1. eSOMA-DM1, a Maytansinoid-Based Theranostic Small-Molecule Drug Conjugate for Neuroendocrine Tumors.
- Author
-
Chapeau D, Beekman S, Piet A, Li L, de Ridder C, Stuurman D, and Seimbille Y
- Subjects
- Humans, Animals, Mice, Cell Line, Tumor, Receptors, Somatostatin metabolism, Antineoplastic Agents chemistry, Antineoplastic Agents pharmacokinetics, Antineoplastic Agents therapeutic use, Antineoplastic Agents pharmacology, Tissue Distribution, Mice, Nude, Neuroendocrine Tumors drug therapy, Neuroendocrine Tumors diagnostic imaging, Maytansine chemistry, Maytansine therapeutic use, Maytansine pharmacology, Maytansine pharmacokinetics
- Abstract
Background: The main challenges of conventional chemotherapy lie in its lack of selectivity and specificity, leading to significant side effects. Using a small-molecule drug conjugate (SMDC) ensures specific delivery of a cytotoxic drug to the tumor site by coupling it to a targeting vector. This promising strategy can be applied to neuroendocrine tumors (NETs) by choosing a targeting vector that binds specifically to somatostatin receptor subtype 2 (SSTR2). Additionally, incorporation of a bifunctional chelate into the molecule enables complexation of both diagnostic and therapeutic radionuclides. Thus, it facilitates monitoring of the distribution of the SMDC in the body and allows for the implementation of combination therapy. In our study, we designed eSOMA-DM1, a SMDC combining the SSTR2-targeted octreotate peptide and the cytotoxic agent DM1 via a chelate-bridged linker (N
3 -Py-DOTAGA). This approach warrants conjugation of the targeting vector and the drug at opposite sites to avoid undesired steric hindrance effects. Methods: Synthesis of the DM1 moiety ( 4 ) involved a three-step synthetic route, followed by the conjugation to the cyclic peptide, N3 -Py-DOTAGA-d-Phe-cyclo[Cys-Tyr-d-Trp-Lys-Thr-Cys]-Thr-OH, through a copper-free click reaction, resulting in eSOMA-DM1. Subsequent labeling with [111 In]InCl3 gave a high radiochemical yield and purity. In vitro assessments of eSOMA-DM1 binding, uptake, and internalization were conducted in SSTR2-transfected U2OS cells. Ex vivo biodistribution and fluorescence imaging were performed in H69-tumor bearing mice. Results: eSOMA-DM1 exhibited an IC50 value for SSTR2 similar to the gold standard DOTA-TATE. The uptake of [111 In]In-eSOMA-DM1 in U2OS.SSTR2 cells was 1.2-fold lower than that of [111 In]In-DOTA-TATE. Tumor uptake in H69-xenografted mice was higher for [111 In]In-eSOMA-DM1 at all-time points compared to [111 In]In-DOTA-TATE. Prolonged blood circulation led to increased accumulation of [111 In]In-eSOMA-DM1 in highly vascularized tissues, such as the lungs, skin, and heart. Excretion through the kidneys, liver, and spleen was also observed. Conclusion: eSOMA-DM1 is a SMDC developed for NET showing promising characteristics in vitro. However, the in vivo results obtained with [111 In]In-eSOMA-DM1 suggest the need for adjustments to optimize its distribution.- Published
- 2024
- Full Text
- View/download PDF