1. Using LLMs to build a database of climate extreme impacts
- Author
-
Stammbach, D., Ni, J., Schimanski, T., Dutia, K., Singh, A., Bingler, J., Christiaen, C., Kushwaha, N., Muccione, V., Vaghefi, S.A., Leippold, M., Li, N., Zahra, S., de Brito, Mariana Madruga, Flynn, C.M., Görnerup, O., Worou, K., Kurfalı, M., Meng, C., Thiery, W., Zscheischler, Jakob, Messori, G., Nivre, J., Stammbach, D., Ni, J., Schimanski, T., Dutia, K., Singh, A., Bingler, J., Christiaen, C., Kushwaha, N., Muccione, V., Vaghefi, S.A., Leippold, M., Li, N., Zahra, S., de Brito, Mariana Madruga, Flynn, C.M., Görnerup, O., Worou, K., Kurfalı, M., Meng, C., Thiery, W., Zscheischler, Jakob, Messori, G., and Nivre, J.
- Abstract
To better understand how extreme climate,events impact society, we need to increase the,availability of accurate and comprehensive in-,formation about these impacts. We propose a,method for building large-scale databases of,climate extreme impacts from online textual,sources, using LLMs for information extraction,in combination with more traditional NLP tech-,niques to improve accuracy and consistency.,We evaluate the method against a small bench-,mark database created by human experts and,find that extraction accuracy varies for different,types of information. We compare three differ-,ent LLMs and find that, while the commercial,GPT-4 model gives the best performance over-,all, the open-source models Mistral and Mixtral,are competitive for some types of information.
- Published
- 2024