195 results on '"Meissner, Kristian"'
Search Results
2. Automatic image-based identification and biomass estimation of invertebrates
- Author
-
Ärje, Johanna, Melvad, Claus, Jeppesen, Mads Rosenhøj, Madsen, Sigurd Agerskov, Raitoharju, Jenni, Rasmussen, Maria Strandgård, Iosifidis, Alexandros, Tirronen, Ville, Meissner, Kristian, Gabbouj, Moncef, and Høye, Toke Thomas
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map invertebrate diversity altogether. Given recent advances in computer vision, we propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology. We describe a robot-enabled image-based identification machine, which can automate the process of invertebrate identification, biomass estimation and sample sorting. We use the imaging device to generate a comprehensive image database of terrestrial arthropod species. We use this database to test the classification accuracy i.e. how well the species identity of a specimen can be predicted from images taken by the machine. We also test sensitivity of the classification accuracy to the camera settings (aperture and exposure time) in order to move forward with the best possible image quality. We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task. The results for the initial dataset are very promising ($\overline{ACC}=0.980$). The system is general and can easily be used for other groups of invertebrates as well. As such, our results pave the way for generating more data on spatial and temporal variation in invertebrate abundance, diversity and biomass.
- Published
- 2020
3. Empirical Bayes to assess ecological diversity and similarity with overdispersion in multivariate counts
- Author
-
Divino, Fabio, Ärje, Johanna, Penttinen, Antti, Meissner, Kristian, and Kärkkäinen, Salme
- Subjects
Statistics - Applications - Abstract
The assessment of diversity and similarity is relevant in monitoring the status of ecosystems. The respective indicators are based on the taxonomic composition of biological communities of interest, currently estimated through the proportions computed from sampling multivariate counts. In this work we present a novel method able to work with only one sample to estimate the taxonomic composition when the data are affected by overdispersion. The presence of overdispersion in taxonomic counts may be the result of significant environmental factors which are often unobservable but influence communities. Following the empirical Bayes approach, we combine a Bayesian model with the marginal likelihood method to jointly estimate the taxonomic proportions and the level of overdispersion from one sample of multivariate counts. Our proposal is compared to the classical maximum likelihood method in an extensive simulation study with different realistic scenarios. An application to real data from aquatic biomonitoring is also presented. In both the simulation study and the real data application, we consider communities characterized by a large number of taxonomic categories, such as aquatic macroinvertebrates or bacteria which are often overdispersed. The applicative results demonstrate an overall superiority of the empirical Bayes method in almost all examined cases, for both assessments of diversity and similarity. We would recommend practitioners in biomonitoring to use the proposed approach in addition to the traditional procedures. The empirical Bayes estimation allows to better control the error propagation due to the presence of overdispersion in biological data, with a more efficient managerial decision making., Comment: 40 pages, 10 figures, 5 tables, 2 appendices
- Published
- 2018
4. Human experts vs. machines in taxa recognition
- Author
-
Ärje, Johanna, Raitoharju, Jenni, Iosifidis, Alexandros, Tirronen, Ville, Meissner, Kristian, Gabbouj, Moncef, Kiranyaz, Serkan, and Kärkkäinen, Salme
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning ,Quantitative Biology - Quantitative Methods - Abstract
The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hierarchy in detail. We used support vector machine classifier as a benchmark. Our results revealed that human experts using actual specimens yield the lowest classification error ($\overline{CE}=6.1\%$). However, a much faster, automated approach using deep Convolutional Neural Nets comes close to human accuracy ($\overline{CE}=11.4\%$) when a typical flat classification approach is used. Contrary to previous findings in the literature, we find that for machines following a typical flat classification approach commonly used in machine learning performs better than forcing machines to adopt a hierarchical, local per parent node approach used by human taxonomic experts ($\overline{CE}=13.8\%$). Finally, we publicly share our unique dataset to serve as a public benchmark dataset in this field., Comment: 12 pages, 6 figures, 4 tables; link to the dataset fixed
- Published
- 2017
- Full Text
- View/download PDF
5. Deep learning and computer vision will transform entomology
- Author
-
Høye, Toke T., Ärje, Johanna, Bjerge, Kim, Hansen, Oskar L. P., Iosifidis, Alexandros, Leese, Florian, Mann, Hjalte M. R., Meissner, Kristian, Melvad, Claus, and Raitoharju, Jenni
- Published
- 2021
6. A practical guide to DNA-based methods for biodiversity assessment
- Author
-
Bruce, Kat, primary, Blackman, Rosetta, additional, Bourlat, Sarah J., additional, Hellström, Ann Micaela, additional, Bakker, Judith, additional, Bista, Iliana, additional, Bohmann, Kristine, additional, Bouchez, Agnès, additional, Brys, Rein, additional, Clark, Katie, additional, Elbrecht, Vasco, additional, Fazi, Stefano, additional, Fonseca, Vera, additional, Hänfling, Bernd, additional, Leese, Florian, additional, Mächler, Elvira, additional, Mahon, Andrew R., additional, Meissner, Kristian, additional, Panksep, Kristel, additional, Pawlowski, Jan, additional, Schmidt Yáñez, Paul, additional, Seymour, Mathew, additional, Thalinger, Bettina, additional, Valentini, Alice, additional, Woodcock, Paul, additional, Traugott, Michael, additional, Vasselon, Valentin, additional, and Deiner, Kristy, additional
- Published
- 2021
- Full Text
- View/download PDF
7. Gaps in current Baltic Sea environmental monitoring – Science versus management perspectives
- Author
-
Kahlert, Maria, Eilola, Kari, Mack, Leoni, Meissner, Kristian, Sandin, Leonard, Strömberg, Helena, Uusitalo, Laura, Viktorsson, Lena, and Liess, Antonia
- Published
- 2020
- Full Text
- View/download PDF
8. Human experts vs. machines in taxa recognition
- Author
-
Ärje, Johanna, Raitoharju, Jenni, Iosifidis, Alexandros, Tirronen, Ville, Meissner, Kristian, Gabbouj, Moncef, Kiranyaz, Serkan, and Kärkkäinen, Salme
- Published
- 2020
- Full Text
- View/download PDF
9. Metabarcoding for use in Nordic routine aquatic biomonitoring - a validation study
- Author
-
Meissner, Kristian, primary, Aroviita, Jukka, additional, Baattrup-Pedersen, Annette, additional, Buchner, Dominik, additional, Ekrem, Torbjørn, additional, Friberg, Nikolai, additional, Johnson, Richard K., additional, Leese, Florian, additional, Majaneva, Markus, additional, Ólafsson, Jón S., additional, Schartau, Ann Kristin, additional, and Elbrecht, Vasco, additional
- Published
- 2021
- Full Text
- View/download PDF
10. Cost-efficiency assessments of marine monitoring methods lack rigor—a systematic mapping of literature and an end-user view on optimal cost-efficiency analysis
- Author
-
Hyvärinen, Heini, Skyttä, Annaliina, Jernberg, Susanna, Meissner, Kristian, Kuosa, Harri, and Uusitalo, Laura
- Published
- 2021
- Full Text
- View/download PDF
11. Benchmark database for fine-grained image classification of benthic macroinvertebrates
- Author
-
Raitoharju, Jenni, Riabchenko, Ekaterina, Ahmad, Iftikhar, Iosifidis, Alexandros, Gabbouj, Moncef, Kiranyaz, Serkan, Tirronen, Ville, Ärje, Johanna, Kärkkäinen, Salme, and Meissner, Kristian
- Published
- 2018
- Full Text
- View/download PDF
12. The Role of Trout in Stream Food Webs: Integrating Evidence from Field Surveys and Experiments
- Author
-
Meissner, Kristian and Muotka, Timo
- Published
- 2006
13. The effect of automated taxa identification errors on biological indices
- Author
-
Ärje, Johanna, Kärkkäinen, Salme, Meissner, Kristian, Iosifidis, Alexandros, Ince, Türker, Gabbouj, Moncef, and Kiranyaz, Serkan
- Published
- 2017
- Full Text
- View/download PDF
14. Testate amoebae community analysis as a tool to assess biological impacts of peatland use
- Author
-
Daza Secco, Emmanuela, Haimi, Jari, Högmander, Harri, Taskinen, Sara, Niku, Jenni, and Meissner, Kristian
- Published
- 2018
- Full Text
- View/download PDF
15. DNA metabarcoding - Guidelines to monitor phytoplankton diversity and distribution in marine and brackish waters
- Author
-
Jerney, Jacqueline, primary, Hällfors, Heidi, additional, Jakobsen, Hans, additional, Jurgensone, Iveta, additional, Karlson, Bengt, additional, Kremp, Anke, additional, Lehtinen, Sirpa, additional, Majaneva, Markus, additional, Meissner, Kristian, additional, Norros, Veera, additional, Sildever, Sirje, additional, Suikkanen, Sanna, additional, and Teeveer, Karolin, additional
- Published
- 2023
- Full Text
- View/download PDF
16. DNA metabarcoding : Guidelines to monitor phytoplankton diversity and distribution in marine and brackish waters
- Author
-
Jerney, Jacqueline, Hällfors, Heidi, Jakobsen, Hans, Jurgensone, Iveta, Karlson, Bengt, Kremp, Anke, Lehtinen, Sirpa, Majaneva, Markus, Meissner, Kristian, Norros, Veera, Sildever, Sirje, Suikkanen, Sanna, Teeveer, Karolin, Jerney, Jacqueline, Hällfors, Heidi, Jakobsen, Hans, Jurgensone, Iveta, Karlson, Bengt, Kremp, Anke, Lehtinen, Sirpa, Majaneva, Markus, Meissner, Kristian, Norros, Veera, Sildever, Sirje, Suikkanen, Sanna, and Teeveer, Karolin
- Abstract
We present guidelines for using environmental DNA metabarcoding, together with conventional techniques, to monitor the taxonomic diversity of phytoplankton in marine and brackish waters. The focus is on eukaryotic and prokaryotic phytoplankton using 18S and 16S rRNA primers and high-throughput sequencing. Information and recommendations on sampling, sample processing, molecular biological work, quality control, bioinformatics, data storage and management and cost estimates are included so that the method can be used to complement standardized light microscopy. A scientific literature review, discussion on future perspectives, reference databases and standardization are included. Using eDNA metabarcoding to complement standardized light microscopy advances conventional monitoring and research on phytoplankton communities to assess biodiversity and the state of the marine environment.
- Published
- 2023
- Full Text
- View/download PDF
17. Why We Need Sustainable Networks Bridging Countries, Disciplines, Cultures and Generations for Aquatic Biomonitoring 2.0: A Perspective Derived From the DNAqua-Net COST Action
- Author
-
Leese, Florian, primary, Bouchez, Agnès, additional, Abarenkov, Kessy, additional, Altermatt, Florian, additional, Borja, Ángel, additional, Bruce, Kat, additional, Ekrem, Torbjørn, additional, Čiampor, Fedor, additional, Čiamporová-Zaťovičová, Zuzana, additional, Costa, Filipe O., additional, Duarte, Sofia, additional, Elbrecht, Vasco, additional, Fontaneto, Diego, additional, Franc, Alain, additional, Geiger, Matthias F., additional, Hering, Daniel, additional, Kahlert, Maria, additional, Kalamujić Stroil, Belma, additional, Kelly, Martyn, additional, Keskin, Emre, additional, Liska, Igor, additional, Mergen, Patricia, additional, Meissner, Kristian, additional, Pawlowski, Jan, additional, Penev, Lyubomir, additional, Reyjol, Yorick, additional, Rotter, Ana, additional, Steinke, Dirk, additional, van der Wal, Bas, additional, Vitecek, Simon, additional, Zimmermann, Jonas, additional, and Weigand, Alexander M., additional
- Published
- 2018
- Full Text
- View/download PDF
18. Case study optimisation strategies
- Author
-
Buijse, Anthonie Dirk, Penning, Ellis, Alatalo, Isra, Andrzejewska, Anna, Anlauf, Andreas, Anton, Catalin, Baattrup-Pedersen, Annette, Bañanres, Iñaki, Birk, Sebastian, Boets, Pieter, Brandão, Cláudia, Cerqueira Correia, Francisco Lourenço, Colls, Miriam, de Lange, Marieke, Dias, Henrique, Drexler, Silke-Silvia, Ecke, Frauke, Elosegi, Arturo, Ferreira, Maria Teresa, Forio, Marie Anne, Fuchs, Elmar, Funk, Andrea, Geerling, Gertjan, Gerisch, Michael, Gerner, Nadine, Goethals, Peter, Grossman, Michal, Gruber, Tamas, Hein, Thomas, Henriques, Vera, Hering, Daniel, Hershkovitz, Yaron, Hunter, Peter, Jägrud, Linnéa, Jarak, Matea, Kajner, Peter, Karnatz, Svenja, Katz, Avital, Kempter, Iris, Mateljak, Zoran, Meissner, Kristian, Nørgaard, Martin Nissen, Pickard, Amy, Pietilä, Kaisa, Portela-Pereira, Estevão, Puiu, Iulia, Rankinen, Katri, Ratner, Tal, Rodríguez-González, Patricia María, Ronkainen, Tiina, Ronkanen, Anna-Kaisa, Rudziński, Julian, Sá, L., Samu, Andrea, Schneider, Andrea R., Scrieciu, Albert, Sime, Iain, Sommerhäuser, Mario, Streater, Huw, Tögel, Robert, Trandziuk, Paweł, Udklit, Linda, Unzurrunzaga, Arantxa, Wijnen, Eline, and Wilińska, Anna
- Abstract
1. A SWOT analysis of the IUCN criteria for naturebased solutions to support European Green Deal goals yielded a broad spectrum of information on the MERLIN freshwater restoration case studies. 2. This information provides the necessary ingredients to draft an optimisation strategy for the MERLIN case studies on themes including multiple goals, society, restoration techniques, economy, policy and regulations. 3. This information offers a basis for peer-to-peer learning between the case studies and those in other regions. 4. The optimisation strategies provide new insights and broaden perspectives on restoration actions in individual case studies. 5. Identifying the potential for multiple Green Deal goal achievements will initiate broader dialogues with stakeholders and provide new incentives for restoration with multiple benefits for local people. 6. Capacity building on financial arrangements will create new opportunities for restoration actions. 7. Clear and agile policy arrangements are needed to enhance stakeholder participation in restoration actions. 8. The visioning, planning and evaluation of restoration actions are long-term activities that benefit from adaptive approaches and sound longterm monitoring programs on multiple aspects of biophysical and socio-ecological systems.
- Published
- 2022
- Full Text
- View/download PDF
19. Marine monitoring in transition: On the verge of technological revolution?
- Author
-
Korpinen, Samuli, primary, Kahlert, Maria, additional, Kuosa, Harri, additional, Mack, Leoni, additional, Meissner, Kristian, additional, Pitkänen, Heikki, additional, Pyhälahti, Timo, additional, and Uusitalo, Laura, additional
- Published
- 2022
- Full Text
- View/download PDF
20. Multiple Order Gradient Feature for Macro-Invertebrate Identification Using Support Vector Machines
- Author
-
Tirronen, Ville, Caponio, Andrea, Haanpää, Tomi, Meissner, Kristian, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Sudan, Madhu, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Doug, Series editor, Vardi, Moshe Y., Series editor, Weikum, Gerhard, Series editor, Kolehmainen, Mikko, editor, Toivanen, Pekka, editor, and Beliczynski, Bartlomiej, editor
- Published
- 2009
- Full Text
- View/download PDF
21. WG3: New Concepts and Standards for Data management (Content, curation, quality management, technical framework, documentation)
- Author
-
Häffner, Eva, Addink, Wouter, Alves, Maria-Judite, Blum, Stan, Seberg, Ole, Arvanitidis, Christos, Casino, Ana, Koureas, dimitris, Antaloudaki, Eleftheria, Bakken, Torkild, Banki, Olaf, Bartolozzi, Luca, Brosens, Dimitri, Cecchi, Lorenzo, Döring, Markus, Droege, Gabi, Agosti, Donat, Figueira, Rui, Frick, Holger, Gazda, Anna, Georgiev, Valeri, Groom, Quentin, Guéorguiev, Borislav, Güntsch, Anton, Hardisty, Alex, Haston, Elspeth, Holstein, Joachim, Hörnschemeyer, Thomas, Humphries, Josh, Jakimovsky, Boro, Juslén, Aino, Kahila Bar-Gal, Gila, Karakasi, Danae, Karam, Naouel, Kelleher, Colin, Lintulaakso, Kari, Marcer, Arnald, Marhold, Karol, Martellos, Stefano, Meissner, Kristian, Mergen, Patricia, Neumann, Dirk, Nina, Aleksandra, Nivart, Anne, Pando, Francisco, Papp, Beata, Pettersson, Lars, Phillips, Sarah, Rainer, Heimo, Schulman, Leif, Scory, Serge, de Smedt, Sofie, Smith, Vincent, Szucsich, Nikolaus, Trichas, Apostolos, Triebel, Dagmar, Weigand, Alexander, Weiland, Claus, Woodburn, Matt, Baskauf, Steve, Bölling, Christian, Buttigieg, Pier, Chapman, Caitlin, Cutajar, Simone, Dillen, Mathias, Gajdos-Kljusuric, Jasenka, Glöckler, Falko, islam, Sharif, Koch, Gerda, Lanfear, Jeremy, Macklin, James, Mitic, Bozena, Paul, Deborah, Poldmaa, Kadri, Rasser, Michael, Robertson, Tim, Runnel, Veljo, Tilley, Laura, Trekels, Maarten, Vrenozi, Blerina, Gültekin, Pinar, and Gültekin, Yasar
- Subjects
MOBILISE ,Botanic Gardens ,Natural Scientific Collections ,Specimens ,DiSSCo ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Natural History Museums ,Landscape Analysis ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Data Management - Abstract
MOBILISE WG3 WIKI
- Published
- 2022
- Full Text
- View/download PDF
22. A strategy for successful integration of DNA-based methods in aquatic monitoring
- Author
-
Blancher, Philippe, Lefrançois, Estelle, Rimet, Frédéric, Vasselon, Valentin, Argillier, Christine, Arle, Jens, Beja, Pedro, Boets, Pieter, Boughaba, Jeanne, Chauvin, Christian, Deacon, Michael, Duncan, Willie, Ejdung, Gunilla, Erba, Stefania, Ferrari, Benoit, Fischer, Helmut, Hänfling, Bernd, Haldin, Michael, Hering, Daniel, Hette-Tronquart, Nicolas, Hiley, Alice, Järvinen, Marko, Jeannot, Benjamin, Kahlert, Maria, Kelly, Martyn, Kleinteich, Julia, Koyuncuoǧlu, Serdar, Krenek, Sascha, Langhein-Winther, Sidsel, Leese, Florian, Mann, David, Marcel, Rémy, Marcheggiani, Stefania, Meissner, Kristian, Mergen, Patricia, Monnier, Olivier, Narendja, Frank, Neu, Diane, Pinto, Veronica Onofre, Pawlowska, Alina, Pawlowski, Jan, Petersen, Martin, Poikane, Sandra, Pont, Didier, Renevier, Marie-Sophie, Sandoy, Steinar, Svensson, Jonas, Trobajo, Rosa, Zagyva, Andrea Tünde, Tziortzis, Iakovos, Van Der Hoorn, Berry, Vasquez, Marlen Ines, Walsh, Kerry, Weigand, Alexander, Bouchez, Agnès, Onofre Pinto, Veronica, Tünde Zagyva, Andrea, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SCIMABIO Interface SAS, Ecosystèmes aquatiques et changements globaux (UR EABX), Centre Ecotox Oekotoxzentrum, Swiss Federal Insitute of Aquatic Science and Technology [Dübendorf] (EAWAG)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Universität Duisburg-Essen = University of Duisburg-Essen [Essen], Swedish University of Agricultural Sciences (SLU), Aquabio, Finnish Environment Institute (SYKE), Université de Genève = University of Geneva (UNIGE), Institute of Agrifood Research and Technology [Sant Carles de la Ràpita] (IRTA), Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA), and European Project
- Subjects
Water Framework Directive ,Aquatic ecosystems ,[SDE]Environmental Sciences ,Genetics ,DNAqua-Net ,Animal Science and Zoology ,Earth and Related Environmental Sciences ,eDNA ,Natural Sciences ,Ecological assessment ,Biologie ,Molecular Biology ,Nature and Landscape Conservation - Abstract
Recent advances in molecular biomonitoring open new horizons for aquatic ecosystem assessment. Rapid and cost-effective methods based on organismal DNA or environmental DNA (eDNA) now offer the opportunity to produce inventories of indicator taxa that can subsequently be used to assess biodiversity and ecological quality. However, the integration of these new DNA-based methods into current monitoring practices is not straightforward, and will require coordinated actions in the coming years at national and international levels. To plan and stimulate such an integration, the European network DNAqua-Net (COST Action CA15219) brought together international experts from academia, as well as key environmental biomonitoring stakeholders from different European countries. Together, this transdisciplinary consortium developed a roadmap for implementing DNA-based methods with a focus on inland waters assessed by the EU Water Framework Directive (2000/60/EC). This was done through a series of online workshops held in April 2020, which included fifty participants, followed by extensive synthesis work. The roadmap is organised around six objectives: 1) to highlight the effectiveness and benefits of DNA-based methods, 2) develop an adaptive approach for the implementation of new methods, 3) provide guidelines and standards for best practice, 4) engage stakeholders and ensure effective knowledge transfer, 5) support the environmental biomonitoring sector to achieve the required changes, 6) steer the process and harmonise efforts at the European level. This paper provides an overview of the forum discussions and the common European views that have emerged from them, while reflecting the diversity of situations in different countries. It highlights important actions required for a successful implementation of DNA-based biomonitoring of aquatic ecosystems by 2030.
- Published
- 2022
23. Understanding the statistical properties of the percent model affinity index can improve biomonitoring related decision making
- Author
-
Ärje, Johanna, Choi, Kwok-Pui, Divino, Fabio, Meissner, Kristian, and Kärkkäinen, Salme
- Published
- 2016
- Full Text
- View/download PDF
24. A strategy for successful integration of DNA-based methods in aquatic monitoring
- Author
-
Blancher, Philippe, primary, Lefrançois, Estelle, additional, Rimet, Frédéric, additional, Vasselon, Valentin, additional, Argillier, Christine, additional, Arle, Jens, additional, Beja, Pedro, additional, Boets, Pieter, additional, Boughaba, Jeanne, additional, Chauvin, Christian, additional, Deacon, Michael, additional, Duncan, Willie, additional, Ejdung, Gunilla, additional, Erba, Stefania, additional, Ferrari, Benoit, additional, Fischer, Helmut, additional, Hänfling, Bernd, additional, Haldin, Michael, additional, Hering, Daniel, additional, Hette-Tronquart, Nicolas, additional, Hiley, Alice, additional, Järvinen, Marko, additional, Jeannot, Benjamin, additional, Kahlert, Maria, additional, Kelly, Martyn, additional, Kleinteich, Julia, additional, Koyuncuoğlu, Serdar, additional, Krenek, Sascha, additional, Langhein-Winther, Sidsel, additional, Leese, Florian, additional, Mann, David, additional, Marcel, Rémy, additional, Marcheggiani, Stefania, additional, Meissner, Kristian, additional, Mergen, Patricia, additional, Monnier, Olivier, additional, Narendja, Frank, additional, Neu, Diane, additional, Onofre Pinto, Veronica, additional, Pawlowska, Alina, additional, Pawlowski, Jan, additional, Petersen, Martin, additional, Poikane, Sandra, additional, Pont, Didier, additional, Renevier, Marie-Sophie, additional, Sandoy, Steinar, additional, Svensson, Jonas, additional, Trobajo, Rosa, additional, Tünde Zagyva, Andrea, additional, Tziortzis, Iakovos, additional, van der Hoorn, Berry, additional, Vasquez, Marlen Ines, additional, Walsh, Kerry, additional, Weigand, Alexander, additional, and Bouchez, Agnès, additional
- Published
- 2022
- Full Text
- View/download PDF
25. Supplementary material 1 from: Blancher P, Lefrançois E, Rimet F, Vasselon V, Argillier C, Arle J, Beja P, Boets P, Boughaba J, Chauvin C, Deacon M, Duncan W, Ejdung G, Erba S, Ferrari B, Fischer H, Hänfling B, Haldin M, Hering D, Hette-Tronquart N, Hiley A, Järvinen M, Jeannot B, Kahlert M, Kelly M, Kleinteich J, Koyuncuoğlu S, Krenek S, Langhein-Winther S, Leese F, Mann D, Marcel R, Marcheggiani S, Meissner K, Mergen P, Monnier O, Narendja F, Neu D, Onofre Pinto V, Pawlowska A, Pawlowski J, Petersen M, Poikane S, Pont D, Renevier M-S, Sandoy S, Svensson J, Trobajo R, Tünde Zagyva A, Tziortzis I, van der Hoorn B, Vasquez MI, Walsh K, Weigand A, Bouchez A (2022) A strategy for successful integration of DNA-based methods in aquatic monitoring. Metabarcoding and Metagenomics 6: e85652. https://doi.org/10.3897/mbmg.6.85652
- Author
-
Blancher, Philippe, primary, Lefrançois, Estelle, additional, Rimet, Frédéric, additional, Vasselon, Valentin, additional, Argillier, Christine, additional, Arle, Jens, additional, Beja, Pedro, additional, Boets, Pieter, additional, Boughaba, Jeanne, additional, Chauvin, Christian, additional, Deacon, Michael, additional, Duncan, Willie, additional, Ejdung, Gunilla, additional, Erba, Stefania, additional, Ferrari, Benoit, additional, Fischer, Helmut, additional, Hänfling, Bernd, additional, Haldin, Michael, additional, Hering, Daniel, additional, Hette-Tronquart, Nicolas, additional, Hiley, Alice, additional, Järvinen, Marko, additional, Jeannot, Benjamin, additional, Kahlert, Maria, additional, Kelly, Martyn, additional, Kleinteich, Julia, additional, Koyuncuoğlu, Serdar, additional, Krenek, Sascha, additional, Langhein-Winther, Sidsel, additional, Leese, Florian, additional, Mann, David, additional, Marcel, Rémy, additional, Marcheggiani, Stefania, additional, Meissner, Kristian, additional, Mergen, Patricia, additional, Monnier, Olivier, additional, Narendja, Frank, additional, Neu, Diane, additional, Onofre Pinto, Veronica, additional, Pawlowska, Alina, additional, Pawlowski, Jan, additional, Petersen, Martin, additional, Poikane, Sandra, additional, Pont, Didier, additional, Renevier, Marie-Sophie, additional, Sandoy, Steinar, additional, Svensson, Jonas, additional, Trobajo, Rosa, additional, Tünde Zagyva, Andrea, additional, Tziortzis, Iakovos, additional, van der Hoorn, Berry, additional, Vasquez, Marlen Ines, additional, Walsh, Kerry, additional, Weigand, Alexander, additional, and Bouchez, Agnès, additional
- Published
- 2022
- Full Text
- View/download PDF
26. Species turnover in lake littorals: spatial and temporal variation of benthic macroinvertebrate diversity and community composition
- Author
-
Suurkuukka, Heli, Meissner, Kristian K., and Muotka, Timo
- Published
- 2012
- Full Text
- View/download PDF
27. Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland – Vision and action plan for 2022–2025
- Author
-
Norros, Veera, Laamanen, Tiina, Meissner, Kristian, Iso-Touru, Terhi, Kahilainen, Aapo, Lehtinen, Sirpa, Lohtander-Buckbee, Katileena, Nygård, Henrik, Pennanen, Taina, Ruohonen-Lehto, Marja, Sirkiä, Päivi, Suikkanen, Sanna, Tolkkinen, Mikko, Vainio, Eeva, Velmala, Sannakajsa, Vuorio, Kristiina, Vihervaara, Petteri, and Ryttäri, Terhi
- Subjects
monitoring ,ympäristö ,sekvensointi ,molecular biology ,sequencing ,seuranta ,strategy ,molekyylibiologia ,biodiversity ,environmental monitoring ,biodiversiteetti - Abstract
Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland – Vision and Action Plan for 2022-2025 Technological development in molecular methodology has been extremely fast in the past two decades, and groundbreaking new approaches have been introduced. It is now possible to detect and quantify DNA or RNA of target species or even map the whole species community in environmental samples of water, sediment, soil, air or assemblages of whole organisms. Moreover, the costs of high-throughput sequencing and other advanced molecular methods have decreased and methodological pipelines from sampling to data analysis developed sufficiently to allow large-scale, routine application of the new methods in environmental monitoring. This presents a huge opportunity to improve the coverage, accuracy and cost-efficiency of monitoring, enabling a much more complete picture of biodiversity and the state of the environment and their trends. As the new European Biodiversity Strategy for 2030 and other international policies to halt biodiversity loss and the degradation of habitats are translated into concrete measures, the quality of the monitoring data will play a crucial role in determining their success or failure. In this roadmap commissioned by the Finnish Ministry of the Environment, we assess the state-of-the-art in molecular monitoring methods in Finland within the international context, identify challenges and development areas that remain to be addressed and propose an action plan for promoting the coordinated implementation of molecular methods in national monitoring programs. Apart from the most recent scientific literature, our analysis is based on survey results, direct enquiries and interviews. Participation of the national community of experts from different sectors was enabled and invited at several stages of the roadmap preparation. Internationally, molecular monitoring methods are being actively developed and are routinely implemented in monitoring across different taxa and ecosystems. In Finland, molecular monitoring methods have been tested and piloted by all major institutions responsible for environmental monitoring, and the methods are already applied routinely in the monitoring of individual game species such as the wolf and European and Canadian beaver. However, other areas such as the monitoring of biodiversity, threatened species, non-mammalian invasive species or emerging plant or animal pests remain less developed, and national efforts and expertise are scattered across different organizations. Funding and know-how are perceived as the most important factors limiting molecular monitoring method implementation. We estimate that extensive, routine implementation of a wide range of molecular monitoring methods is conceivable in Finland before 2030. As the primary development areas for reaching this goal, we identify (i) international coordination and standard development, (ii) networking across sectors, (iii) education, (iv) infrastructure, (v) reference sequence libraries and the mapping of whole genomes, and (vi) modelling and analysis tool development. For concrete actions in 2022–2025, we propose (1) a cross-governmental funding instrument, (2) a permanent working group responsible for national and international coordination, (3) a national network and (4) an online platform to enhance interaction and knowledge transfer, as well as (5) a national data management system with collectively agreed data and metadata formats and standards. ---------- Kansallinen tiekartta ympäristö-DNA:n ja muiden molekyylibiologisten seurantamenetelmien käyttöönotolle – visio ja toimenpidesuunnitelma vuosille 2022-2025 Molekyylibiologisten menetelmien teknologinen kehitys on ollut ennennäkemättömän nopeaa kahden viime vuosikymmenen aikana. Uudet menetelmät mahdollistavat kohdelajien DNA:n tai RNA:n havaitsemisen ja runsausmäärityksen tai koko eliöyhteisön kartoittamisen esimerkiksi vesi-, sedimentti-, maaperä- tai ilmanäytteistä tai kokonaisia yksilöitä sisältävistä kokoomanäytteistä. Massiivisen rinnakkaissekvensoinnin ja muiden menetelmien kustannukset ovat merkittävästi laskeneet ja menetelmäketjut näytteenotosta tulosten tulkintaan kehittyneet asteelle, joka mahdollistaa niiden laajamittaisen, rutiininomaisen käytön ympäristön seurannassa. Uusien menetelmien avulla voimme parantaa seurannan kattavuutta, tarkkuutta ja kustannustehokkuutta ja siten täydentää seurannan kautta muodostuvaa kuvaa luonnon monimuotoisuudesta ja sen muutoksista. Tälle tiedolle on suuri tarve – laadukas seuranta on keskeinen edellytys sille, että EU:n uuden biodiversiteettistrategian ja muiden luontokadon ja elinympäristöjen tilan huonontumisen pysäyttämiseen tähtäävien kansainvälisten sitoumusten toimeenpano onnistuu. Tässä ympäristöministeriön tilaamassa tiekartassa arvioimme molekyylibiologisten seurantamenetelmien nykytilaa Suomessa osana laajempaa kansainvälistä kenttää, tunnistamme huomiota vaativia haasteita ja kehityskohteita ja ehdotamme konkreettisia toimenpiteitä molekyylibiologisten seurantamenetelmien koordinoidun käyttöönoton edistämiseksi lähivuosien aikana. Selvityksemme perustuu uusimman tieteellisen kirjallisuuden lisäksi kyselytutkimukseen sekä suoriin tiedusteluihin ja haastatteluihin. Yhteiskunnan eri sektoreita edustava kansallinen asiantuntijayhteisö osallistui tiekartan valmisteluun työn eri vaiheissa. Molekyylibiologisia seurantamenetelmiä kehitetään parhaillaan aktiivisesti ympäri maailmaa eri eliöryhmille ja ekosysteemeille, ja yksittäisiä menetelmiä on useissa maissa otettu myös rutiininomaiseen käyttöön. Suomessa menetelmiä on kehitetty ja pilotoitu kaikissa keskeisissä ympäristön seurantaa koordinoivissa laitoksissa, ja yksittäisten riistaeläinten kuten suden ja kanadan- ja euroopanmajavan seurannassa ne ovat jo rutiinikäytössä. Biodiversiteetin, uhanalaisten lajien, vieraslajien (nisäkkäitä lukuun ottamatta) ja muiden haitallisten lajien kansallisessa seurannassa molekyylibiologisten menetelmien käyttö on kuitenkin vielä kokeiluasteella, ja kehittämishankkeiden ja asiantuntijuuden kenttä on hajanainen. Riittämätöntä rahoitusta ja osaamista pidetään alan asiantuntijoiden keskuudessa tärkeimpinä menetelmien käyttöönottoa rajoittavina tekijöinä. Arviomme mukaan laaja kirjo molekyylibiologisia seurantamenetelmiä olisi mahdollista ottaa laajamittaiseen rutiininomaiseen käyttöön vuoteen 2030 mennessä. Tärkeimmiksi kehityskohteiksi nousivat (i) kansainvälinen koordinaatio ja menetelmien standardointi, (ii) organisaatioiden ja sektoreiden välinen verkostoituminen, (iii) koulutus, (iv) infrastruktuuri, (v) referenssisekvenssikirjastot ja kokonaisten genomien kartoittaminen sekä (vi) malli- ja analyysityökalujen kehittäminen. Konkreettisiksi toimenpiteiksi vuosille 2022-2025 esitämme (1) poikkihallinnollista rahoitusohjelmaa molekyylibiologisten seurantamenetelmien käyttöönottoa edistäville tutkimus- ja kehityshankkeille, (2) pysyvää työryhmää kansallisen ja kansainvälisen koordinaation edistämiseksi, (3) olemassa olevan kansallisen asiantuntijaverkoston laajentamista, (4) internet-pohjaista alustaa vuorovaikutuksen ja tiedonjaon tehostamiseksi sekä (5) kansallista, yhdessä sovittuja data- ja metadatastandardeja noudattavaa molekyylibiologisten seuranta-aineistojen tiedonhallintajärjestelmää.
- Published
- 2022
28. Marine monitoring in transition: On the verge of technological revolution?
- Author
-
Korpinen, Samuli, Kahlert, Maria, Kuosa, Harri, Mack, Leoni, Meissner, Kristian, Pitkänen, Heikki, Pyhälahti, Timo, Uusitalo, Laura, Suomen ympäristökeskus, and The Finnish Environment Institute
- Subjects
monitoring programs ,sampling ,menetelmät ,ocean observation ,monitoring methods ,vesiekosysteemit ,seuranta ,meret ,ohjelmat - Abstract
Efforts to renew marine ecosystem monitoring to include advanced technology and cost-effective methods have been repeatedly called for. The current environmental legislation in European Union (EU) requires also ecosystem monitoring beyond the scope of conventional methods and sampling strategies. Despite several studies showing the benefits of new methods, the progress to adopt the methods in national monitoring programmes under legal requirements has been slow. In this study, we have reviewed the current use of a set of methods in marine monitoring programmes under the EU marine strategy framework directive (MSFD), which calls for a holistic view of the marine environment and thus requires tens of monitoring parameters by different methods. Here we assess how widely the new methods are being adopted in the EU member states implementing the MSFD. Our results show a relatively high adoption rate for certain methods, while others are widely ignored. We compare the results also with the monitoring strategies of the four regional sea conventions. We argue that the adoption of methods in European and regional programmes may positively influence the national use of new methods.
- Published
- 2022
29. Predator—prey interactions in a variable environment: responses of a caddis larva and its blackfly prey to variations in stream flow
- Author
-
Meissner, Kristian, Juntunen, Antti, Malmqvist, Björn, and Muotka, Timo
- Published
- 2009
30. Classification and retrieval on macroinvertebrate image databases
- Author
-
Kiranyaz, Serkan, Ince, Turker, Pulkkinen, Jenni, Gabbouj, Moncef, Ärje, Johanna, Kärkkäinen, Salme, Tirronen, Ville, Juhola, Martti, Turpeinen, Tuomas, and Meissner, Kristian
- Published
- 2011
- Full Text
- View/download PDF
31. The pathway of molecular methods from research to routine use
- Author
-
Meissner Kristian
- Subjects
validation ,standardization ,Standardization ,Process (engineering) ,Computer science ,ComputingMilieux_PERSONALCOMPUTING ,General Engineering ,CEN ,molecular methods ,Data science ,Domain (software engineering) ,biomonitoring ,ISO ,pilot studies - Abstract
In this talk I explore how to advance molecular methods from tools in the research domain to routine use in national biomonitoring. I outline the necessity of common guidance, networks, international pilot studies and cooperation with officials to achieve the goal of method uptake into routine use. Lastly, I will explain the role that international method standardization plays in speeding up the uptake process of molecular methods into routine biomonitoring.
- Published
- 2021
32. Technical challenges when scaling up macroinvertebrate DNA metabarcoding
- Author
-
Torbjørn Ekrem, Jón S. Ólafsson, Annette Baattrup-Pedersen, Meissner Kristian, Florian Leese, Adriana Mordente, Jukka Aroviita, Markus Majaneva, Ann Kristin Schartau, Richard K. Johnson, Nikolai Friberg, Dominik Buchner, and Vasco Elbrecht
- Subjects
Ecology ,General Engineering ,macroinvertebrates ,Environmental science ,WFD ,Water quality ,Scaling ,water quality ,DNA metabarcoding - Abstract
Bulk macroinvertebrate DNA metabarcoding is proven a useful tool for routine assessment of freshwater ecosystems. Following a small scale study in 2017, using 18 samples from Finland Elbrecht et al. 2017, sampling and metabarcoding efforts were extended to a total of 297 official monitoring samples from Denmark, Sweden, Norway, Iceland, and Finland as part of the SCANDNAnet project. Macroinvertebrates from these samples were morphologically identified and subsequently DNA metabarcoding was performed. While the project was ultimately successful, documenting generally congruence between identification methods, we encountered a wide range of unexpected challenges when scaling sample throughput Meissner et al. 2020. In this technical talk we highlight major roadblocks and potential solutions to improve turnaround time and reliability of future large scale DNA based monitoring efforts. We identify a need for tighter quality control and quality assurance in laboratory procedures, and exemplify the benefits of laboratory automation when processing hundreds of samples within a single week. We further discuss the need for scalable computational infrastructure, reliable sequencing providers and well-curated, purpose driven, macroinvertebrate reference databases for the Fennoscandian region. The lessons learned from the SCANDNAnet project will be indispensable in building a reliable infrastructure for a future DNA based monitoring of macroinvertebrates across Fennioscandia and beyond.
- Published
- 2021
33. A practical guide to DNA-based methods for biodiversity assessment
- Author
-
Bruce, Kat, Blackman, Rosetta C., Bourlat, Sarah J., Hellström, Micaela, Bakker, Judith, Bista, Iliana, Bohmann, Kristine, Bouchez, Agnès, Brys, Rein, Clark, Katie, Elbrecht, Vasco, Fazi, Stefano, Fonseca, Vera G., Hänfling, Bernd, Leese, Florian, Mächler, Elvira, Mahon, Andrew R., Meissner, Kristian, Panksep, Kristel, Pawlowski, Jan, Schmidt Yáñez, Paul Luis, Seymour, Mathew, Thalinger, Bettina, Valentini, Alice, Woodcock, Paul, Traugott, Michael, Vasselon, Valentin, and Deiner, Kristy
- Subjects
Data processing ,DNA based methods ,Biodiversity ,Biota composition ,Species identification - Abstract
This book represents a synthesis of knowledge and best practice in the field of DNA-based biomonitoring at the time of writing. It has been written with end-users of molecular tools in mind, as well as those who are new to the field in research settings and are looking to gain an overall grounding in the subject area. For each of the main types of sample (water, soil / sediment, bulk invertebrates and diatoms), and for each stage of the field and laboratory processes, we outline key considerations, decisions that need to be made, factors that might influence those decisions, and trade-offs inherent in the choices made. We hope that this will help users, practitioners, and those commissioning DNA-based monitoring programmes to navigate this large field and critically evaluate the strengths and weaknesses of different analysis workflows based on context, project aims and available resources. DNA-based methods for species detection and identification have revolutionised our ability to assess biodiversity in terrestrial, freshwater and marine ecosystems. Starting from the seminal study that used eDNA to detect invasive american bullfrogs in France (Ficetola et al. 2008), research conducted over the last decade has demonstrated the power of these approaches for surveying a wide range of species and groups. Early applications included the use of eDNA to monitor Asian Carp in the USA (Jerde et al. 2013). Following heavy scrutiny, the method was eventually adopted, and is still employed today by the United States Geological Survey (USGS). A flurry of research followed, with tests designed for many threatened and invasive species including New zealand mudsnails (Goldberg et al. 2013), american crayfish (Geerts et al. 2018), gammarids (Blackman et al. 2017), and great crested newts (Biggs et al. 2015). The great crested newt eDNA test has been employed for regulatory monitoring in the UK since 2014. During the same time period, there was a proliferation of research studies that used high-throughput sequencing approaches to describe whole communities of organisms from mixed species and environmental samples, using an approach termed DNA metabarcoding (Taberlet et al. 2012c). As the field developed fast and the approaches were applied to a wide range of research and monitoring objectives, a high level of methodological variation was introduced at all stages of the workflow (Seymour 2019). Thus, while a significant level of consensus on scientific best-practice now exists in many areas, this may not be readily discerned from the now-extensive body of research literature. As environmental practitioners and policy makers are now increasingly starting to integrate DNAbased methods into routine monitoring applications including protected species licensing1, statutory monitoring2 (Hänfling et al. 2016) and environmental impact assessment3, various national and international efforts have been undertaken to standardise methods and integrate them into monitoring frameworks (Pilliod et al. 2019, Loeza-Quintana et al. 2020, Minamoto et al. 2021, Pawlowski et al. 2020a4). In Europe, the EU COST Action DNAqua-Net (Leese et al. 2018) has been working towards incorporating molecular monitoring tools for Biological Quality Elements (BQEs, e.g., fish, macroinvertebrates and phytoplankton- benthos) into the Water Framework Directive (WFD, 2000/60/EC)5 and the Marine Strategy Framework Directive (MSFD, 2008/56/EC)6. Thus, emphasis now shifts from fundamental research to robust and efficient application of DNAbased methods for operational use at large scales. This requires that scientific robustness is balanced with consideration of the practical realities faced by environmental managers. Moreover, there is increased need for strong quality assurance in a setting where non-expert field samplers and commercial laboratories are involved with the generation of data that non-specialist decision-makers then rely on to inform potentially costly action (or non-action). This places increased emphasis on robustness, replicability, traceability and ease-of-use, which may not always be the central focus of studies carried out in the academic research environment. This document aims to summarise the scientific consensus relating to every step of the field and laboratory workflows involved in the most common types of samples and analyses. We do not go into great detail regarding bioinformatics (computational processing of sequence data) and data analysis since these are extensive topics in their own right. We uniquely set the field and lab steps in the context of the practical and logistical constraints faced by environmental managers in terms of cost, logistics, safety, ease-of-use, and quality assurance, highlighting key decisions to be made and the inherent trade-offs associated with the various options. We hope that this will support non-experts, and those new to the field, to navigate the key considerations associated with planning or evaluating monitoring programmes using DNA-based monitoring methods. Additionally, it will aid decision-makers in writing and evaluating tenders and proposals, ensuring that the methods used for a given project are fit-for-purpose and that results are correctly interpreted. Alongside the many areas of emerging consensus, there remain some areas where further research is still required to balance scientific best-practice with the constraints and priorities of end-users. We hope that by shining a light on the importance of these issues, the research community will be encouraged to address them. More generally, we hope to inspire researchers in this now highly-applied scientific field to consider end-user constraints when designing and implementing research projects. This will help to accelerate uptake by users and maximise the impact of research. DNA-based bioassessment methods continue to evolve, and there are several emerging technologies that show exciting promise to move beyond even what is possible today. Examples include in-field sequencing using the MinION device from Oxford Nanopore Technologies (Pomerantz et al. 2018, Davidov et al. 2020, Hatfield et al. 2020), PCR-free metagenomic approaches (Bista et al. 2018, Giebner et al. 2020) and CRISPR for rapid detection of species, which is particularly relevant for invasive an non-native species monitoring (Williams et al. 2019, 2020). We recognise the potential of these methods, but do not consider them in detail here, since they are not yet far enough developed for routine application. EU COST Action DNAqua-Net (CA 15219 a COST (European Cooperation in Science and Technology). DNAqua-Net, European Union Horizon 2020 Published Refereed Current 14.a Mature Multi-organisational International Genetic differentiation Species distributions Method
- Published
- 2021
34. Figure 1 from: Laamanen T, Norros V, Suikkanen S, Tolkkinen M, Vuorio K, Vihervaara P, Sirkiä P, Jørgensen K, Kortelainen P, Reunamo A, Järvinen M, Meissner K (2021) A pilot for implementing environmental DNA (eDNA) based methods into environmental and biomonitoring. ARPHA Conference Abstracts 4: e64800. https://doi.org/10.3897/aca.4.e64800
- Author
-
Laamanen, Tiina, primary, Norros, Veera, additional, Suikkanen, Sanna, additional, Tolkkinen, Mikko, additional, Vuorio, Kristiina, additional, Vihervaara, Petteri, additional, Sirkiä, Päivi, additional, Jørgensen, Kirsten, additional, Kortelainen, Pirkko, additional, Reunamo, Anna, additional, Järvinen, Marko, additional, and Meissner, Kristian, additional
- Published
- 2021
- Full Text
- View/download PDF
35. A pilot for implementing environmental DNA (eDNA) based methods into environmental and biomonitoring
- Author
-
Laamanen, Tiina, primary, Norros, Veera, additional, Suikkanen, Sanna, additional, Tolkkinen, Mikko, additional, Vuorio, Kristiina, additional, Vihervaara, Petteri, additional, Sirkiä, Päivi, additional, Jørgensen, Kirsten, additional, Kortelainen, Pirkko, additional, Reunamo, Anna, additional, Järvinen, Marko, additional, and Meissner, Kristian, additional
- Published
- 2021
- Full Text
- View/download PDF
36. Metabarcoding for use in Nordic routine aquatic biomonitoring - a validation study
- Author
-
Meissner, Kristian, Aroviita, Jukka, Baattrup-Pedersen, Annette, Buchner, Dominik, Ekrem, Torbjørn, Friberg, Nikolai, Johnson, Richard K., Leese, Florian, Majaneva, Markus, Ólafsson, Jón S., Schartau, Ann Kristin, and Elbrecht, Vasco
- Abstract
Over 75% of all lakes and 40% of all rivers in the EU are found in the Nordic countries. Freshwater biomonitoring according to the EU Water Framework Directive (WFD) has been adopted by all Nordic countries and forms an integral part of management efforts to preserve and restore the ecological quality of freshwaters and their ecosystem services. Current identifications of organisms used in WFD biomonitoring are based on expert morphological identification; an approach that is time consuming and prone to errors. Molecular identification methods could alleviate many problems but thus far have not been rigorously tested for use in routine monitoring. Using a questionnaire, we consulted Nordic experts to assess opinions on the applicability of these methods in routine biomonitoring. Further, we validated the practical use of molecular metabarcoding identification for use in freshwater aquatic macroinvertebrate monitoring in all Nordic countries. A total of 297 waterbodies including both lakes and streams were sampled which constitutes the single largest validation test of the method so far. Experts in each country sampled macroinvertebrates according to their national protocols with only minor modifications and samples were analyzed using a standardized laboratory protocol. The results of this study indicate that in most cases identifications using molecular DNA-based methods were highly congruent with traditional expert-based identifications. However, the study also revealed the importance of using unified guidance documents. Several samples showed signs of DNA degradation, affecting reliability of the method. Nordic experts generally recognized molecular identification methods as playing a major role in future biomonitoring, if issues associated with the current lack of unified methodology are resolved. Based on this study, we suggest that concerted Nordic or European efforts towards implementation and standardization of DNA-based methodology should be undertaken to swiftly ensure the use of this promising tool into WFD compliant monitoring. © Nordic Council of Ministers 2020
- Published
- 2020
37. A Synthesis of Marine Monitoring Methods With the Potential to Enhance the Status Assessment of the Baltic Sea
- Author
-
Mack, Leoni, Attila, Jenni, Aylagas, Eva, Beermann, Arne, Borja, Angel, Hering, Daniel, Kahlert, Maria, Leese, Florian, Lenz, Robin, Lehtiniemi, Maiju, Liess, Antonia, Lips, Urmas, Mattila, Olli-Pekka, Meissner, Kristian, Pyhalahti, Timo, Setala, Outi, Strehse, Jennifer S., Uusitalo, Laura, Wranne, Anna Willstrand, and Birk, Sebastian
- Subjects
lcsh:QH1-199.5 ,data acquisition ,Ocean Engineering ,Oceanografi, hydrologi och vattenresurser ,lcsh:General. Including nature conservation, geographical distribution ,Aquatic Science ,Baltic Sea Action Plan ,Oceanography ,Oceanography, Hydrology and Water Resources ,Water Framework Directive ,havainnointi ,ddc:570 ,Fakultät für Biologie » Aquatische Ökologie ,Biologiska vetenskaper ,lcsh:Science ,marine management ,Water Science and Technology ,Global and Planetary Change ,meren hoito ,Marine Strategy Framework Directive ,Environmental Sciences (social aspects to be 507) ,Biological Sciences ,meren ekosysteemi ,datan hankinta ,kansalaishavainnot ,lcsh:Q ,kaukokartoitus ,Biologie ,meren ekologia - Abstract
A multitude of anthropogenic pressures deteriorate the Baltic Sea, resulting in theneed to protect and restore its marine ecosystem. For an efficient conservation,comprehensive monitoring and assessment of all ecosystem elements is of fundamentalimportance. The Baltic Marine Environment Protection Commission HELCOMcoordinates conservation measures regulated by several European directives. However,this holistic assessment is hindered by gaps within the current monitoring schemes.Here, twenty-two novel methods with the potential to fill some of these gaps andimprove the monitoring of the Baltic marine environment are examined. We asked keystakeholders to point out methods likely to improve current Baltic Sea monitoring. Wethen described these methods in a comparable way and evaluated them based ontheir costs and applicability potential (i.e., possibility to make them operational). Twelvemethods require low to very low costs, while five require moderate and two high costs.Seventeen methods were rated with a high to very high applicability, whereas fourmethods had moderate and one low applicability for Baltic Sea monitoring. Methodswith both low costs and a high applicability include the Manta Trawl, Rocket, SedimentCorer, Argo Float, Artificial Substrates, Citizen Observation, Earth Observation, theHydroFIARpH system, DNA Metabarcoding and Stable Isotope Analysis. © 2020 Mack, Attila, Aylagas, Beermann, Borja, Hering, Kahlert, Leese, Lenz, Lehtiniemi, Liess, Lips, Mattila, Meissner, Pyhälahti, Setälä, Strehse, Uusitalo, Willstrand Wranne and Birk. Funding: This work resulted from the BONUS FUMARI project in collaboration with BONUS SEAM project, funded by BONUS (Art. 185), which is jointly funded by the EU, the Academy of Finland and the Swedish Research Council Formas. Furthermore, funding was received from the BmBF project MicroCatch_Balt, grant number 03F0788A and EA was supported by the Red Sea Research Center at KAUST. Data on ARMS and ASUs were obtained by DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status) project, funded by the European Union under the 7th Framework Programme, “The Ocean of Tomorrow” Theme (grant agreement no. 308392), www.devotes-project.eu.
- Published
- 2020
38. Multiple Order Gradient Feature for Macro-Invertebrate Identification Using Support Vector Machines
- Author
-
Tirronen, Ville, primary, Caponio, Andrea, additional, Haanpää, Tomi, additional, and Meissner, Kristian, additional
- Published
- 2009
- Full Text
- View/download PDF
39. A Synthesis of Marine Monitoring Methods With the Potential to Enhance the Status Assessment of the Baltic Sea
- Author
-
Mack, Leoni, primary, Attila, Jenni, additional, Aylagas, Eva, additional, Beermann, Arne, additional, Borja, Angel, additional, Hering, Daniel, additional, Kahlert, Maria, additional, Leese, Florian, additional, Lenz, Robin, additional, Lehtiniemi, Maiju, additional, Liess, Antonia, additional, Lips, Urmas, additional, Mattila, Olli-Pekka, additional, Meissner, Kristian, additional, Pyhälahti, Timo, additional, Setälä, Outi, additional, Strehse, Jennifer S., additional, Uusitalo, Laura, additional, Willstrand Wranne, Anna, additional, and Birk, Sebastian, additional
- Published
- 2020
- Full Text
- View/download PDF
40. Automatic image‐based identification and biomass estimation of invertebrates
- Author
-
Ärje, Johanna, primary, Melvad, Claus, additional, Jeppesen, Mads Rosenhøj, additional, Madsen, Sigurd Agerskov, additional, Raitoharju, Jenni, additional, Rasmussen, Maria Strandgård, additional, Iosifidis, Alexandros, additional, Tirronen, Ville, additional, Gabbouj, Moncef, additional, Meissner, Kristian, additional, and Høye, Toke Thomas, additional
- Published
- 2020
- Full Text
- View/download PDF
41. Deep learning and computer vision will transform entomology
- Author
-
Høye, Toke T., primary, Ärje, Johanna, additional, Bjerge, Kim, additional, Hansen, Oskar L. P., additional, Iosifidis, Alexandros, additional, Leese, Florian, additional, Mann, Hjalte M. R., additional, Meissner, Kristian, additional, Melvad, Claus, additional, and Raitoharju, Jenni, additional
- Published
- 2020
- Full Text
- View/download PDF
42. The value of perfect and imperfect information in lake monitoring and management
- Author
-
Koski, Vilja, primary, Kotamäki, Niina, additional, Hämäläinen, Heikki, additional, Meissner, Kristian, additional, Karvanen, Juha, additional, and Kärkkäinen, Salme, additional
- Published
- 2020
- Full Text
- View/download PDF
43. On Confidences and Their Use in (Semi-)Automatic Multi-Image Taxa Identification
- Author
-
Raitoharju, Jenni, primary and Meissner, Kristian, additional
- Published
- 2019
- Full Text
- View/download PDF
44. Science Advances
- Author
-
Tiegs, Scott D., Costello, David M., Isken, Mark W., Woodward, Guy, McIntyre, Peter B., Gessner, Mark O., Chauvet, Eric, Griffiths, Natalie A., Flecker, Alex S., Acuña, Vicenç, Albariño, Ricardo, Allen, Daniel C., Alonso, Cecilia, Andino, Patricio, Arango, Clay, Aroviita, Jukka, Barbosa, Marcus V. M., Barmuta, Leon A., Baxter, Colden V., Bell, Thomas D. C., Bellinger, Brent, Boyero, Luz, Brown, Lee E., Bruder, Andreas, Bruesewitz, Denise A., Burdon, Francis J., Callisto, Marcos, Canhoto, Cristina, Capps, Krista A., Castillo, María M., Clapcott, Joanne, Colas, Fanny, Colón-Gaud, Checo, Cornut, Julien, Crespo-Pérez, Verónica, Cross, Wyatt F., Culp, Joseph M., Danger, Michael, Dangles, Olivier, de Eyto, Elvira, Derry, Alison M., Villanueva, Veronica Díaz, Douglas, Michael M., Elosegi, Arturo, Encalada, Andrea C., Entrekin, Sally, Espinosa, Rodrigo, Ethaiya, Diana, Ferreira, Verónica, Ferriol, Carmen, Flanagan, Kyla M., Fleituch, Tadeusz, Follstad Shah, Jennifer J., Frainer, André, Friberg, Nikolai, Frost, Paul C., Garcia, Erica A., García Lago, Liliana, García Soto, Pavel Ernesto, Ghate, Sudeep, Giling, Darren P., Gilmer, Alan, Gonçalves, José Francisco, Gonzales, Rosario Karina, Graça, Manuel A. S., Grace, Mike, Grossart, Hans-Peter, Guérold, François, Gulis, Vlad, Hepp, Luiz U., Higgins, Scott, Hishi, Takuo, Huddart, Joseph, Hudson, John, Imberger, Samantha, Iñiguez-Armijos, Carlos, Iwata, Tomoya, Janetski, David J., Jennings, Eleanor, Kirkwood, Andrea E., Koning, Aaron A., Kosten, Sarian, Kuehn, Kevin A., Laudon, Hjalmar, Leavitt, Peter R., Lemes da Silva, Aurea L., Leroux, Shawn J., LeRoy, Carri J., Lisi, Peter J., MacKenzie, Richard, Marcarelli, Amy M., Masese, Frank O., McKie, Brendan G., Oliveira Medeiros, Adriana, Meissner, Kristian, Miliša, Marko, Mishra, Shailendra, Miyake, Yo, Moerke, Ashley, Mombrikotb, Shorok, Mooney, Rob, Moulton, Tim, Muotka, Timo, Negishi, Junjiro N., Neres-Lima, Vinicius, Nieminen, Mika L., Nimptsch, Jorge, Ondruch, Jakub, Paavola, Riku, Pardo, Isabel, Patrick, Christopher J., Peeters, Edwin T. H. M., Pozo, Jesus, Pringle, Catherine, Prussian, Aaron, Quenta, Estefania, Quesada, Antonio, Reid, Brian, Richardson, John S., Rigosi, Anna, Rincón, José, Rîşnoveanu, Geta, Robinson, Christopher T., Rodríguez-Gallego, Lorena, Royer, Todd V., Rusak, James A., Santamans, Anna C., Selmeczy, Géza B., Simiyu, Gelas, Skuja, Agnija, Smykla, Jerzy, Sridhar, Kandikere R., Sponseller, Ryan, Stoler, Aaron, Swan, Christopher M., Szlag, David, Teixeira-de Mello, Franco, Tonkin, Jonathan D., Uusheimo, Sari, Veach, Allison M., Vilbaste, Sirje, Vought, Lena B. M., Wang, Chiao-Ping, Webster, Jackson R., Wilson, Paul B., Woelfl, Stefan, Xenopoulos, Marguerite A., Yates, Adam G., Yoshimura, Chihiro, Yule, Catherine M., Zhang, Yixin X., Zwart, Jacob A., School of Biological and Chemical Sciences, Queen Mary University of London (QMUL), Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Leibniz Association, Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, ICRA, Catalan Institute for Water Research, ICRA, Pontificia Universidad Catolica del Ecuador, Wetland ecology department (Seville, Espagne), Doñana biological station - CSIC (SPAIN), Swiss Federal Institute of Aquatic Science and Technology - EAWAG (SWITZERLAND), Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences – Uppsala, Sweden, Burdon, Universidade Federal de Minas Gerais [Belo Horizonte] (UFMG), Marine and environmental research centre - IMAR-CMA (Coimbra, Portugal), University of Coimbra [Portugal] (UC), GRET, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU), Laboratorio de Limnología [Bariloche], Instituto Nacional de Investigaciones en Biodiversidad y Medioambiente [Bariloche] (INIBIOMA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Comahue [Neuquén] (UNCOMA)-Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), Faculty of Science and Technology, University of the Basque Country, Polska Akademia Nauk (PAN), Norwegian Institute for Water Research (NIVA), Limnology of Stratified Lakes, IGB-Neuglobsow, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Faculty of Agriculture, Kyushu University, University of Bath [Bath], Yamanashi University, Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), University of Vienna [Vienna], University of Zagreb, VTT Information technology, Technical Research Centre of Finland, Instituto de Ciencias Marinas y Limnológicas, Universidate de Vigo, Hospital Universitario La Paz, Department of Biology, Universidad Autonoma de Madrid (UAM), Universidad del Zulia (LUZ), Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany, University of Southampton, Research Institute of New-Type Urbanization, Avignon Université (AU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Oakland University (USA), Kent State University, Imperial College London, Cornell University, Department of Ecology and Evolutionary Biology, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Climate Change Science Institute [Oak Ridge] (CCSI), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, Instituto Catalán de Investigación del Agua - ICRA (SPAIN) (ICRA), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), DEPARTMENT OF BIOLOGY UNIVERSITY OF OKLAHOMA NORMAN USA, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), University of the Republic of Uruguay, Central Washington University, Finnish Environment Institute (SYKE), Federal University of Tocantins, University of Tasmania [Hobart, Australia] (UTAS), Idaho State University, Watershed Protection Department, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), School of Geography, University of Leeds, Leeds, UK, Swiss Federal Insitute of Aquatic Science and Technology [Dübendorf] (EAWAG), Colby College, Department of Aquatic Sciences and Assessment, University of Georgia [USA], EI Colegio de la Frontera Sur (ECOSUR), Consejo Nacional de Ciencia y Tecnología [Mexico] (CONACYT), Cawthron Institute, Risques, Ecosystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix Marseille Université (AMU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Georgia Southern University, University System of Georgia (USG), Pontifical Catholic University of Ecuador, Montana State University (MSU), Wilfrid Laurier University (WLU), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universidade de Vigo, Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Department of Ecology and Evolutionary Biology [CALS], College of Agriculture and Life Sciences [Cornell University] (CALS), Cornell University [New York]-Cornell University [New York], Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Pontificia Universidad Católica del Ecuador, Universidade Federal do Tocantins (UFT), University of Leeds, Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE), Universidad Autónoma de Madrid (UAM), and Entomology
- Subjects
Aquatic Ecology and Water Quality Management ,riparian zones ,ORGANIC-MATTER DECOMPOSITION ,Biodiversité et Ecologie ,Oceanografi, hydrologi och vattenresurser ,Carbon Cycle ,CARBON ,ekosysteemit ,Oceanography, Hydrology and Water Resources ,biomes ,biomit ,ddc:570 ,carbon cycle ,Humans ,STREAMS ,Life Science ,Human Activities ,Riparian zones ,TEMPERATURE ,Institut für Biochemie und Biologie ,Ecosystem ,ComputingMilieux_MISCELLANEOUS ,SDG 15 - Life on Land ,aquatic ecosystems ,Science & Technology ,WIMEK ,hiilen kierto ,vesiekosysteemit ,Aquatic Ecology ,Aquatische Ecologie en Waterkwaliteitsbeheer ,rivers ,Multidisciplinary Sciences ,ekosysteemit (ekologia) ,Biomonitoring ,articles ,Science & Technology - Other Topics ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,ecosystems ,joet ,Environmental Monitoring - Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale. This research was supported by awards to S.D.T. from the Ecuadorian Ministry of Science [Secretaría de Educación Superior Ciencia, Tecnología e Innovación (SENESCYT)] through the PROMETEO scholar exchange program, the Oakland University Research Development Grant program, and a Huron Mountain Wildlife Foundation research grant. N.A.G. was supported by the U.S. Department of Energy’s Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We are grateful for open-access-publishing funds from Kresge Library at Oakland University and Queen’s University Belfast. This research was supported by awards to S.D.T. from the Ecuadorian Ministry of Science [Secretaría de Educación Superior Ciencia, Tecnología e Innovación (SENESCYT)] through the PROMETEO scholar exchange program, the Oakland University Research Development Grant program, and a Huron Mountain Wildlife Foundation research grant. N.A.G. was supported by the U.S. Department of Energy’s Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We are grateful for open-access-publishing funds from Kresge Library at Oakland University and Queen’s University Belfast.
- Published
- 2019
45. Global patterns and drivers of ecosystem functioning in rivers and riparian zones
- Author
-
Tiegs, Scott D., Costello, David M., Isken, Mark W., Woodward, Guy, McIntyre, Peter B., Gessner, Mark O., Chauvet, Eric, Flecker, Alex S., Acuña, Vicenç, Albariño, Ricardo J., Allen, Daniel C., Alonso, Cecilia, Andino, Patricio, Arango, Clay P., Aroviita, Jukka, Barbosa, Marcus V. M., Barmuta, Leon A., Baxter, Colden V., Bell, Thomas D. C., Bellinger, Brent J., Boyero, Luz, Brown, Lee E., Bruder, Andreas, Bruesewitz, Denise A., Burdon, Francis J., Callisto, Marcos, Canhoto, Cristina, Capps, Krista A., Castillo, María M., Clapcott, Joanne, Colas, Fanny, Colón-Gaud, Checo, Cornut, Julien, Crespo-Pérez, Verónica, Cross, Wyatt F., Culp, Joseph M., Danger, Michael, Dangles, Olivier, de Eyto, Elvira, Derry, Alison M., Díaz Villanueva, Veronica, Douglas, Michael M., Elosegi, Arturo, Encalada, Andrea C., Entrekin, Sally, Espinosa, Rodrigo, Ethaiya, Diana, Ferreira, Verónica, Ferriol, Carmen, Flanagan, Kyla M., Fleituch, Tadeusz, Shah, Jennifer J. Follstad, Frainer, André, Friberg, Nikolai, Frost, Paul C., Garcia, Erica A., García Lago, Liliana, García Soto, Pavel Ernesto, Ghate, sudeep, Giling, Darren P., Gilmer, Alan, Gonçalves Jr., José Francisco, Gonzales, Rosario Karina, Graça, Manuel A. S., Grace, Mike, Grossart, Hans-Peter, Guérold, François, Gulis, Vlad, Hepp, Luiz U., Higgins, Scott, Hishi, Takuo, Huddart, Joseph, Hudson, John, Imberger, Samantha, Iñiguez-Armijos, Carlos, Iwata, Tomoya, Janetski, David J., Jennings, Eleanor, Kirkwood, Andrea E., Koning, Aaron A., Kosten, Sarian, Kuehn, Kevin A., Laudon, Hjalmar, Leavitt, Peter R., da Silva, Lemes, Leroux, Shawn J., LeRoy, Peter J. Lisi, MacKenzie, Richard, Marcarelli, Amy M., Masese, Frank O., McKie, Brendan G., Medeiros, Adriana Oliveira, Meissner, Kristian, Miliša, Marko, Mishra, Shailendra, Miyake, Yo, Moerke, Ashley, Mombrikotb, Shorok, mooney, Rob, Moulton, Tim, Muotka, Timo, Negishi, Junjiro N., Neres-Lima, Vinicius, Nieminen, Mika L., Nimptsch, Jorge, Ondruch, Jakub, Paavola, Riku, Pardo, Isabel, Patrick, Christopher J., Peeters, Edwin T.H.M., Pozo, Jesus, Pringle, Catherine, Prussian, Aaron, Quenta, Estefania, Quesada, Antonio, Reid, Brian, Richardson, John S., Rigosi, Anna, Rincón, José, Rîşnoveanu, Geta, Robinson, Christopher T., Rodríguez-Gallego, Lorena, Royer, Todd V., Rusak, James A., Santamans, Anna C., Selmeczy, Géza B., Simiyu, Gelas, Skuja, Agnija, Smykla, Jerzy, Sridar, Kandikere R., Sponseller, Ryan, Stoler, Aaron, Swan, Christopher M., Szlag, David, Teixeira-de Mello, Franco, Tonkin, Jonathan D., Uusheimo, Sari, Veach, Allison M., Vilbaste, Sirje, Vought, Lena B.M., Wang, Chiao-Ping, Webster, Jackson R., Wilson, Paul B., Woelfl, Stefan, Xenopoulos, Marguerite A., Yates, Adam G., Yoshimura, Chihiro, Yule, Catherine M., Zhang, Yixin X., and Zwart, Jacob A.
- Subjects
VDP::Matematikk og naturvitenskap: 400::Zoologiske og botaniske fag: 480 ,VDP::Mathematics and natural scienses: 400::Zoology and botany: 480 - Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
- Published
- 2019
46. Protecting and restoring Europe's waters: an analysis of the future development needs of the Water Framework Directive
- Author
-
Carvalho, Laurence, Mackay, Eleanor B., Cardoso, Ana Cristina, Baattrup-Pedersen, Annette, Birk, Sebastian, Blackstock, Kirsty L., Borics, Gábor, Borja, Angel, Feld, Christian K., Ferreira, Maria Teresa, Globevnik, Lidija, Grizzetti, Bruna, Hendry, Sarah, Hering, Daniel, Kelly, Martyn, Langaas, Sindre, Meissner, Kristian, Panagopoulos, Yiannis, Penning, Ellis, Rouillard, Josselin, Sabater, Sergi, Schmedtje, Ursula, Spears, Bryan M., Venohr, Markus, van de Bund, Wouter, Solheim, Anne Lyche, Carvalho, Laurence, Mackay, Eleanor B., Cardoso, Ana Cristina, Baattrup-Pedersen, Annette, Birk, Sebastian, Blackstock, Kirsty L., Borics, Gábor, Borja, Angel, Feld, Christian K., Ferreira, Maria Teresa, Globevnik, Lidija, Grizzetti, Bruna, Hendry, Sarah, Hering, Daniel, Kelly, Martyn, Langaas, Sindre, Meissner, Kristian, Panagopoulos, Yiannis, Penning, Ellis, Rouillard, Josselin, Sabater, Sergi, Schmedtje, Ursula, Spears, Bryan M., Venohr, Markus, van de Bund, Wouter, and Solheim, Anne Lyche
- Abstract
The Water Framework Directive (WFD) is a pioneering piece of legislation that aims to protect and enhance aquatic ecosystems and promote sustainable water use across Europe. There is growing concern that the objective of good status, or higher, in all EU waters by 2027 is a long way from being achieved in many countries. Through questionnaire analysis of almost 100 experts, we provide recommendations to enhance WFD monitoring and assessment systems, improve programmes of measures and further integrate with other sectoral policies. Our analysis highlights that there is great potential to enhance assessment schemes through strategic design of monitoring networks and innovation, such as earth observation. New diagnostic tools that use existing WFD monitoring data, but incorporate novel statistical and trait-based approaches could be used more widely to diagnose the cause of deterioration under conditions of multiple pressures and deliver a hierarchy of solutions for more evidence-driven decisions in river basin management. There is also a growing recognition that measures undertaken in river basin management should deliver multiple benefits across sectors, such as reduced flood risk, and there needs to be robust demonstration studies that evaluate these. Continued efforts in ‘mainstreaming’ water policy into other policy sectors is clearly needed to deliver wider success with WFD goals, particularly with agricultural policy. Other key policy areas where a need for stronger integration with water policy was recognised included urban planning (waste water treatment), flooding, climate and energy (hydropower). Having a deadline for attaining the policy objective of good status is important, but even more essential is to have a permanent framework for river basin management that addresses the delays in implementation of measures. This requires a long-term perspective, far beyond the current deadline of 2027.
- Published
- 2019
47. Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring – the need for calibration experiments
- Author
-
Blackman, Rosetta C, Mächler, Elvira; https://orcid.org/0000-0003-0430-6173, Altermatt, Florian, Arnold, Amanda, Beja, Pedro, Boets, Pieter, Egeter, Bastian, Elbrecht, Vasco, Filipe, Ana Filipa, Jones, J Iwan, Macher, Jan, Majaneva, Markus, Martins, Filipa M S, Murria, Cesc, Meissner, Kristian, Pawlowski, Jan, Schmidt Yanez, Paul L, Zizka, Vera M A, Leese, Florian, Price, Benjamin W, Deiner, Kristy, Blackman, Rosetta C, Mächler, Elvira; https://orcid.org/0000-0003-0430-6173, Altermatt, Florian, Arnold, Amanda, Beja, Pedro, Boets, Pieter, Egeter, Bastian, Elbrecht, Vasco, Filipe, Ana Filipa, Jones, J Iwan, Macher, Jan, Majaneva, Markus, Martins, Filipa M S, Murria, Cesc, Meissner, Kristian, Pawlowski, Jan, Schmidt Yanez, Paul L, Zizka, Vera M A, Leese, Florian, Price, Benjamin W, and Deiner, Kristy
- Abstract
Over the last decade, steady advancements have been made in the use of DNA-based methods for detection of species in a wide range of ecosystems. This progress has culminated in molecular monitoring methods being employed for the detection of several species for enforceable management purposes of endangered, invasive, and illegally harvested species worldwide. However, the routine application of DNA-based methods to monitor whole communities (typically a metabarcoding approach) in order to assess the status of ecosystems continues to be limited. In aquatic ecosystems, the limited use is particularly true for macroinvertebrate communities. As part of the DNAqua-Net consortium, a structured discussion was initiated with the aim to identify potential molecular methods for freshwater macroinvertebrate community assessment and identify important knowledge gaps for their routine application. We focus on three complementary DNA sources that can be metabarcoded: 1) DNA from homogenised samples (bulk DNA), 2) DNA extracted from sample preservative (fixative DNA), and 3) environmental DNA (eDNA) from water or sediment. We provide a brief overview of metabarcoding macroinvertebrate communities from each DNA source and identify challenges for their application to routine monitoring. To advance the utilisation of DNA-based monitoring for macroinvertebrates, we propose an experimental design template for a series of methodological calibration tests. The template compares sources of DNA with the goal of identifying the effects of molecular processing steps on precision and accuracy. Furthermore, the same samples will be morphologically analysed, which will enable the benchmarking of molecular to traditional processing approaches. In doing so we hope to highlight pathways for the development of DNA-based methods for the monitoring of freshwater macroinvertebrates.
- Published
- 2019
48. Global patterns and drivers of ecosystem functioning in rivers and riparian zones
- Author
-
Entomology, Tiegs, Scott D., Costello, David M., Isken, Mark W., Woodward, Guy, McIntyre, Peter B., Gessner, Mark O., Chauvet, Eric, Griffiths, Natalie A., Flecker, Alex S., Acuna, Vicenc, Albarino, Ricardo, Allen, Daniel C., Alonso, Cecilia, Andino, Patricio, Arango, Clay, Aroviita, Jukka, Barbosa, Marcus V. M., Barmuta, Leon A., Baxter, Colden V., Bell, Thomas D. C., Bellinger, Brent, Boyero, Luz, Brown, Lee E., Bruder, Andreas, Bruesewitz, Denise A., Burdon, Francis J., Callisto, Marcos, Canhoto, Cristina, Capps, Krista A., Castillo, Maria M., Clapcott, Joanne, Colas, Fanny, Colon-Gaud, Checo, Cornut, Julien, Crespo-Perez, Veronica, Cross, Wyatt F., Culp, Joseph M., Danger, Michael, Dangles, Olivier, de Eyto, Elvira, Derry, Alison M., Diaz Villanueva, Veronica, Douglas, Michael M., Elosegi, Arturo, Encalada, Andrea C., Entrekin, Sally A., Espinosa, Rodrigo, Ethaiya, Diana, Ferreira, Veronica, Ferriol, Carmen, Flanagan, Kyla M., Fleituch, Tadeusz, Shah, Jennifer J. Follstad, Frainer, Andre, Friberg, Nikolai, Frost, Paul C., Garcia, Erica A., Lago, Liliana Garcia, Garcia Soto, Pavel Ernesto, Ghate, Sudeep, Giling, Darren P., Gilmer, Alan, Goncalves, Jose Francisco, Jr., Gonzales, Rosario Karina, Graca, Manuel A. S., Grace, Mike, Grossart, Hans-Peter, Guerold, Francois, Gulis, Vlad, Hepp, Luiz U., Higgins, Scott, Hishi, Takuo, Huddart, Joseph, Hudson, John, Imberger, Samantha, Iniguez-Armijos, Carlos, Iwata, Tomoya, Janetski, David J., Jennings, Eleanor, Kirkwood, Andrea E., Koning, Aaron A., Kosten, Sarian, Kuehn, Kevin A., Laudon, Hjalmar, Leavitt, Peter R., Lemes da Silva, Aurea L., Leroux, Shawn J., Leroy, Carri J., Lisi, Peter J., MacKenzie, Richard, Marcarelli, Amy M., Masese, Frank O., Mckie, Brendan G., Oliveira Medeiros, Adriana, Meissner, Kristian, Milisa, Marko, Mishra, Shailendra, Miyake, Yo, Moerke, Ashley, Mombrikotb, Shorok, Mooney, Rob, Moulton, Tim, Muotka, Timo, Negishi, Junjiro N., Neres-Lima, Vinicius, Nieminen, Mika L., Nimptsch, Jorge, Ondruch, Jakub, Paavola, Riku, Pardo, Isabel, Patrick, Christopher J., Peeters, Edwin T. H. M., Pozo, Jesus, Pringle, Catherine, Prussian, Aaron, Quenta, Estefania, Quesada, Antonio, Reid, Brian, Richardson, John S., Rigosi, Anna, Rincon, Jose, Risnoveanu, Geta, Robinson, Christopher T., Rodriguez-Gallego, Lorena, Royer, Todd V., Rusak, James A., Santamans, Anna C., Selmeczy, Geza B., Simiyu, Gelas, Skuja, Agnija, Smykla, Jerzy, Sridhar, Kandikere R., Sponseller, Ryan, Stoler, Aaron, Swan, Christopher M., Szlag, David, Teixeira-de Mello, Franco, Tonkin, Jonathan D., Uusheimo, Sari, Veach, Allison M., Vilbaste, Sirje, Vought, Lena B. M., Wang, Chiao-Ping, Webster, Jackson R., Wilson, Paul B., Woelfl, Stefan, Xenopoulos, Marguerite A., Yates, Adam G., Yoshimura, Chihiro, Yule, Catherine M., Zhang, Yixin X., Zwart, Jacob A., Entomology, Tiegs, Scott D., Costello, David M., Isken, Mark W., Woodward, Guy, McIntyre, Peter B., Gessner, Mark O., Chauvet, Eric, Griffiths, Natalie A., Flecker, Alex S., Acuna, Vicenc, Albarino, Ricardo, Allen, Daniel C., Alonso, Cecilia, Andino, Patricio, Arango, Clay, Aroviita, Jukka, Barbosa, Marcus V. M., Barmuta, Leon A., Baxter, Colden V., Bell, Thomas D. C., Bellinger, Brent, Boyero, Luz, Brown, Lee E., Bruder, Andreas, Bruesewitz, Denise A., Burdon, Francis J., Callisto, Marcos, Canhoto, Cristina, Capps, Krista A., Castillo, Maria M., Clapcott, Joanne, Colas, Fanny, Colon-Gaud, Checo, Cornut, Julien, Crespo-Perez, Veronica, Cross, Wyatt F., Culp, Joseph M., Danger, Michael, Dangles, Olivier, de Eyto, Elvira, Derry, Alison M., Diaz Villanueva, Veronica, Douglas, Michael M., Elosegi, Arturo, Encalada, Andrea C., Entrekin, Sally A., Espinosa, Rodrigo, Ethaiya, Diana, Ferreira, Veronica, Ferriol, Carmen, Flanagan, Kyla M., Fleituch, Tadeusz, Shah, Jennifer J. Follstad, Frainer, Andre, Friberg, Nikolai, Frost, Paul C., Garcia, Erica A., Lago, Liliana Garcia, Garcia Soto, Pavel Ernesto, Ghate, Sudeep, Giling, Darren P., Gilmer, Alan, Goncalves, Jose Francisco, Jr., Gonzales, Rosario Karina, Graca, Manuel A. S., Grace, Mike, Grossart, Hans-Peter, Guerold, Francois, Gulis, Vlad, Hepp, Luiz U., Higgins, Scott, Hishi, Takuo, Huddart, Joseph, Hudson, John, Imberger, Samantha, Iniguez-Armijos, Carlos, Iwata, Tomoya, Janetski, David J., Jennings, Eleanor, Kirkwood, Andrea E., Koning, Aaron A., Kosten, Sarian, Kuehn, Kevin A., Laudon, Hjalmar, Leavitt, Peter R., Lemes da Silva, Aurea L., Leroux, Shawn J., Leroy, Carri J., Lisi, Peter J., MacKenzie, Richard, Marcarelli, Amy M., Masese, Frank O., Mckie, Brendan G., Oliveira Medeiros, Adriana, Meissner, Kristian, Milisa, Marko, Mishra, Shailendra, Miyake, Yo, Moerke, Ashley, Mombrikotb, Shorok, Mooney, Rob, Moulton, Tim, Muotka, Timo, Negishi, Junjiro N., Neres-Lima, Vinicius, Nieminen, Mika L., Nimptsch, Jorge, Ondruch, Jakub, Paavola, Riku, Pardo, Isabel, Patrick, Christopher J., Peeters, Edwin T. H. M., Pozo, Jesus, Pringle, Catherine, Prussian, Aaron, Quenta, Estefania, Quesada, Antonio, Reid, Brian, Richardson, John S., Rigosi, Anna, Rincon, Jose, Risnoveanu, Geta, Robinson, Christopher T., Rodriguez-Gallego, Lorena, Royer, Todd V., Rusak, James A., Santamans, Anna C., Selmeczy, Geza B., Simiyu, Gelas, Skuja, Agnija, Smykla, Jerzy, Sridhar, Kandikere R., Sponseller, Ryan, Stoler, Aaron, Swan, Christopher M., Szlag, David, Teixeira-de Mello, Franco, Tonkin, Jonathan D., Uusheimo, Sari, Veach, Allison M., Vilbaste, Sirje, Vought, Lena B. M., Wang, Chiao-Ping, Webster, Jackson R., Wilson, Paul B., Woelfl, Stefan, Xenopoulos, Marguerite A., Yates, Adam G., Yoshimura, Chihiro, Yule, Catherine M., Zhang, Yixin X., and Zwart, Jacob A.
- Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
- Published
- 2019
49. Testate amoebae community analysis as a tool to assess biological impacts of peatland use
- Author
-
Daza Secco, Emmanuella, Haimi, Jari, Högmander, Harri, Taskinen, Sara, Niku, Jenni, and Meissner, Kristian
- Subjects
boreal peatlands ,metsätalous ,boreaalinen vyöhyke ,peatland restoration ,land uses ,maankäyttö ,turvemaat ,bioindikaattorit - Abstract
As most ecosystems, peatlands have been heavily exploited for different human purposes. For example, in Finland the majority is under forestry, agriculture or peat mining use. Peatlands play an important role in carbon storage, water cycle, and are a unique habitat for rare organisms. Such properties highlight their environmental importance and the need for their restoration. To monitor the success of peatland restoration sensitive indicators are needed. Here we test whether testate amoebae can be used as a reliable bioindicator for assessing peatland condition. To qualify as reliable indicators, responses in testate amoebae community structure to ecological changes must be stronger than random spatial and temporal variation. In this study, we simultaneously assessed differences between the effects of seasonality, intermediate scale spatial variation and land uses on living testate amoebae assemblages in natural, forested and restored peatlands. We expected the effects of seasonality on testate amoebae communities to be less pronounced than those of land use and within site variation. On average, natural sites harboured the highest richness and density, while the lowest numbers were found at forestry sites. Despite small changes observed in taxa dominance and differences in TA community structure between seasons and years at some sites, spatial heterogeneity, temperature, pH, nor water table depth seemed to significantly affect testate amoebae communities. Instead, observed differences were related to type of land use, which explained 75% of the community variation. Our results showed that testate amoebae community monitoring is a useful tool to evaluate impacts of human land use on boreal peatlands. peerReviewed
- Published
- 2018
50. Empirical Bayes improves assessments of diversity and similarity when overdispersion prevails in taxonomic counts with no covariates
- Author
-
Divino, Fabio, primary, Ärje, Johanna, additional, Penttinen, Antti, additional, Meissner, Kristian, additional, and Kärkkäinen, Salme, additional
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.