1. Identifying main finding sentences in clinical case reports.
- Author
-
Luo M, Cohen AM, Addepalli S, and Smalheiser NR
- Subjects
- Humans, Natural Language Processing, Software, Data Mining methods, Machine Learning, Medical Records classification
- Abstract
Clinical case reports are the 'eyewitness reports' of medicine and provide a valuable, unique, albeit noisy and underutilized type of evidence. Generally, a case report has a single main finding that represents the reason for writing up the report in the first place. However, no one has previously created an automatic way of identifying main finding sentences in case reports. We previously created a manual corpus of main finding sentences extracted from the abstracts and full text of clinical case reports. Here, we have utilized the corpus to create a machine learning-based model that automatically predicts which sentence(s) from abstracts state the main finding. The model has been evaluated on a separate manual corpus of clinical case reports and found to have good performance. This is a step toward setting up a retrieval system in which, given one case report, one can find other case reports that report the same or very similar main findings. The code and necessary files to run the main finding model can be downloaded from https://github.com/qi29/main_ finding_recognition, released under the Apache License, Version 2.0., (© The Author(s) 2020. Published by Oxford University Press.)
- Published
- 2020
- Full Text
- View/download PDF