1. Environmental Nutrients Alter Bacterial and Fungal Gut Microbiomes in the Common Meadow Katydid, Orchelimum vulgare
- Author
-
Melani Muratore, Yvonne Sun, and Chelse Prather
- Subjects
insect microbiome ,fungal microbiome ,nutrient limitation ,bacterial microbiome ,katydid ,grasshopper ,Microbiology ,QR1-502 - Abstract
Insect gut microbiomes consist of bacteria, fungi, and viruses that can act as mutualists to influence the health and fitness of their hosts. While much has been done to increase understanding of the effects of environmental factors that drive insect ecology, there is less understanding of the effects of environmental factors on these gut microbial communities. For example, the effect of environmental nutrients on most insect gut microbiomes is poorly defined. To address this knowledge gap, we investigated the relationship between environmental nutrients and the gut microbial communities in a small study of katydids (n = 13) of the orthopteran species Orchelimum vulgare collected from a costal prairie system. We sampled O. vulgare from unfertilized plots, as well as from plots fertilized with added nitrogen and phosphorus or sodium separately and in combination. We found significantly higher Shannon diversity for the gut bacterial communities in O. vulgare from plots fertilized with added sodium as compared to those collected from plots without added sodium. In contrast, diversity was significantly lower in the gut fungal communities of grasshoppers collected from plots with added nitrogen and phosphorus, as well as those with added sodium, in comparison to those with no added nutrients. There was also a strong positive correlation between the gut bacterial and gut fungal community diversity within each sample. Indicator group analysis for added sodium plots included several taxa with known salt-tolerant bacterial and fungal representatives. Therefore, despite the small sample number, these results highlight the potential for the gut bacterial and fungal constituents to respond differently to changes in environmental nutrient levels. Future studies with a larger sample size will help identify mechanistic determinants driving these changes. Based on our findings and the potential contribution of gut microbes to insect fitness and function, consideration of abiotic factors like soil nutrients along with characteristic gut microbial groups is necessary for better understanding and conservation of this important insect herbivore.
- Published
- 2020
- Full Text
- View/download PDF