22 results on '"McEvoy, Donna"'
Search Results
2. Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Leal Rodríguez, Cristina, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, and Brunak, Søren
- Published
- 2023
- Full Text
- View/download PDF
3. Author Correction: Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Leal Rodríguez, Cristina, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, and Brunak, Søren
- Published
- 2023
- Full Text
- View/download PDF
4. Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
- Author
-
Jennison, Christopher, Ehrhardt, Beate, Baum, Patrick, Schoelsch, Corinna, Freijer, Jan, Grempler, Rolf, Graefe-Mody, Ulrike, Hennige, Anita, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinecich, Iryna, Pattou, Francois, Raverdi, Violeta, Caiazzo, Robert, Torres, Fanelly, Verkindt, Helene, Mari, Andrea, Tura, Andrea, Giorgino, Toni, Bizzotto, Roberto, Froguel, Philippe, Bonneford, Amelie, Canouil, Mickael, Dhennin, Veronique, Brorsson, Caroline, Brunak, Soren, De Masi, Federico, Gudmundsdóttir, Valborg, Pedersen, Helle, Banasik, Karina, Thomas, Cecilia, Sackett, Peter, Staerfeldt, Hans-Henrik, Lundgaard, Agnete, Nilsson, Birgitte, Nielsen, Agnes, Mazzoni, Gianluca, Karaderi, Tugce, Rasmussen, Simon, Johansen, Joachim, Allesøe, Rosa, Fritsche, Andreas, Thorand, Barbara, Adamski, Jurek, Grallert, Harald, Haid, Mark, Sharma, Sapna, Troll, Martina, Adam, Jonathan, Ferrer, Jorge, Eriksen, Heather, Frost, Gary, Haussler, Ragna, Hong, Mun-gwan, Schwenk, Jochen, Uhlen, Mathias, Nicolay, Claudia, Pavo, Imre, Steckel-Hamann, Birgit, Thomas, Melissa, Adragni, Kofi, Wu, Han, Hart, Leen't, Roderick, Slieker, van Leeuwen, Nienke, Dekkers, Koen, Frau, Francesca, Gassenhuber, Johann, Jablonka, Bernd, Musholt, Petra, Ruetten, Hartmut, Tillner, Joachim, Baltauss, Tania, Bernard Poenaru, Oana, de Preville, Nathalie, Rodriquez, Marianne, Arumugam, Manimozhiyan, Allin, Kristine, Engelbrechtsen, Line, Hansen, Torben, Hansen, Tue, Forman, Annemette, Jonsson, Anna, Pedersen, Oluf, Dutta, Avirup, Vogt, Josef, Vestergaard, Henrik, Laakso, Markku, Kokkola, Tarja, Kuulasmaa, Teemu, Franks, Paul, Giordano, Nick, Pomares-Millan, Hugo, Fitipaldi, Hugo, Mutie, Pascal, Klintenberg, Maria, Bergstrom, Margit, Groop, Leif, Ridderstrale, Martin, Atabaki Pasdar, Naeimeh, Deshmukh, Harshal, Heggie, Alison, Wake, Dianne, McEvoy, Donna, McVittie, Ian, Walker, Mark, Hattersley, Andrew, Hill, Anita, Jones, Angus, McDonald, Timothy, Perry, Mandy, Nice, Rachel, Hudson, Michelle, Thorne, Claire, Dermitzakis, Emmanouil, Viñuela, Ana, Cabrelli, Louise, Loftus, Heather, Dawed, Adem, Donnelly, Louise, Forgie, Ian, Pearson, Ewan, Palmer, Colin, Brown, Andrew, Koivula, Robert, Wesolowska-Andersen, Agata, Abdalla, Moustafa, McRobert, Nicky, Fernandez, Juan, Jiao, Yunlong, Robertson, Neil, Gough, Stephen, Kaye, Jane, Mourby, Miranda, Mahajan, Anubha, McCarthy, Mark, Shah, Nisha, Teare, Harriet, Holl, Reinhard, Koopman, Anitra, Rutters, Femke, Beulens, Joline, Groeneveld, Lenka, Bell, Jimmy, Thomas, Louise, Whitcher, Brandon, Wilman, Henry R., Parisinos, Constantinos A., Atabaki-Pasdar, Naeimeh, Kelly, Matt, Thomas, E. Louise, Neubauer, Stefan, Hingorani, Aroon D., Patel, Riyaz S., Hemingway, Harry, Franks, Paul W., Bell, Jimmy D., Banerjee, Rajarshi, and Yaghootkar, Hanieh
- Published
- 2019
- Full Text
- View/download PDF
5. Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study
- Author
-
Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Mazzoni, Gianluca, Allin, Kristine H., Artati, Anna, Beulens, Joline W., Banasik, Karina, Brorsson, Caroline, Cederberg, Henna, Chabanova, Elizaveta, De Masi, Federico, Elders, Petra J., Forgie, Ian, Giordano, Giuseppe N., Grallert, Harald, Gupta, Ramneek, Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison, Hong, Mun-Gwan, Jones, Angus G., Koivula, Robert, Kokkola, Tarja, Laakso, Markku, Løngreen, Peter, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Musholt, Petra B., Pavo, Imre, Prehn, Cornelia, Ruetten, Hartmut, Ridderstråle, Martin, Rutters, Femke, Sharma, Sapna, Slieker, Roderick C., Syed, Ali, Tajes, Juan Fernandez, Thomas, Cecilia Engel, Thomsen, Henrik S., Vangipurapu, Jagadish, Vestergaard, Henrik, Viñuela, Ana, Wesolowska-Andersen, Agata, Walker, Mark, Adamski, Jerzy, Schwenk, Jochen M., McCarthy, Mark I., Pearson, Ewan, Dermitzakis, Emmanouil, Franks, Paul W., Pedersen, Oluf, and Brunak, Søren
- Published
- 2020
- Full Text
- View/download PDF
6. Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study
- Author
-
Wesolowska-Andersen, Agata, primary, Brorsson, Caroline A., additional, Bizzotto, Roberto, additional, Mari, Andrea, additional, Tura, Andrea, additional, Koivula, Robert, additional, Mahajan, Anubha, additional, Vinuela, Ana, additional, Tajes, Juan Fernandez, additional, Sharma, Sapna, additional, Haid, Mark, additional, Prehn, Cornelia, additional, Artati, Anna, additional, Hong, Mun-Gwan, additional, Musholt, Petra B., additional, Kurbasic, Azra, additional, De Masi, Federico, additional, Tsirigos, Kostas, additional, Pedersen, Helle Krogh, additional, Gudmundsdottir, Valborg, additional, Thomas, Cecilia Engel, additional, Banasik, Karina, additional, Jennison, Chrisopher, additional, Jones, Angus, additional, Kennedy, Gwen, additional, Bell, Jimmy, additional, Thomas, Louise, additional, Frost, Gary, additional, Thomsen, Henrik, additional, Allin, Kristine, additional, Hansen, Tue Haldor, additional, Vestergaard, Henrik, additional, Hansen, Torben, additional, Rutters, Femke, additional, Elders, Petra, additional, t’Hart, Leen, additional, Bonnefond, Amelie, additional, Canouil, Mickaël, additional, Brage, Soren, additional, Kokkola, Tarja, additional, Heggie, Alison, additional, McEvoy, Donna, additional, Hattersley, Andrew, additional, McDonald, Timothy, additional, Teare, Harriet, additional, Ridderstrale, Martin, additional, Walker, Mark, additional, Forgie, Ian, additional, Giordano, Giuseppe N., additional, Froguel, Philippe, additional, Pavo, Imre, additional, Ruetten, Hartmut, additional, Pedersen, Oluf, additional, Dermitzakis, Emmanouil, additional, Franks, Paul W., additional, Schwenk, Jochen M., additional, Adamski, Jerzy, additional, Pearson, Ewan, additional, McCarthy, Mark I., additional, and Brunak, Søren, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Inferring causal pathways between metabolic processes and liver fat accumulation: an IMI DIRECT study
- Author
-
Atabaki-Pasdar, Naeimeh, primary, Pomares-Millan, Hugo, additional, Koivula, Robert W, additional, Tura, Andrea, additional, Brown, Andrew, additional, Viñuela, Ana, additional, Agudelo, Leandro, additional, Coral, Daniel, additional, van Oort, Sabine, additional, Allin, Kristine, additional, Chabanova, Elizaveta, additional, Cederberg, Henna, additional, De Masi, Federico, additional, Elders, Petra, additional, Tajes, Juan Fernandez, additional, Forgie, Ian M, additional, Hansen, Tue H, additional, Heggie, Alison, additional, Jones, Angus, additional, Kokkola, Tarja, additional, Mahajan, Anubha, additional, McDonald, Timothy J, additional, McEvoy, Donna, additional, Tsirigos, Konstantinos, additional, Teare, Harriet, additional, Vangipurapu, Jagadish, additional, Vestergaard, Henrik, additional, Adamski, Jerzy, additional, Beulens, Joline WJ, additional, Brunak, Søren, additional, Dermitzakis, Emmanouil, additional, Hansen, Torben, additional, Hattersley, Andrew T, additional, Laakso, Markku, additional, Pedersen, Oluf, additional, Ridderstråle, Martin, additional, Ruetten, Hartmut, additional, Rutters, Femke, additional, Schwenk, Jochen M, additional, Walker, Mark, additional, Giordano, Giuseppe N, additional, Ohlsson, Mattias, additional, Gupta, Ramneek, additional, Mari, Andrea, additional, McCarthy, Mark I, additional, Thomas, E Louise, additional, Bell, Jimmy D, additional, Pavo, Imre, additional, Pearson, Ewan R, additional, and Franks, Paul W, additional
- Published
- 2021
- Full Text
- View/download PDF
8. Processes Underlying Glycemic Deterioration in Type 2 Diabetes:An IMI DIRECT Study
- Author
-
Bizzotto, Roberto, Jennison, Christopher, Jones, Angus G., Kurbasic, Azra, Tura, Andrea, Kennedy, Gwen, Bell, Jimmy D., Thomas, E. Louise, Frost, Gary, Eriksen, Rebeca, Koivula, Robert W., Brage, Soren, Kaye, Jane, Hattersley, Andrew T., Heggie, Alison, McEvoy, Donna, 't Hart, Leen M., Beulens, Joline W., Elders, Petra, Musholt, Petra B., Ridderstrale, Martin, Hansen, Tue H., Allin, Kristine H., Hansen, Torben, Vestergaard, Henrik, Lundgaard, Agnete T., Thomsen, Henrik S., De Masi, Federico, Tsirigos, Konstantinos D., Brunak, Søren, Vinuela, Ana, Mahajan, Anubha, McDonald, Timothy J., Kokkola, Tarja, Forgie, Ian M., Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Dermitzakis, Emmanouil, McCarthy, Mark I., Pedersen, Oluf, Schwenk, Jochen M., Adamski, Jerzy, Franks, Paul W., Walker, Mark, Pearson, Ewan R., Mari, Andrea, Bizzotto, Roberto, Jennison, Christopher, Jones, Angus G., Kurbasic, Azra, Tura, Andrea, Kennedy, Gwen, Bell, Jimmy D., Thomas, E. Louise, Frost, Gary, Eriksen, Rebeca, Koivula, Robert W., Brage, Soren, Kaye, Jane, Hattersley, Andrew T., Heggie, Alison, McEvoy, Donna, 't Hart, Leen M., Beulens, Joline W., Elders, Petra, Musholt, Petra B., Ridderstrale, Martin, Hansen, Tue H., Allin, Kristine H., Hansen, Torben, Vestergaard, Henrik, Lundgaard, Agnete T., Thomsen, Henrik S., De Masi, Federico, Tsirigos, Konstantinos D., Brunak, Søren, Vinuela, Ana, Mahajan, Anubha, McDonald, Timothy J., Kokkola, Tarja, Forgie, Ian M., Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Dermitzakis, Emmanouil, McCarthy, Mark I., Pedersen, Oluf, Schwenk, Jochen M., Adamski, Jerzy, Franks, Paul W., Walker, Mark, Pearson, Ewan R., and Mari, Andrea
- Abstract
OBJECTIVEWe investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D).RESEARCH DESIGN AND METHODSA total of 732 recently diagnosed patients with T2D from the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) study were extensively phenotyped over 3 years, including measures of insulin sensitivity (OGIS), beta-cell glucose sensitivity (GS), and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA(1c) deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression.RESULTSFaster HbA(1c) progression was independently associated with faster deterioration of OGIS and GS and increasing CLIm; visceral or liver fat, HDL-cholesterol, and triglycerides had further independent, though weaker, roles (R-2 = 0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from area under the receiver operating characteristic = 0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS, and CLIm was relatively stable (odds ratios 0.07-0.09). T2D polygenic risk score and baseline pancreatic fat, glucagon-like peptide 1, glucagon, diet, and physical activity did not show an independent role.CONCLUSIONSDeteriorating insulin sensitivity and beta-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of patients with T2D in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, beta-cell function, and insulin clearance may be relevant to prevent
- Published
- 2021
9. Predicting and elucidating the etiology of fatty liver disease:A machine learning modeling and validation study in the IMI DIRECT cohorts
- Author
-
Atabaki-Pasdar, Naeimeh, Ohlsson, Mattias, Viñuela, Ana, Frau, Francesca, Pomares-Millan, Hugo, Haid, Mark, Jones, Angus G, Thomas, E Louise, Koivula, Robert W, Kurbasic, Azra, Mutie, Pascal M, Fitipaldi, Hugo, Fernandez, Juan, Dawed, Adem Y, Giordano, Giuseppe N, Forgie, Ian M, McDonald, Timothy J, Rutters, Femke, Cederberg, Henna, Chabanova, Elizaveta, Dale, Matilda, Masi, Federico De, Thomas, Cecilia Engel, Allin, Kristine H., Hansen, Tue H, Heggie, Alison, Hong, Mun-Gwan, Elders, Petra J M, Kennedy, Gwen, Kokkola, Tarja, Pedersen, Helle Krogh, Mahajan, Anubha, McEvoy, Donna, Pattou, Francois, Raverdy, Violeta, Häussler, Ragna S, Sharma, Sapna, Thomsen, Henrik S, Vangipurapu, Jagadish, Vestergaard, Henrik, Adamski, Jerzy, Musholt, Petra B, Brage, Søren, Brunak, Søren, Dermitzakis, Emmanouil, Frost, Gary, Hansen, Torben, Laakso, Markku, and Pedersen, Oluf
- Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning.METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community.TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.
- Published
- 2020
- Full Text
- View/download PDF
10. Additional file 1 of Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study
- Author
-
Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Mazzoni, Gianluca, Allin, Kristine H., Artati, Anna, Beulens, Joline W., Banasik, Karina, Brorsson, Caroline, Cederberg, Henna, Chabanova, Elizaveta, Masi, Federico De, Elders, Petra J., Forgie, Ian, Giordano, Giuseppe N., Grallert, Harald, Ramneek Gupta, Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison, Mun-Gwan Hong, Jones, Angus G., Koivula, Robert, Kokkola, Tarja, Laakso, Markku, Løngreen, Peter, Anubha Mahajan, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Musholt, Petra B., Pavo, Imre, Prehn, Cornelia, Ruetten, Hartmut, Ridderstråle, Martin, Rutters, Femke, Sharma, Sapna, Slieker, Roderick C., Syed, Ali, Tajes, Juan Fernandez, Thomas, Cecilia Engel, Thomsen, Henrik S., Jagadish Vangipurapu, Vestergaard, Henrik, Viñuela, Ana, Wesolowska-Andersen, Agata, Walker, Mark, Adamski, Jerzy, Schwenk, Jochen M., McCarthy, Mark I., Pearson, Ewan, Dermitzakis, Emmanouil, Franks, Paul W., Pedersen, Oluf, and Brunak, Søren
- Abstract
Additional file 1. Supplementary Figures. This file contains Fig. S1 – S13.
- Published
- 2020
- Full Text
- View/download PDF
11. Additional file 2 of Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study
- Author
-
Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Mazzoni, Gianluca, Allin, Kristine H., Artati, Anna, Beulens, Joline W., Banasik, Karina, Brorsson, Caroline, Cederberg, Henna, Chabanova, Elizaveta, Masi, Federico De, Elders, Petra J., Forgie, Ian, Giordano, Giuseppe N., Grallert, Harald, Ramneek Gupta, Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison, Mun-Gwan Hong, Jones, Angus G., Koivula, Robert, Kokkola, Tarja, Laakso, Markku, Løngreen, Peter, Anubha Mahajan, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Musholt, Petra B., Pavo, Imre, Prehn, Cornelia, Ruetten, Hartmut, Ridderstråle, Martin, Rutters, Femke, Sharma, Sapna, Slieker, Roderick C., Syed, Ali, Tajes, Juan Fernandez, Thomas, Cecilia Engel, Thomsen, Henrik S., Jagadish Vangipurapu, Vestergaard, Henrik, Viñuela, Ana, Wesolowska-Andersen, Agata, Walker, Mark, Adamski, Jerzy, Schwenk, Jochen M., McCarthy, Mark I., Pearson, Ewan, Dermitzakis, Emmanouil, Franks, Paul W., Pedersen, Oluf, and Brunak, Søren
- Subjects
Data_FILES - Abstract
Additional file 2. Supplementary Methods. This file contains methods descriptions for omics data generation and preprocessing.
- Published
- 2020
- Full Text
- View/download PDF
12. Whole blood co-expression modules associate with metabolic traits and type 2 diabetes:an IMI-DIRECT study
- Author
-
Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Mazzoni, Gianluca, Allin, Kristine H., Artati, Anna, Beulens, Joline W., Banasik, Karina, Brorsson, Caroline, Cederberg, Henna, Chabanova, Elizaveta, De Masi, Federico, Elders, Petra J., Forgie, Ian, Giordano, Giuseppe N., Grallert, Harald, Gupta, Ramneek, Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison, Hong, Mun Gwan, Jones, Angus G., Koivula, Robert, Kokkola, Tarja, Laakso, Markku, Løngreen, Peter, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Musholt, Petra B., Pavo, Imre, Prehn, Cornelia, Ruetten, Hartmut, Ridderstråle, Martin, Rutters, Femke, Sharma, Sapna, Slieker, Roderick C., Syed, Ali, Tajes, Juan Fernandez, Thomas, Cecilia Engel, Thomsen, Henrik S., Vangipurapu, Jagadish, Vestergaard, Henrik, Viñuela, Ana, Wesolowska-Andersen, Agata, Walker, Mark, Adamski, Jerzy, Schwenk, Jochen M., McCarthy, Mark I., Pearson, Ewan, Dermitzakis, Emmanouil, Franks, Paul W., Pedersen, Oluf, Brunak, Søren, Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Mazzoni, Gianluca, Allin, Kristine H., Artati, Anna, Beulens, Joline W., Banasik, Karina, Brorsson, Caroline, Cederberg, Henna, Chabanova, Elizaveta, De Masi, Federico, Elders, Petra J., Forgie, Ian, Giordano, Giuseppe N., Grallert, Harald, Gupta, Ramneek, Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison, Hong, Mun Gwan, Jones, Angus G., Koivula, Robert, Kokkola, Tarja, Laakso, Markku, Løngreen, Peter, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Musholt, Petra B., Pavo, Imre, Prehn, Cornelia, Ruetten, Hartmut, Ridderstråle, Martin, Rutters, Femke, Sharma, Sapna, Slieker, Roderick C., Syed, Ali, Tajes, Juan Fernandez, Thomas, Cecilia Engel, Thomsen, Henrik S., Vangipurapu, Jagadish, Vestergaard, Henrik, Viñuela, Ana, Wesolowska-Andersen, Agata, Walker, Mark, Adamski, Jerzy, Schwenk, Jochen M., McCarthy, Mark I., Pearson, Ewan, Dermitzakis, Emmanouil, Franks, Paul W., Pedersen, Oluf, and Brunak, Søren
- Abstract
Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic sig
- Published
- 2020
13. Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study
- Author
-
Bizzotto, Roberto, primary, Jennison, Christopher, primary, Jones, Angus G, primary, Kurbasic, Azra, primary, Tura, Andrea, primary, Kennedy, Gwen, primary, Bell, Jimmy D, primary, Thomas, Elizabeth L, primary, Frost, Gary, primary, Eriksen, Rebeca, primary, Koivula, Robert W, primary, Brage, Soren, primary, Kaye, Jane, primary, Hattersley, Andrew T, primary, Heggie, Alison, primary, McEvoy, Donna, primary, Hart, Leen M ’t, primary, Beulens, Joline W, primary, Elders, Petra, primary, Musholt, Petra B, primary, Ridderstråle, Martin, primary, Hansen, Tue H, primary, Allin, Kristine H, primary, Hansen, Torben, primary, Vestergaard, Henrik, primary, Lundgaard, Agnete T, primary, Thomsen, Henrik S, primary, Masi, Federico De, primary, Tsirigos, Konstantinos D, primary, Brunak, Søren, primary, Viñuela, Ana, primary, Mahajan, Anubha, primary, McDonald, Timothy J, primary, Kokkola, Tarja, primary, Forgie, Ian M, primary, Giordano, Giuseppe N, primary, Pavo, Imre, primary, Ruetten, Hartmut, primary, Dermitzakis, Emmanouil, primary, McCarthy, Mark I, primary, Pedersen, Oluf, primary, Schwenk, Jochen M, primary, Adamski, Jerzy, primary, Franks, Paul W, primary, Walker, Mark, primary, Pearson, Ewan R, primary, Mari, Andrea, primary, and consortium, the IMI DIRECT, primary
- Published
- 2020
- Full Text
- View/download PDF
14. Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
- Author
-
Atabaki-Pasdar, Naeimeh, primary, Ohlsson, Mattias, additional, Viñuela, Ana, additional, Frau, Francesca, additional, Pomares-Millan, Hugo, additional, Haid, Mark, additional, Jones, Angus G., additional, Thomas, E. Louise, additional, Koivula, Robert W., additional, Kurbasic, Azra, additional, Mutie, Pascal M., additional, Fitipaldi, Hugo, additional, Fernandez, Juan, additional, Dawed, Adem Y., additional, Giordano, Giuseppe N., additional, Forgie, Ian M., additional, McDonald, Timothy J., additional, Rutters, Femke, additional, Cederberg, Henna, additional, Chabanova, Elizaveta, additional, Dale, Matilda, additional, Masi, Federico De, additional, Thomas, Cecilia Engel, additional, Allin, Kristine H., additional, Hansen, Tue H., additional, Heggie, Alison, additional, Hong, Mun-Gwan, additional, Elders, Petra J. M., additional, Kennedy, Gwen, additional, Kokkola, Tarja, additional, Pedersen, Helle Krogh, additional, Mahajan, Anubha, additional, McEvoy, Donna, additional, Pattou, Francois, additional, Raverdy, Violeta, additional, Häussler, Ragna S., additional, Sharma, Sapna, additional, Thomsen, Henrik S., additional, Vangipurapu, Jagadish, additional, Vestergaard, Henrik, additional, ‘t Hart, Leen M., additional, Adamski, Jerzy, additional, Musholt, Petra B., additional, Brage, Soren, additional, Brunak, Søren, additional, Dermitzakis, Emmanouil, additional, Frost, Gary, additional, Hansen, Torben, additional, Laakso, Markku, additional, Pedersen, Oluf, additional, Ridderstråle, Martin, additional, Ruetten, Hartmut, additional, Hattersley, Andrew T., additional, Walker, Mark, additional, Beulens, Joline W. J., additional, Mari, Andrea, additional, Schwenk, Jochen M., additional, Gupta, Ramneek, additional, McCarthy, Mark I., additional, Pearson, Ewan R., additional, Bell, Jimmy D., additional, Pavo, Imre, additional, and Franks, Paul W., additional
- Published
- 2020
- Full Text
- View/download PDF
15. Predicting and elucidating the etiology of fatty liver disease using a machine learning-based approach: an IMI DIRECT study
- Author
-
Atabaki-Pasdar, Naeimeh, primary, Ohlsson, Mattias, additional, Viñuela, Ana, additional, Frau, Francesca, additional, Pomares-Millan, Hugo, additional, Haid, Mark, additional, Jones, Angus G, additional, Thomas, E Louise, additional, Koivula, Robert W, additional, Kurbasic, Azra, additional, Mutie, Pascal M, additional, Fitipaldi, Hugo, additional, Fernandez, Juan, additional, Dawed, Adem Y, additional, Giordano, Giuseppe N, additional, Forgie, Ian M, additional, McDonald, Timothy J, additional, Rutters, Femke, additional, Cederberg, Henna, additional, Chabanova, Elizaveta, additional, Dale, Matilda, additional, De Masi, Federico, additional, Thomas, Cecilia Engel, additional, Allin, Kristine H, additional, Hansen, Tue H, additional, Heggie, Alison, additional, Hong, Mun-Gwan, additional, Elders, Petra JM, additional, Kennedy, Gwen, additional, Kokkola, Tarja, additional, Pedersen, Helle Krogh, additional, Mahajan, Anubha, additional, McEvoy, Donna, additional, Pattou, Francois, additional, Raverdy, Violeta, additional, Häussler, Ragna S, additional, Sharma, Sapna, additional, Thomsen, Henrik S, additional, Vangipurapu, Jagadish, additional, Vestergaard, Henrik, additional, ‘t Hart, Leen M, additional, Adamski, Jerzy, additional, Musholt, Petra B, additional, Brage, Soren, additional, Brunak, Søren, additional, Dermitzakis, Emmanouil, additional, Frost, Gary, additional, Hansen, Torben, additional, Laakso, Markku, additional, Pedersen, Oluf, additional, Ridderstråle, Martin, additional, Ruetten, Hartmut, additional, Hattersley, Andrew T, additional, Walker, Mark, additional, Beulens, Joline WJ, additional, Mari, Andrea, additional, Schwenk, Jochen M, additional, Gupta, Ramneek, additional, McCarthy, Mark I, additional, Pearson, Ewan R, additional, Bell, Jimmy D, additional, Pavo, Imre, additional, and Franks, Paul W, additional
- Published
- 2020
- Full Text
- View/download PDF
16. Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
- Author
-
Wilman, Henry R., primary, Parisinos, Constantinos A., additional, Atabaki-Pasdar, Naeimeh, additional, Kelly, Matt, additional, Thomas, E. Louise, additional, Neubauer, Stefan, additional, Mahajan, Anubha, additional, Hingorani, Aroon D., additional, Patel, Riyaz S., additional, Hemingway, Harry, additional, Franks, Paul W., additional, Bell, Jimmy D., additional, Banerjee, Rajarshi, additional, Yaghootkar, Hanieh, additional, Jennison, Christopher, additional, Ehrhardt, Beate, additional, Baum, Patrick, additional, Schoelsch, Corinna, additional, Freijer, Jan, additional, Grempler, Rolf, additional, Graefe-Mody, Ulrike, additional, Hennige, Anita, additional, Dings, Christiane, additional, Lehr, Thorsten, additional, Scherer, Nina, additional, Sihinecich, Iryna, additional, Pattou, Francois, additional, Raverdi, Violeta, additional, Caiazzo, Robert, additional, Torres, Fanelly, additional, Verkindt, Helene, additional, Mari, Andrea, additional, Tura, Andrea, additional, Giorgino, Toni, additional, Bizzotto, Roberto, additional, Froguel, Philippe, additional, Bonneford, Amelie, additional, Canouil, Mickael, additional, Dhennin, Veronique, additional, Brorsson, Caroline, additional, Brunak, Soren, additional, De Masi, Federico, additional, Gudmundsdóttir, Valborg, additional, Pedersen, Helle, additional, Banasik, Karina, additional, Thomas, Cecilia, additional, Sackett, Peter, additional, Staerfeldt, Hans-Henrik, additional, Lundgaard, Agnete, additional, Nilsson, Birgitte, additional, Nielsen, Agnes, additional, Mazzoni, Gianluca, additional, Karaderi, Tugce, additional, Rasmussen, Simon, additional, Johansen, Joachim, additional, Allesøe, Rosa, additional, Fritsche, Andreas, additional, Thorand, Barbara, additional, Adamski, Jurek, additional, Grallert, Harald, additional, Haid, Mark, additional, Sharma, Sapna, additional, Troll, Martina, additional, Adam, Jonathan, additional, Ferrer, Jorge, additional, Eriksen, Heather, additional, Frost, Gary, additional, Haussler, Ragna, additional, Hong, Mun-gwan, additional, Schwenk, Jochen, additional, Uhlen, Mathias, additional, Nicolay, Claudia, additional, Pavo, Imre, additional, Steckel-Hamann, Birgit, additional, Thomas, Melissa, additional, Adragni, Kofi, additional, Wu, Han, additional, Hart, Leen't, additional, Roderick, Slieker, additional, van Leeuwen, Nienke, additional, Dekkers, Koen, additional, Frau, Francesca, additional, Gassenhuber, Johann, additional, Jablonka, Bernd, additional, Musholt, Petra, additional, Ruetten, Hartmut, additional, Tillner, Joachim, additional, Baltauss, Tania, additional, Bernard Poenaru, Oana, additional, de Preville, Nathalie, additional, Rodriquez, Marianne, additional, Arumugam, Manimozhiyan, additional, Allin, Kristine, additional, Engelbrechtsen, Line, additional, Hansen, Torben, additional, Hansen, Tue, additional, Forman, Annemette, additional, Jonsson, Anna, additional, Pedersen, Oluf, additional, Dutta, Avirup, additional, Vogt, Josef, additional, Vestergaard, Henrik, additional, Laakso, Markku, additional, Kokkola, Tarja, additional, Kuulasmaa, Teemu, additional, Franks, Paul, additional, Giordano, Nick, additional, Pomares-Millan, Hugo, additional, Fitipaldi, Hugo, additional, Mutie, Pascal, additional, Klintenberg, Maria, additional, Bergstrom, Margit, additional, Groop, Leif, additional, Ridderstrale, Martin, additional, Atabaki Pasdar, Naeimeh, additional, Deshmukh, Harshal, additional, Heggie, Alison, additional, Wake, Dianne, additional, McEvoy, Donna, additional, McVittie, Ian, additional, Walker, Mark, additional, Hattersley, Andrew, additional, Hill, Anita, additional, Jones, Angus, additional, McDonald, Timothy, additional, Perry, Mandy, additional, Nice, Rachel, additional, Hudson, Michelle, additional, Thorne, Claire, additional, Dermitzakis, Emmanouil, additional, Viñuela, Ana, additional, Cabrelli, Louise, additional, Loftus, Heather, additional, Dawed, Adem, additional, Donnelly, Louise, additional, Forgie, Ian, additional, Pearson, Ewan, additional, Palmer, Colin, additional, Brown, Andrew, additional, Koivula, Robert, additional, Wesolowska-Andersen, Agata, additional, Abdalla, Moustafa, additional, McRobert, Nicky, additional, Fernandez, Juan, additional, Jiao, Yunlong, additional, Robertson, Neil, additional, Gough, Stephen, additional, Kaye, Jane, additional, Mourby, Miranda, additional, McCarthy, Mark, additional, Shah, Nisha, additional, Teare, Harriet, additional, Holl, Reinhard, additional, Koopman, Anitra, additional, Rutters, Femke, additional, Beulens, Joline, additional, Groeneveld, Lenka, additional, Bell, Jimmy, additional, Thomas, Louise, additional, and Whitcher, Brandon, additional
- Published
- 2019
- Full Text
- View/download PDF
17. Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study.
- Author
-
Bizzotto, Roberto, Jennison, Christopher, Jones, Angus G., Kurbasic, Azra, Tura, Andrea, Kennedy, Gwen, Bell, Jimmy D., Thomas, E. Louise, Frost, Gary, Eriksen, Rebeca, Koivula, Robert W., Brage, Soren, Kaye, Jane, Hattersley, Andrew T., Heggie, Alison, McEvoy, Donna, 't Hart, Leen M., Beulens, Joline W., Elders, Petra, and Musholt, Petra B.
- Subjects
TYPE 2 diabetes ,GLUCAGON-like peptide 1 ,INSULIN sensitivity ,RECEIVER operating characteristic curves ,GLUCAGON-like peptides ,LIVER enzymes - Abstract
Objective: We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D).Research Design and Methods: A total of 732 recently diagnosed patients with T2D from the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) study were extensively phenotyped over 3 years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS), and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression.Results: Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS and increasing CLIm; visceral or liver fat, HDL-cholesterol, and triglycerides had further independent, though weaker, roles (R2 = 0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from area under the receiver operating characteristic = 0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS, and CLIm was relatively stable (odds ratios 0.07-0.09). T2D polygenic risk score and baseline pancreatic fat, glucagon-like peptide 1, glucagon, diet, and physical activity did not show an independent role.Conclusions: Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of patients with T2D in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
18. Pneumococcal vaccination in bronchiectasis- an area for improvement?
- Author
-
Palmer, Eve, primary, Lane, Nicholas, additional, Davison, John, additional, McEvoy, Donna, additional, and De Soyza, Anthony, additional
- Published
- 2016
- Full Text
- View/download PDF
19. Pulmonary targeted antibiotics in bronchiectasis; inhalers vs. nebulisers. A qualitative and quantitative assessment of patients' attitudes
- Author
-
Davison, John, primary, McEvoy, Donna, additional, Davies, Gareth, additional, Lee, Richard, additional, Tim, Rapley, additional, and De Soyza, Anthony, additional
- Published
- 2016
- Full Text
- View/download PDF
20. The Effect of Pulmonary Rehabilitation on Healthcare Utilization in Chronic Obstructive Pulmonary Disease
- Author
-
Raskin, Jonathan, primary, Spiegler, Peter, additional, McCusker, Corliss, additional, ZuWallack, Richard, additional, Bernstein, Mara, additional, Busby, Jim, additional, DiLauro, Pat, additional, Griffiths, Karen, additional, Haggerty, Margaret, additional, Hovey, Lynne, additional, McEvoy, Donna, additional, Reardon, Jane Z., additional, Stavrolakes, Kim, additional, Stockdale-Woolley, Rebecca, additional, Thompson, Peggy, additional, Trimmer, Grace, additional, and Youngson, Louise, additional
- Published
- 2006
- Full Text
- View/download PDF
21. Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
- Author
-
Atabaki-Pasdar, Naeimeh, Ohlsson, Mattias, Viñuela, Ana, Frau, Francesca, Pomares-Millan, Hugo, Haid, Mark, Jones, Angus G., Thomas, E. Louise, Koivula, Robert W., Kurbasic, Azra, Mutie, Pascal M., Fitipaldi, Hugo, Fernandez, Juan, Dawed, Adem Y., Giordano, Giuseppe N., Forgie, Ian M., McDonald, Timothy J., Rutters, Femke, Cederberg, Henna, Chabanova, Elizaveta, Dale, Matilda, Masi, Federico De, Thomas, Cecilia Engel, Allin, Kristine H., Hansen, Tue H., Heggie, Alison, Hong, Mun-Gwan, Elders, Petra J. M., Kennedy, Gwen, Kokkola, Tarja, Pedersen, Helle Krogh, Mahajan, Anubha, McEvoy, Donna, Pattou, Francois, Raverdy, Violeta, Häussler, Ragna S., Sharma, Sapna, Thomsen, Henrik S., Vangipurapu, Jagadish, Vestergaard, Henrik, ‘T Hart, Leen M., Adamski, Jerzy, Musholt, Petra B., Brage, Soren, Brunak, Søren, Dermitzakis, Emmanouil, Frost, Gary, Hansen, Torben, Laakso, Markku, Pedersen, Oluf, Ridderstråle, Martin, Ruetten, Hartmut, Hattersley, Andrew T., Walker, Mark, Beulens, Joline W. J., Mari, Andrea, Schwenk, Jochen M., Gupta, Ramneek, McCarthy, Mark I., Pearson, Ewan R., Bell, Jimmy D., Pavo, Imre, and Franks, Paul W.
- Subjects
Medicine and health sciences ,Research and analysis methods ,FOS: Computer and information sciences ,Computer and information sciences ,Biology and life sciences ,3. Good health ,Research Article - Abstract
Funder: Henning och Johan Throne-Holsts, Funder: Hans Werthén, Funder: Swedish Foundation for Strategic Research, Funder: NIHR clinical senior lecturer fellowship, Funder: Wellcome Trust Senior Investigator, Funder: NIHR Exeter Clinical Research Facility, Funder: Science for Life Laboratory (Plasma Profiling Facility), Funder: Knut and Alice Wallenberg Foundation (Human Protein Atlas), Funder: Erling-Persson Foundation (KTH Centre for Precision Medicine), Background: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. Methods and findings: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (
22. Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
- Author
-
Atabaki-Pasdar, Naeimeh, Ohlsson, Mattias, Viñuela, Ana, Frau, Francesca, Pomares-Millan, Hugo, Haid, Mark, Jones, Angus G, Thomas, E Louise, Koivula, Robert W, Kurbasic, Azra, Mutie, Pascal M, Fitipaldi, Hugo, Fernandez, Juan, Dawed, Adem Y, Giordano, Giuseppe N, Forgie, Ian M, McDonald, Timothy J, Rutters, Femke, Cederberg, Henna, Chabanova, Elizaveta, Dale, Matilda, Masi, Federico De, Thomas, Cecilia Engel, Allin, Kristine H, Hansen, Tue H, Heggie, Alison, Hong, Mun-Gwan, Elders, Petra JM, Kennedy, Gwen, Kokkola, Tarja, Pedersen, Helle Krogh, Mahajan, Anubha, McEvoy, Donna, Pattou, Francois, Raverdy, Violeta, Häussler, Ragna S, Sharma, Sapna, Thomsen, Henrik S, Vangipurapu, Jagadish, Vestergaard, Henrik, 'T Hart, Leen M, Adamski, Jerzy, Musholt, Petra B, Brage, Soren, Brunak, Søren, Dermitzakis, Emmanouil, Frost, Gary, Hansen, Torben, Laakso, Markku, Pedersen, Oluf, Ridderstråle, Martin, Ruetten, Hartmut, Hattersley, Andrew T, Walker, Mark, Beulens, Joline WJ, Mari, Andrea, Schwenk, Jochen M, Gupta, Ramneek, McCarthy, Mark I, Pearson, Ewan R, Bell, Jimmy D, Pavo, Imre, and Franks, Paul W
- Subjects
Diabetes Complications ,Fatty Liver ,Machine Learning ,Male ,Models, Statistical ,Humans ,Reproducibility of Results ,Female ,Prospective Studies ,Middle Aged ,Risk Assessment ,3. Good health - Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.