48$\times$ faster checkpointing and 2.2$\times$ faster end-to-end training runtime compared with the state-of-art checkpointing approaches., Comment: Published at HPDC '24: The 33rd International Symposium on High-Performance Parallel and Distributed Computing. Source code at https://github.com/DataStates/datastates-llm
- Published
- 2024
- Full Text
- View/download PDF
49. Shadow and strong gravitational lensing of new wormhole solutions supported by embedding Class-I condition
- Author
-
Molla, Niyaz Uddin, Chaudhary, Himanshu, Debnath, Ujjal, Mustafa, G., and Maurya, S. K.
- Subjects
General Relativity and Quantum Cosmology - Abstract
This study deals with the new class of embedded wormhole solutions in the background of general relativity. Two newly calculated wormhole solutions satisfy all the required properties. All the energy conditions are discussed through their validity regions for the different ranges of involved parameters. In maximum regions, all energy conditions are violated. We investigate the shadow and strong gravitational lensing by the wormhole throat for the two new wormhole models, namely Model-I and Model-II. The present paper considers the wormhole throat to act as a photon sphere. We first derive null geodesics using the Hamilton-Jacobi separation method to investigate the shadow and strong gravitational lensing caused by the wormhole throat. We then numerically obtain the radius of wormhole shadow, strong deflection angle, and various lensing observables by taking the example of supermassive black M87* and Sgr A* in the context of both Model-I and Model-II. Keeping all other parameters fixed, it is observed that the parameters $\zeta_1$ and $\zeta_2$ for Model-I; and $\chi_1$ and $\chi_2$ for Model-II have significant effects on the wormhole shadow and strong gravitational lensing phenomena. Our conclusion is that it is possible to detect relativistic images, such as Einstein rings, produced by wormholes with throat radii of $r_{th}=3M$. Additionally, current technology enables us to test hypotheses related to astrophysical wormholes., Comment: 22 figures
- Published
- 2024
50. Exploring the generation and annihilation of three dimensional nulls through MHD simulations in initially chaotic magnetic field devoid of nulls
- Author
-
Maurya, Yogesh Kumar, Bhattacharyya, Ramit, Pontin, David I., and Kumar, Sanjay
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics - Plasma Physics ,Physics - Space Physics - Abstract
Three-dimensional (3D) magnetic nulls are abundant in the solar atmosphere, as been firmly established through contemporary observations. They are established to be important magnetic structures in, for example, jets and circular ribbon flares. While simulations and extrapolations support this, the mechanisms behind 3D null generation remain an open question. Recent magnetohydrodynamics (MHD) simulations propose that magnetic reconnection is responsible for both generating and annihilating 3D nulls, a novel concept. However, these simulations began with initial magnetic fields already supporting pre-existing nulls, raising the question of whether magnetic reconnection can create nulls in fields initially devoid of them. Previously, this question was briefly explored in a simulation with an initial chaotic magnetic field. However, the study failed to precisely identify locations, topological degrees, and natures (spiral or radial) of nulls, and it approximated magnetic reconnection without fully tracking field line in time. In this paper these findings are revisited in light of recent advancements and tools used to locate and trace nulls, along with the tracing of field lines, through which the concept of generation/annihilation of 3D nulls from chaotic fields is established in a precise manner.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.