1. The effects of verbal and spatial working memory on short- and long-latency sensorimotor circuits in the motor cortex.
- Author
-
Lenizky, Markus W. and Meehan, Sean K.
- Subjects
- *
SHORT-term memory , *SPATIAL memory , *MOTOR cortex , *TRANSCRANIAL magnetic stimulation , *RESPONSE inhibition , *SENSORIMOTOR cortex , *PYRAMIDAL tract , *TRANSCRANIAL Doppler ultrasonography - Abstract
Multiple sensorimotor loops converge in the motor cortex to create an adaptable system capable of context-specific sensorimotor control. Afferent inhibition provides a non-invasive tool to investigate the substrates by which procedural and cognitive control processes interact to shape motor corticospinal projections. Varying the transcranial magnetic stimulation properties during afferent inhibition can probe specific sensorimotor circuits that contribute to short- and long-latency periods of inhibition in response to the peripheral stimulation. The current study used short- (SAI) and long-latency (LAI) afferent inhibition to probe the influence of verbal and spatial working memory load on the specific sensorimotor circuits recruited by posterior-anterior (PA) and anterior-posterior (AP) TMS-induced current. Participants completed two sessions where SAI and LAI were assessed during the short-term maintenance of two- or six-item sets of letters (verbal) or stimulus locations (spatial). The only difference between the sessions was the direction of the induced current. PA SAI decreased as the verbal working memory load increased. In contrast, AP SAI was not modulated by verbal working memory load. Visuospatial working memory load did not affect PA or AP SAI. Neither PA LAI nor AP LAI were sensitive to verbal or spatial working memory load. The dissociation of short-latency PA and AP sensorimotor circuits and short- and long-latency PA sensorimotor circuits with increasing verbal working memory load support multiple convergent sensorimotor loops that provide distinct functional information to facilitate context-specific supraspinal control. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF