1. Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation
- Author
-
Lan Jiali, He Xiaoming, and Meng Yuxi
- Subjects
fractional choquard equation ,normalized solutions ,critical exponent ,variational methods ,35j62 ,35j50 ,35b65 ,Analysis ,QA299.6-433 - Abstract
In this article, we study the fractional critical Choquard equation with a nonlocal perturbation: (−Δ)su=λu+α(Iμ*∣u∣q)∣u∣q−2u+(Iμ*∣u∣2μ,s*)∣u∣2μ,s*−2u,inRN,{\left(-{\Delta })}^{s}u=\lambda u+\alpha \left({I}_{{\mu }^{* }}\hspace{-0.25em}{| u| }^{q}){| u| }^{q-2}u+\left({I}_{{\mu }^{* }}\hspace{-0.25em}{| u| }^{{2}_{\mu ,s}^{* }}){| u| }^{{2}_{\mu ,s}^{* }-2}u,\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}, having prescribed mass ∫RNu2dx=c2,\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}{u}^{2}{\rm{d}}x={c}^{2}, where s∈(0,1),N>2s,00,c>0s\in \left(0,1),N\gt 2s,0\lt \mu \lt N,\alpha \gt 0,c\gt 0, and Iμ(x){I}_{\mu }\left(x) is the Riesz potential given by Iμ(x)=Aμ∣x∣μwithAμ=Γμ22N−μπN⁄2ΓN−μ2,{I}_{\mu }\left(x)=\frac{{A}_{\mu }}{{| x| }^{\mu }}\hspace{1em}\hspace{0.1em}\text{with}\hspace{0.1em}\hspace{0.33em}{A}_{\mu }=\frac{\Gamma \left(\phantom{\rule[-0.75em]{}{0ex}},\frac{\mu }{2}\right)}{{2}^{N-\mu }{\pi }^{N/2}\Gamma \left(\phantom{\rule[-0.75em]{}{0ex}},\frac{N-\mu }{2}\right)}, and 2N−μN
- Published
- 2023
- Full Text
- View/download PDF